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The subject of the paper is a seven layer beam with foam cores. The structure of the beam
is symmetrical. The beam is composed of the main core, two inner sheets, two second cores
and two outer sheets. The main core and two face cores are metal and polyurethane foams,
while the sheets are metal. The analytical model of the beam is developed. The displacement
and strain fields are formulated with consideration of the Zig-Zag hypothesis of deformation of
a flat cross-section of the beam. The governing differential equations for the seven layer beam
are obtained based on the stationary total potential energy. The detailed studies are devoted
to deflections and stresses of the beams under a uniformly distributed load. The influence
of the foam type of cores on the deflections and stresses of the beam is analysed. Moreover,
the numerical FEM-model of the beam is developed. The analytical solution is compared to
numerical calculations – FEM studies (ABAQUS System and SolidWorks Simulation). The
results of the analysis are presented in Tables and Figures.
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1. Introduction

A generalization of classical sandwich structures involves, for example, mul-
tilayer structures. Allen [1] described analytical modeling and analysis of sand-
wich structures. Vinson [2] presented comprehensive discussion of the structural
mechanics involved in the field of sandwich structures. Carrera [3] described
a historical review of the theories that have been developed for the analysis
of multilayered structures, especially of Zig-Zag theories. Magnucka-Blandzi
and Magnucki [4] analyzed a simply supported sandwich beam with a metal
foam core and varying mechanical properties of the core using nonlinear hypoth-
esis of deformation of a plane cross section of the beam. Chakrabarti et al. [5]
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described higher order zigzag theory for the static analysis of laminated sand-
wich beam with soft core where in-plane displacement variation is considered to
be cubic for both the face sheets and the core. Magnucka-Blandzi [6] pre-
sented vibrations of simply supported sandwich beams with a metal foam core
with three different hypotheses of the fields of displacement for the flat cross sec-
tion of the beam. Magnucka-Blandzi [7] presented buckling of a simply sup-
ported three layer rectangular sandwich plate with isotropic facings and a core.
Osei-Antwi et al. [8] analyzed models for predicting axial and shear stresses
in multilayer sandwich structures composed of stiff core layers and intermedi-
ate laminates. Zhang et al. [9] described dynamic response of fully clamped
slender metal foam core multilayer sandwich beams struck by a low-velocity
heavy mass. Chen et al. [10] presented nonlinear free vibration characteristics
of sandwich porous beams with non-uniform and uniform porosity distributions.
Caliri Jr. et al. [11] presented a review of theories and solution methods for
laminated and sandwich structures. Malinowski et al. [12] numerically stud-
ied buckling and post-buckling problems of an elastic seven-layered cylindrical
shell under uniformly distributed pressure. Magnucki et al. [13] described the
seven-layer beam with transverse sinusoidal corrugated main core. Paczos et al.
[14] studied orthotropic sandwich beams that consist of five layers and pre-
sented experimental and numerical results and sensitivity analysis of the beam.
Magnucka-Blandzi et al. [15, 16] presented bending, buckling and vibrations
of sandwich beams with corrugated main core. Magnucka-Blandzi and Ro-
dak [17] determined deflection and critical axial force for seven layer beams with
a lengthwise trapezoidal corrugated main core and two crosswise trapezoidal cor-
rugated cores of faces. Smyczyński and Magnucka-Blandzi [18] presented
stability analysis of a simply supported three layer beam with nonlinear hypoth-
esis of deformation of the cross section of the beam. Magnucka-Blandzi et al.
[19, 20] studied strength, stability and vibrations of a metal seven-layer rectangu-
lar plate with trapezoidal corrugated cores. Sayyad and Ghugal [21] delivered
a critical review of literature on bending, buckling and free vibration analysis
of shear deformable isotropic, laminated composite and sandwich beams based
on equivalent single layer theories, layerwise theories, Zig-Zag theories and exact
elasticity solution. Magnucka-Blandzi [22] analyzed bending and buckling of
a metal seven-layer beam with crosswise corrugated main core and compared
with analysis of sandwich beam. Smyczynski and Magnucka-Blandzi [23]
presented strength analysis of a simply supported three layer beam under three
point bending. Abrate and Di Scoiva [24] presented a review of equivalent
single layer theories for composite and sandwich structures. Smith et al. [25],
Szyniszewski e al. [26] and Klasztorny et al. [27] described manufacturing,
applications and mechanical properties of metal foams. Particular group of the
multi-layer structures includes seven-layer plates with corrugated cores.
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The subject of the study is a simply supported symmetrical seven layer beam
of length L and width b. The beam is composed of the main core of thickness
tc1 and Young’s modulus Ec1, two inner sheets of thicknesses ts and Young’s
modules Esi, two second cores of thicknesses tc2 and Young’s modules Ec2, and
two outer sheets of thicknesses ts and Young’s modules Eso. The main core and
two face cores are metal or polyurethane foams, while the sheets are metal. The
beam is under uniformly distributed transverse load of intensity q (Fig. 1).

