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Majority of polymer matrix composite materials, a marked viscoelastic behavior and fac-
ulties of dissipation of energy, it thus proves necessary to know the viscoelastic properties,
as the dynamic Young modulus. In this work, we will present a new experimental technique
for determining the dynamic elastic modulus at high strain rates of polymer matrix compos-
ites materials by a statistical method demanding a large number of tests. This new technique
is based on the split Hopkinson pressure bar. Further, we study the effect of strain rate on
dynamic elastic modulus of a woven Polyamid 6 – glass fibre reinforced.
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1. Introduction

Elastic constants of materials have a great importance, both for engineering
practice and research, because they describe a mechanical behavior of materials.
Contrary to static loading for which these constants are clearly defined, the
dynamic loading causes some difficulties in their determination. For a long time,
dynamic values were derived from static ones. Then they were measured using
visco-acoustic methods or ultrasounds [1–5]. However, those methods do not
allow to cover a large range of stresses and they give a complex rigidity matrix
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only at high frequencies. In order to determine a dynamic elastic modulus, some
authors [5] directly use a linear part of stress-strain curve.
Our technique is based on the Hopkinson bar in compression [6, 7] which

covers a large range of stresses for a range of very low frequencies. The use of
the Hopkinson bar has become the most adopted and widely used method for
determination of dynamic properties of composite materials.

2. Material and measurement techniques

2.1. Material

The tested material is a composite made of armor tissue of equilibrate glass
fiber and the matrix is composed of Polyamide 6 (PA6). The tests have been
carried out on cylindrical specimens, loaded in three compression directions L1,
L2 and T (Fig. 1).

Fig. 1. Compression directions. Direction T: compression perpendicular to
fibers, directions L1 and L2: compression in the fibers principal direction.

2.2. Measurement of the wave propagation velocity in the composite PA6/glass

2.2.1. Measurement techniques. The technique allows to determine a prop-
agation velocity of an elastic wave through the material cross-section. It uses
Hopkinson bars for short-time loading 0 < t < 2∆ts, where ∆ts is transmission
time of the elastic wave in the material [7]. This enables to determine a dynamic
longitudinal elastic modulus for stresses close to zero:

(2.1) Ed = lim
σ→0

(
∂σ

∂ε

)
σ

.

This is a gradient at a point of the characteristic stress-strain curve which is
demonstrated in Fig. 2 for the zero point.
The principle of the method is shown in Fig. 3. It consists on determination

of time necessary for a wave to pass through the composite specimen. This
measurement of time ∆ts is performed in two steps. First, an analysis of the
oscillogram of an empty test is made, that means without a specimen and with
two bars in contact (Fig. 3a). It allows to obtain the time ∆t0 necessary for the
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Fig. 2. Representation of the dynamic elastic modulus.

transmission of the elastic wave between the gauges T1 and T2. Second, another
test is realized in which the specimen of the length l is introduced between two
bars which is shown in Fig. 3b. In this case, we measure the time ∆t of the
elastic wave transmission between the gauges T1 and T2 of the complete system
bar-specimen-bar.

a)

b)

Fig. 3. a) Calibration of the set-up without specimen to define the characterisitic time; b) Prin-
ciple of the method for determination of transmission time of the elastic wave in the specimen.

Thereby, the difference between these two time intervals is equal to the propa-
gation time ∆ts of the wave through the composite specimen. No loading is
applied. We have then:

(2.2) ∆ts = ∆t−∆t0 .

The velocity of the elastic wave in the bar is:

(2.3) C0 =
xA + xB

∆t0
.
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The celerity of wave propagation in the material is denoted by Cos and is
given by:

(2.4) C0s =

[
l0
∆ts

]
σ

,

where l0 is the specimen length and σ is the applied loading.
The propagation velocity of the longitudinal elastic wave is independent of

a local velocity, this means the velocity of an element that transmits the wave.
It only depends on elastic properties of the material and on temperature.
We have carried out an extended study to define conditions for founding

experimental results which can be exploitable and with a minimum of the error
level due to time dependence. The optimal specimen length of 16 mm has been
adopted. In addition, for each specimen we have performed two test series. Each
series is made of 100 tests. The first series permits to determine the mean value
of ∆t whereas the second one is for ∆t0 evaluation. The tests with and without
specimen have been mixed.

2.2.2. Results and discussion. The test results are presented in Figs. 4, 5
and 6. We have defined a basic time ∆tb = 222 µs, from which we obtain:

(2.5) ∆t0 = ∆t∗0 +∆tb and ∆t = ∆t∗ +∆tb .

Fig. 4. Evolution of ∆t∗ and ∆t∗0 as a function of the tests number;
compression direction T.
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Fig. 5. Evolution of ∆t∗ and ∆t∗0 as a function of the tests number;
compression direction L1.

