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The key purpose of the present work is to introduce a numerical algorithm for the solution
of the fractional Klein-Gordon equation (FKGE). The numerical algorithm is based on the ap-
plications of the operational matrices of the Legendre scaling functions. The main advantage
of the numerical algorithm is that it reduces the FKGE into Sylvester form of algebraic equa-
tions which significantly simplify the problem. Numerical results derived by using suggested
numerical scheme are compared with the exact solution. The results show that the suggested
algorithm is very user friendly for solving FKGE and accurate.
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1. Introduction

The standard Klein-Gordon equation (KGE) is written as

(1.1)
∂2w

∂t2
− ∂2w

∂y2
+ w = g(y, t), y ≥ 0, t ≥ 0,
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where u indicates an unknown function in variables y and t, g(y, t) stands for the
source term. Fractional extension of differential equation is similarly useful with
great advantages because of the non-local nature of fractional derivatives [1–12].
For handling the initial and boundary conditions of our physical problem we
will replace integer order derivative to fractional order derivative. The fraction
in derivative suggests a modulation or weighting of system memory. A broad
literature of models having space fractional derivative can be found in [13–17].
Therefore in this article, we will consider more general form of KGE by changing
integer order space derivative by Liouville-Caputo derivative of fractional order
in the following manner:

(1.2)
∂2w(y, t)

∂t2
− ∂αw(y, t)

∂yα
+ w(y, t) = g(y, t), 1 < α ≤ 2,

having the initial conditions:

(1.3) w(y, 0) = g1(y),
∂w(y, 0)

∂t
= g2(y), for 0 ≤ y, t ≤ 1,

and boundary conditions:

(1.4) w(0, t) = h1(t), w(1, t) = h2(t).

In view of great importance of KGE in science, especially in quantum field
theory, plasma, optical fibers and dispersive wave-phenomena many authors have
studied it by using various analytical and numerical schemes [18–27] with their
own shortcomings and limitations. The operational matrix method [28–38] was
also applied to solve problems in fractional calculus.

In the present paper, we are using a computational technique which is based
on the operational matrices of Legendre scaling functions. In this method, first
we take finite dimensional approximation of unknown function. Further, making
use of operational matrices in the FKGE, we find a system of algebraic equations
in Sylvester form whose solution yields approximate solution for the FKGE. To
show the utility and accuracy of the suggested approach we have compared the
obtained results with exact solutions and numerical results by some existing
methods.

2. Preliminaries

Here we give some theoretical foundation of fractional order differentiation
and integration:
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Definition 2.1. The Riemann-Liouville (RL) fractional integral operator is pre-
sented as

Iασ(x) =
1

Γ(α)

xˆ

0

(x− u)α−1σ(u) du, α > 0, x > 0,

I0σ(x) = σ(x).

Definition 2.2. The Liouville-Caputo fractional derivative of order β is ex-
pressed as

Dβσ(x) = Im−βDmσ(x) =
1

Γ(m− β)

xˆ

0

(x− u)m−β−1 dm

dum
σ(u) du,

m− 1 < β < m, x > 0.

Lemma 2.1. If p− 1 < α ≤ p, p ∈ N , and σ ∈ L2[0, 1] then DαIασ(y) = σ(y)
and

IαDασ(y) = σ(y)−
p−1∑
k=0

σ(k)(0+)
yk

k!
, y > 0.

Proof. Please see [39].

The Legendre scaling functions {ψj(y)} in one dimension are expressed in
the following manner

(2.1) ψj(y) =

{ √
(2j + 1)Pj(2y − 1), for 0 ≤ y < 1.

0, otherwise,

where Pj(y) is standing for Legendre polynomials of order j on the interval
[−1, 1].

The two dimensional Legendre scaling function ψj1,j2 are defined as

ψj1,j2(y, t) = ψj1(y)ψj2(t), j1, j2 ∈ N = {1, 2, 3, ...} ,

where ψj1(y) and ψj2(y) are one dimensional Legendre scaling functions as de-
fined in Eq. (2.1).