Fig. 1. Scheme of the symmetrical seven layer beam under transverse load.

The objectives of the study are:
• development of analytical model of the seven-layer beam with consideration

of the shear effect and calculation of the deflection values for some selected
beams;
• deflection calculation of the same beams in accordance with the classical

Euler-Bernoulli beam theory;
• numerical calculation of these deflections with the use of FEM systems

(SolidWorks and ABAQUS);
• comparison of the analytical and numerical results.

2. Analytical model of the beam

The Zig-Zag hypothesis is assumed for modelling of the beam. The straight
line before bending transforms into a broken line (Fig. 2).

Displacements in subsequent layers of the beam with consideration of the
hypothesis are:
• the main core – first core {−tc1/2 ≤ y ≤ tc1/2}

(2.1) u(x, y) = −y
(

dv
dx
− 2

u1(x)

tc1

)
,

• the inner sheets
– the upper sheet {− (ts + tc1/2) ≤ y ≤ −tc1/2}

(2.2) u(x, y) = −
(
y
dv
dx

+ u1(x)

)
,
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Fig. 2. The scheme of the deformation of straight line – the Zig-Zag hypothesis.

– the lower sheet {tc1/2 ≤ y ≤ tc1/2 + ts}

(2.3) u(x, y) = −
(
y
dv
dx
− u1(x)

)
,

• the second cores
– the upper core {− (tc2 + ts + tc1/2) ≤ y ≤ − (ts + tc1/2)}

(2.4) u(x, y) = −y
(

dv
dx
− u2(x)− u1(x)

tc2

)

−
(
tc2 + ts + tc1/2

tc2
u1(x)− ts + tc1/2

tc2
u2(x)

)
,

– the lower core {ts + tc1/2 ≤ y ≤ tc2 + ts + tc1/2}

(2.5) u(x, y) = −y
(

dv
dx
− u2(x)− u1(x)

tc2

)

+

(
tc2 + ts + tc1/2

tc2
u1(x)− ts + tc1/2

tc2
u2(x)

)
,

• the outer sheets
– the upper sheet {− (tc2 + 2ts + tc1/2) ≤ y ≤ − (tc2 + ts + tc1/2)}



BENDING OF A SEVEN LAYER BEAM WITH FOAM CORES 253

(2.6) u(x, y) = −
(
y
dv
dx

+ u2(x)

)
,

– the lower sheet {tc2 + ts + tc1/2 ≤ y ≤ tc2 + 2ts + tc1/2}

(2.7) u(x, y) = −
(
y
dv
dx
− u2(x)

)
.