Fig. 6. Evolution of ∆t∗ and ∆t∗0 as a function of the tests number;
compression direction L2.
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In this configuration, ∆t∗0 and ∆t
∗ represent new time scales. In order to avoid

any risk of cracking in the material core, we have decided to perform tests at very
low strain rates from 0.8 s−1 to 3 s−1. The large number of tests has permitted
to realize a static analysis of ∆t and ∆t0 as well as a precise calculation of the
wave transmission in our composite material.
The frequencies related to three compression directions given as a function

of time ∆t and ∆t0 can be presented by the histogram as it is shown in Figs. 7,
8 and 9. The relative frequencies distribution allows to carry out first observa-
tions on the evolution of time of the elastic wave propagation, but it also gives
a first representation of the cumulative probability. The matrix of this func-
tion i.e. a cumulative probability has a key role in the stochastic approach of
design.

Fig. 7. Frequential distribution of ∆t and ∆t0 represented in the form of
histogram, adjusted by a normal distribution: compression direction T.

Table 1. Maximum relative frequencies and their classes for three compression directions.

Compression direction

L1 L2 T

Time ∆t0 ∆t ∆t0 ∆t ∆t0 ∆t

Class (µs) [225–226] [229–230] [224–225] [229–230] [229–230] [237–238]

Max. freq % 32 32 30 39 30 40
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Fig. 8. Frequential distribution of ∆t and ∆t0 represented in the form of
histogram, adjusted by a normal distribution: compression direction L1.

Fig. 9. Frequential distribution of ∆t and ∆t0 represented in the form of
histogram, adjusted by a normal distribution: compression direction L2.

2.2.3. Adjustment by the normal law. In order to perform an analysis based
on a stochastic approach, it is fundamental to know a function of the density of
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probability. This function can be expressed by the following formula:

(2.6) p(∆t) =

[(
1

S

√
2π

)
· exp

(
−1

2

(
∆t−∆t

S

)2
)]

, S > 0.

where ∆t is a variable.
The mean time ∆t and the interval of type S of this population is given by

the following relations, respectively:

∆t =
1

N

N∑
i=1

(∆t)i ,(2.7)

S =

[
1

(N−1)

N∑
i=1

(∆t−∆t)2

]1/2
,(2.8)

where N represents the number of observations.
All the histograms obtained during the tests have been adjusted by the

normal law described here above. In Table 2, we have reported the mean values
∆t0 and ∆t deducted from those histograms (Figs. 7, 8 and 9) after adjustment
by the normal law.
The mean value of the wave passage through the specimen, described as ∆ts,

is defined by:

(2.9) ∆ts = ∆t−∆t0 .

The celerity C0s is deducted from the expression (2.4).
It is important to note that due to the use of the value of ∆t0 we could

evaluate the elastic wave.

Table 2. Mean values deducted through the normal law.

∆t0 (µs) ∆t (µs) ∆ts (µs) C0s (mm/µs)

Compression direction L1 224.72 229.42 4.69 3.359

Compression direction L2 224.79 229.21 4.42 3.548

Compression direction T 229.67 237.11 7.44 2.346

2.2.4. Normality test using the Henry line. In order to validate the results
obtained by the static analysis and then adjusted by the normal law, we have
compared them with those adjusted by the method of Henry which is described
in Saporta [8]. The latter consists on the graphical treatment of data. It en-
ables to quickly verify whether a statistical distribution of a continuous variable
resembles a normal distribution.
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According to the method of Henry, if a variable ∆t is a Gaussian one, for
points (∆ti; Ui), where Ui = (∆ti −∆t)/S, should be on the same line.
We can conclude from Fig. 10 that the points are aligned and the graphical

adjustment using the method of Henry is satisfactory.

Fig. 10. Graphical adjustment to the law of Laplace-Gauss obtained for the compression
directions T, L1 and L2.

In Table 3, we have presented the theoretical Mean value (∆t0 and ∆t) and
standard deviation S, calculated by the method of Henry, for three compression
directions.

Table 3. Comparison: experiment vs. Henry’s method.

L1 L2 T

∆t0 ∆t ∆t0 ∆t ∆t0 ∆t

Standard
1.2000 1.3000 1.2888 1.0000 1.1889 1.1666

Henry’s deviation S

method Mean
224.6 226.36 224.76 229.08 229.70 237.12value (µs)

Standard
1.0671 1.1604 1.0671 0.9947 1.1686 1.0726

Experimental deviation S

method Mean
224.72 229.42 224.79 229.21 229.67 237.11value (µs)
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We have concluded that the graphical estimations of∆t,∆t0 and S (standard
deviation) differ slightly from the values ∆t0, ∆t and S determined through the
described method (see Table 3).
From this comparative study, it appears the normal law is completely effi-

cient to describe the frequential evolution of the elastic wave propagation time in
the Hopkinson bar (with or without specimen). Finally, this adjustment method
using the normal law has been adopted for all statistical analysis of our exper-
imental results. In Fig. 11, we have presented the distribution functions of the
variables ∆t0 and ∆t for three tested compression directions. The functions are
defined by the following expression:

(2.10) P (∆t) =

+∞∫
−∞

p(∆t) d(∆t).