(ψj1,j2) form a complete orthonormal basis with the following property:

1ˆ

0

1ˆ

0

ψi1,i2(y, t)ψj1,j2(y, t) dy dt =

{
1, i1 = j1 and i2 = j2,

0, otherwise.
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Therefore, a function h(y, t) ∈ L2([0, 1]× [0, 1]), can be approximated in the
following manner

(2.2) h(y, t) ∼=
n1∑
j1=0

n2∑
j2=0

cj1,j2ψj1,j2(y, t) = CTµn1, n2(y, t),

where
C = [c0,0, ..., c0,n2 , ..., cn1,1, ..., cn1,n2 ]T,

µn1,n2(y, t) = [ψ0,0(y, t), ..., ψ0,n2(y, t), ..., ψn1,1(y, t), ..., ψn1,n2(y, t)]T.

The coefficients cj1,j2 in the expansions of h(y, t) are presented as

(2.3) cj1,j2 =

1ˆ

0

1ˆ

0

h(y, t)ψj1,j2(y, t) dy dt.

On employing matrix notation Eq. (2.2) can be presented as,

(2.4) h(y, t) ∼= µT
n1

(y)Cµn2(t),

where

µn1(y) = [ψ0(y), ..., ψn1(y)]T, µn2(t) = [ψ0(t), ..., ψn2(t)]T

and
C = (cj1,j2)(n1+1)×(n2+1) .

Theorem 2.1. If Legendre scaling vector µn(y) = [ψ0(y), ..., ψn(y)]T, and con-
sider α > 0, then

(2.5) Iαψi(y) = I(α)µn(y).

In the above I(α) = ( ς(c, d)) , is (n + 1) × (n + 1) operational matrix of
fractional integral of order α and its (c, d)-th entry is written as

ς(c, d) = (2c+ 1)1/2(2d+ 1)1/2
c∑

k=0

d∑
l=0

(−1)c+d+k+l

· (c+ k)!(d+ l)!

(c− k)!(d− l)!(k)!(l!)2(α+ k + l + 1)Γ(α+ k + 1)
, 0 ≤ c, d ≤ n.

Proof. Please see [40, 41].
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Theorem 2.2. If Legendre scaling vector µn(y) = [ψ0(y), ..., ψn(y)]T, and con-
sider β > 0, then

(2.6) Dβψi(y) = D(β)µn(y),

where D(β) = (τ(c, d)) is (n+1)×(n+1) operational matrix of Liouville-Caputo
fractional derivative of order β and its (c, d)-th entry is given by

τ(c, d) = (2c+ 1)1/2(2d+ 1)1/2
c∑

k=dβe

d∑
l=0

(−1)c+d+k+l

· (c+ k)!(d+ l)!

(c− k)!(d− l)!(k)!(l!)2(k + l + 1− β)Γ(k + 1− β)
.

Proof. Please see [40, 41].

3. Method of solution

In the present part, we describe algorithm to obtain the approximate solution
of the Eq. (1.2) with initial condition Eq. (1.3) by taking n1 = n2 = n, for any
approximations. Let

(3.1)
∂2w(y, t)

∂t2
= µT

n (y)Cµn(t).

Integrating Eq. (3.1) twice with respect to t and using Lemma 2.1, we have

(3.2) w(y, t) = µT
n (y)CI(2)µn(t) + tg2(y) + g1(y),

where I(2) can be calculated using Eq. (2.5). Let

(3.3) tg2(y) + g1(y) ≈ µT
n (y)Aµn(t).

From Eqs (3.2) and (3.3), we can write

(3.4) w(y, t) = µT
n (y)CI(2)µn(t) + µT

n (y)Aµn(t).