Therefore, the strains in the layers of the beam are as follows:
• the main core – first core {−tc1/2 ≤ y ≤ tc1/2}

(2.8) εx =
∂u

∂x
= −y

(
d2v

dx2
− 2

tc1

du1
dx

)
, γxy =

∂u

∂y
+

dv
dx

= 2
u1(x)

tc1
,

• the inner sheets
– the upper sheet {− (ts + tc1/2) ≤ y ≤ −tc1/2}

(2.9) εx =
∂u

∂x
= −

(
y
d2v

dx2
+

du1
dx

)
, γxy =

∂u

∂y
+

dv
dx

= 0,

– the lower sheet {tc1/2 ≤ y ≤ tc1/2 + ts}

(2.10) εx =
∂u

∂x
= −

(
y
d2v

dx2
− du1

dx

)
, γxy =

∂u

∂y
+

dv
dx

= 0,

• the second cores
– the upper core {− (tc2 + ts + tc1/2) ≤ y ≤ − (ts + tc1/2)}

(2.11) εx =
∂u

∂x
= −y

[
d2v

dx2
− 1

tc2

(
du2
dx
− du1

dx

)]

−
(
tc2 + ts + tc1/2

tc2
· du1
dx
− ts + tc1/2

tc2
· du2
dx

)
,

(2.12) γxy =
∂u

∂y
+

dv
dx

=
u2(x)− u1(x)

tc2
,

– the lower core {ts + tc1/2 ≤ y ≤ tc2 + ts + tc1/2}

(2.13) εx =
∂u

∂x
= −y

[
d2v

dx2
− 1

tc2

(
du2
dx
− du1

dx

)]

+

(
tc2 + ts + tc1/2

tc2
· du1
dx
− ts + tc1/2

tc2
· du2
dx

)
,

(2.14) γxy =
∂u

∂y
+

dv
dx

=
u2(x)− u1(x)

tc2
,



254 K. MAGNUCKI et al.

• the outer sheets
– the upper sheet {− (tc2 + 2ts + tc1/2) ≤ y ≤ − (tc2 + ts + tc1/2)}

(2.15) εx =
∂u

∂x
= −

(
y
d2v

dx2
+

du2
dx

)
, γxy =

∂u

∂y
+

dv
dx

= 0,

– the lower sheet {tc2 + ts + tc1/2 ≤ y ≤ tc2 + 2ts + tc1/2}

(2.16) εx =
∂u

∂x
= −

(
y
d2v

dx2
− du2

dx

)
. γxy =

∂u

∂y
+

dv
dx

= 0.

Stresses in the layers of the beam are formulated in accordance with the
Hooke’s law. Therefore, the elastic strain energy of the beam

(2.17) Uε = U (c1)
ε + U (is)

ε + U (c2)
ε + U (os)

ε ,

where
• the elastic strain energy of the main core after integration with regard to

thickness of this core

(2.18) U (c1)
ε =

1

2
Ec1btc1

L̂

0

[
1

12

(
tc1

d2v

dx2
− 2

du1
dx

)2

+
2

1 + νc1

u21(x)

t2c1

]
dx,

• the sum of the elastic strain energy of two inner sheets after integration
with regard to thickness of these sheets

(2.19) U (is)
ε = Esibts

L̂

0

[
1

12
Cs1t

2
s

(
d2v

dx2

)2

− Cs2ts
d2v

dx2
du1
dx

+

(
du1
dx

)2
]
dx,

where dimensionless parameters

Cs1 =
1

t2s

(
3t2c1 + 6tc1ts + 4t2s

)
, Cs2 =

1

ts
(tc1 + ts) ,

• the sum of the elastic strain energy of two second cores after integration
with regard to thickness of these cores

(2.20) U (c2)
ε = Ec2btc2

L̂

0

{Φ1(x)− Φ2(x) + Φ3(x) + Φ4(x)} dx,
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where functions

Φ1(x) =
1

12
Cc1

[
tc2

d2v

dx2
−
(

du2
dx
− du1

dx

)]2
,

Φ3(x) =
1

4

[
Cc3

du1
dx
− Cc4

du2
dx

]2
,

Φ2(x) = Cc2

[
tc2

d2v

dx2
−
(

du2
dx
− du1

dx

)][
Cc3

du1
dx
− Cc4

du2
dx

]
,

Φ4(x) =
1

2 (1 + νc2)