The probability density functions obtained in the analysis have a similar allure
for all compression directions L or T.

Fig. 11. Probability functions obtained for the compression directions T, L1 and L2.
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3. Dynamic elastic modulus

Whilst it can be easily demonstrated that for metallic materials the elastic
modulus is practically constant for any strain rate (conservation of the static
value), it is not the case for viscoplastic materials such as most of polymers or
composite materials with the polymer matrix.
Under dynamic loading, the phenomena of rotation or slipping may change

a molecular structure of the polymer matrix, both in the crystalline and amor-
phous phase [9]. This change in structure may result in a change of the Young
modulus which is a physical value linked to the material structure, in partic-
ular to the molecular orientation [10]. This is why it becomes so important to
estimate the Young modulus in dynamic conditions.
The instant dynamic elastic modulus Ed is given by:

(3.1) Ed(σ) =

(
∂σ

∂ε

)
σ

; σ > 0.

For stresses close to zero, the wave celerity does not depend on its frequency
[7], therefore Ed is reduced to:

(3.2) Ed = ρ0C
2
0s,

where ρ0 is the mean value of the specimen density of the composite material
used in the tests. For short loading intervals of time, 0 < t < 2∆ts, the celerity
C0s(σ) is determined by:

(3.3)
(
∂σ

∂ε

)
σ

= ρ0C
2
0s(σ).

The stress-strain relation is defined by the following equation:

(3.4) ε =
1

ρ0

σ∫
0

dσ

C2
0s(σ)

; σ = constant.

The wave celerity C0s(σ) is a slightly decreasing function of σ.
In Table 4, we have presented the values of the dynamic elastic modulus

calculated by Eq. (3.2) for three compression directions.

Table 4. Dynamic elastic modulus for three compression directions.

Compression directions L1 L2 T

Ed (MPa) 20691 23085 10098
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4. Impact of strain rate on the elastic modulus

In order to study the impact of strain rate on the elastic modulus, the com-
pression tests in quasi-static conditions have been carried out using a hydraulic
machine (Zwick REL). The compression dynamic tests have been performed
with the Hopkinson bar system. The range of strain rates: 10−5 s−1 to 2300 s−1.
Three specimens have been used for each test condition. Figures 12, 13, and

14 present a synthesis of stress-strain curves for the composite PA6/glass, loaded
in the parallel and perpendicular direction to fibers.

Fig. 12. Stress-strain curve at different strain rates, compression direction L1.

The dynamic modulus is higher that the static modulus obtained during the
quasi-static compression tests. Table 5 reveals this difference which proves a
high viscosity of the matrix.

Table 5. Dynamic elastic modulus for three compression directions.

Compression directions Es (MPa) Ed/Es (Ed − Es)/Es (%)

L1 11281 1.8 83.4

L2 11466 2.0 101.3

T 5265 1.9 91.8
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Fig. 13. Stress-strain curve at different strain rates, compression direction L2.

Fig. 14. Stress-strain curve at different strain rates, compression direction T.
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Figure 15 shows the elastic modulus is sensitive to the strain rate because
the values obtained in dynamic tests are higher that those form quasi-static
ones. As far as compression in fibers direction is concerned, we can also observe
a slight strain rate sensitivity for quasi-static loadings. On the other hand, the
modulus increases linearly above ε̇ = 1 s−1. In case of the compression direction
T, the elastic modulus seems to vary linearly as a function of log for both
ranges of strain rates (quasi-static and dynamic). A linear correlation leads to
the following equation:

(4.1) ET = E0 + β log(ε̇/ε̇0).

For ε̇0 = 1 s−1, the quasi-static modulus in the compression direction T,
E0 = 8577.7 MPa, β is the sensitivity coefficient of the elastic modulus to the
strain rate, β = 673.41.

Fig. 15. Impact of the strain rate on the elastic modulus.

5. Conclusions

From the tests obtained, we can conclude and confirm the Hopkinson bar
system enables to measure the wave propagation velocity in composite materials
and calculate dynamic elastic modulus. In contrast to acoustic methods, this
technique allows for determination of the elastic modules in the large range of
stresses and at very low frequencies.
This conclusion opens a perspective to evaluate all dynamic elastic parame-

ters (ν, G and E) for viscoelastic materials of a brittle or semi-brittle nature.
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