Taking differentiation of order α with respect to y on the both side of Eq.
(3.4), we arrive at the subsequent result

(3.5)
∂αw(y, t)

∂yα
= µT

n (y)D(α),TCI(2)µn(t) + µT
n (y)D(α),TAµn(t),

where D(α) can be calculated using Eq. (2.6). Further, approximating the inho-
mogeneous term as

(3.6) g(y, t) ≈ µT
n (y)Gµn(t).
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Using Eqs (3.1), (3.4), (3.5) and (3.6) in Eq. (1.2), we get

µT
n (y)Cµn(t)− µT

n (y)D(α),TCI(2)µn(t)− µT
n (y)D(α),TAµn(t)

+ µT
n (y)CI(2)µn(t) + µT

n (y)Aµn(t) = µT
n (y)Gµn(t).

Equation (3.7) can be written as

(3.7)
(
D(α),T − Id

)
C − C

(
I(2)
)−1

=
(
A− F −D(α),TA

)(
I(2)
)−1

.

Equation (3.8) is known a Sylvester equation which can be solved very easily
to determine the unknown matrix C. Making use of the value of C in Eq. (3.4),
we can obtain an approximate solution for FKGE.

4. Numerical experiments and discussion

Example 1. We consider the subsequent FKGE [26]

(4.1)
∂2w(y, t)

∂t2
− ∂αw(y, t)

∂yα
= g(y, t), 1 < α ≤ 2,

with initial conditions:

(4.2)
w(y, 0) = yα(1− y),

∂w(y, 0)

∂t
= yα(y − 1),

for 0 ≤ y, t ≤ 1,

and boundary conditions:

(4.3) w(0, t) = 0, w(1, t) = 0,

with source function g(y, t) = yα(1−y) exp(−t)−[Γ (α+ 1)− Γ (α+ 2)y] exp(−t).
The exact solution of FKGE (4.1) is w(y, t) = yα(1− y) exp(−t).

In Fig. 1, we have shown the behaviour of approximate solution for integer
order KGE. In Fig. 2, we have plotted absolute errors by our proposed method
for integer order KGE at n = 5.

From Fig. 2, it observed that our numerical results show excellent agreement
with the exact solution for α = 2. In Fig. 3 we have plotted approximate and
exact solution for different values of α.

From Fig. 3 it is clear that our numerical results have a great agreement
with exact results for the fractional order involved in KGE. In Figs 4 and 5,
we have plotted absolute errors by our proposed method for different values of
α = 1.5, 1.6, 1.7, 1.8 and 1.9 at t = 0.1 and 0.5, respectively.
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Fig. 1. Approximate solution at α = 2, Example 1.

Fig. 2. Absolute errors at α = 2, Example 1.

Fig. 3. Behaviour of exact and approximate solution for different values of α = 1.8, 1.9 and 2
at t = 0.1, Example 1.
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Fig. 4. Absolute errors for different values of α = 1.5, 1.6, 1.7, 1.8 and 1.9 at t = 0.1,
Example 1.

Fig. 5. Absolute errors for different values of α = 1.5, 1.6, 1.7, 1.8 and 1.9 at t = 0.5,
Example 1.

From Figs 4 and 5, it observed that our numerical results show excellent
agreement with the exact solution for α = 1.5, 1.6, 1.7, 1.8 and 1.9. In Table 1,
we have compared the numerical results from our proposed scheme and method
in [26]. From Table 1, it is observed that our technique is more accurate in
comparison with finite difference scheme as given in [26].

Example 2. We consider the following FKGE [27]

(4.4)
∂2w(y, t)

∂t2
− ∂αw(y, t)

∂yα
= w(y, t), 1 < α ≤ 2,
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Table 1. Comparison of absolute errors by our proposed method and method in [26]
at t = 1 and n = 3, 5.

y
n = 3 n = 5

Present method Method in [26] Present method Method in [26]
0.0 2.0700e–08 1.1234e–03 8.1115e–12 8.1245e–04
0.1 3.2932e–06 2.7894e–03 8.2932e–09 6.8754e–04
0.2 1.1752e–05 4.4561e–03 2.9504e–08 4.9541e–04
0.3 2.3152e–05 1.7418e–03 5.8092e–08 2.4875e–04
0.4 3.5286e–05 7.8527e–03 8.8523e–08 8.5154e–04
0.5 4.5951e–05 5.9634e–03 1.1527e–07 4.0092e–04
0.6 5.2940e–05 6.8527e–03 1.3279e–07 6.1457e–04
0.7 5.4049e–05 3.1237e–03 1.3556e–07 6.9541e–04
0.8 4.7072e–05 1.7595e–03 1.1804e–07 7.1478e–04
0.9 2.9804e–05 3.0030e–03 7.4704e–08 2.0854e–04
1.0 4.1401e–08 0.0129e–03 1.6230e–11 0.0034e–04

with initial conditions:

(4.5) w(y, 0) = 1 + sin(y),
∂w(y, 0)

∂t
= 0, for 0 ≤ y, t ≤ 1,

and boundary conditions:

(4.6) w(0, t) = cosh (t), w(1, t) = sin (1) + cosh (t).

The exact solution of this equation for integer order is w(y, t) = sin(y) +
cosh (t). In Fig. 6, we have shown the behaviour of approximate solution for

Fig. 6. Approximate solution at α = 2, Example 2.
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Fig. 7. Absolute errors at α = 2, Example 2.

integer order KGE. In Fig. 7, we have plotted absolute errors by our proposed
method for integer order KGE at n = 8.

From Fig. 7, it observed that our numerical results show nice agreement
with the exact solution for α = 2. In Fig. 8, we have shown the behaviour of
approximate solution for distinct values α at t = 0.1.

Fig. 8. Behaviour of approximate solution for different values of α = 1.5, 1.6, 1.7, 1.8, 1.9,
and 2 at t = 0.1, Example 2.

In Fig. 9, we have shown the nature of approximate solution for various
values α at t = 1. From Figs 8 and 9, it is to be noticed that approximate
solution changes continuously from fractional order to integer order solution. In
Table 2, we have listed the numerical outcomes from our suggested technique at
two different values of n. From Table 2 it is noticed that our scheme is accurate.
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Fig. 9. Behaviour of approximate solution for different values of α = 1.5, 1.6, 1.7, 1.8, 1.9
and 2 at t = 1, Example 2.

Table 2. Comparison of absolute errors by our proposed
method at two different values of n = 5, 8.

y n = 5 n = 8

0.0 2.1183e–03 1.5372e–04
0.1 1.4260e–03 9.3541e–05
0.2 9.3639e–04 5.4153e–05
0.3 6.2133e–04 2.8306e–05
0.4 4.6593e–04 9.7867e–06
0.5 4.7204e–04 7.4249e–06
0.6 6.6241e–04 3.0138e–05
0.7 1.0850e–03 6.7116e–05
0.8 1.8180e–03 1.3049e–04
0.9 2.9753e–03 2.3753e–04
1.0 4.7125e–03 4.1277e–04

5. Concluding remarks

The solutions are derived by solving Sylvester’s form of equation so it is
very simple and user friendly for computational purposes. The numerical results
obtained for FKGE are shown in graphical and tubular form. From numerical
results we can see that the solution varies continuously for various values of α. For
α = 2 the numerical solution for the classical KGE are obtained. The numerical
results are obtained for left hand side Liouville-Caputo fractional derivative. It
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should be noticed that physical interpretation of the model is at this moment
unclear due to the fact that in the fractional operator half axes is assumed only.
The key advantage of this study is to find an approximate solution of FKGE
where the exact analytical solutions are not easy to derive. The outcomes of the
present study are very helpful for the scientists and engineers working in the
mathematical modelling of natural phenomena. We carried out our technique in
the domain [0, 1] × [0, 1]. The proposed scheme can be utilized in any bounded
domain [−k, k]× [0, k], by scaling Legendre functions very carefully. In a nutshell
we can say that with the aid of this scheme we can examine FKGE for quantum
field theory, plasma, optical fibers and dispersive wave-phenomena. For future
study we can employ operational matrices of various orthonormal polynomials
to achieve higher accuracy.
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