(u2(x)− u1(x))2

t2c2
,

and dimensionless parameters

Cc1 =
1

t2c2

[
3t2c1 + 6tc1 (tc2 + 2ts) + 4

(
t2c2 + 3tc2ts + 3t2s

)]
,

Cc2 =
1

2tc2
(tc1 + tc2 + 2ts),

Cc3 =
1

tc2
(tc1 + 2tc2 + 2ts),

Cc4 =
1

tc2
(tc1 + 2ts);

the sum of the elastic strain energy of two outer sheets after integration
with regard to thickness of these sheets

(2.21) U (os)
ε = Esobts

L̂

0

[
1

12
Cs3t

2
s

(
d2v

dx2

)2

− Cs4ts
d2v

dx2
du2
dx

+

(
du2
dx

)2
]
dx,

where dimensionless parameters

Cs3 =
1

t2s

[
3t2c1 + 6tc1 (2tc2 + 3ts) + 4

(
3t2c2 + 9tc2ts + 7t2s

)]
,

Cs4 =
1

ts
(tc1 + 2tc2 + 3ts).

The work of the load

(2.22) W =

L̂

0

qv (x) dx.
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Based on the principle of stationary total potential energy [δ(Uε−W ) = 0]
with consideration of the expressions (2.17) and (2.22) three differential equa-
tions of equilibrium are obtained in the following form

Cvv
d4v

dx4
− Cvu1

d3u1
dx3

− Cvu2
d3u2
dx3

= p,(2.23)

Cvu1
d3v

dx3
− Cu1u1

d2u1
dx2

+ Cu1u2
d2u2
dx2

+ Cu1u1(x)− Cu2u2(x) = 0,(2.24)

Cvu2
d3v

dx3
+ Cu1u2

d2u1
dx2

− Cu2u2
d2u2
dx2

− Cu2u1(x) + Cu2u2(x) = 0,(2.25)

where

Cvv =
1

12

[
Ec1t

3
c1 + 2 (EsiCs1 + EsoCs3) t

3
s + 2Ec2Cc1t

3
c2

]
,

Cvu2 = EsoCs4t
2
s − Ec2t2c2

(
Cc2Cc4 −

1

6
Cc1

)
,

Cvu1 =
1

6

[
Ec1t

2
c1 + 6EsiCs2t

2
s + Ec2t

2
c2 (6Cc2Cc3 − Cc1)

]
,

Cu1 = 2
Ec1

1 + νc1

1

tc1
+

Ec2
1 + νc2

1

tc2
,

Cu1u1 = 2

[
Ec1tc1 + Esits + Ec2tc2

(
1

12
Cc1 − Cc2Cc3 +

1

4
C2
c3

)]
,

Cu2 =
Ec2

1 + νc2

1

tc2
,

Cu1u2 =
1

6
Ec2tc2 [Cc1 − 6Cc2 (Cc3 + Cc4) + 3Cc3Cc4],

p = q
b – uniformly distributed pressure at the outer upper sheet of the beam,

Cu2u2 = 1
6Ec2tc2

[
Cc1 − 12Cc2Cc4 + 3C2

c4

]
+ 2Esots.

The bending momentMb(x) = b
´
h

yσ(x) dy with consideration of the Hooke’s

law and after integration with regard to depth h of the beam, leads to the
following equation

(2.26) Cvv
d2v

dx2
− Cvu1

du1
dx
− Cvu2

du2
dx

= −Mb(x)

b
.

It may be noticed that this equation is equivalent to the equation (2.23).
Therefore, the system of equations for the analyzed problem comprises the equa-
tions (2.26), (2.24) and (2.25).
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3. Bending of the beam – analytical study

The bending moment at the simply supported beam loaded with uniformly
distributed transverse load of intensity q (Fig. 1)

(3.1) Mb =
1

2

(
1− x

L

) x
L
qL2.

The system of differential equations (2.26), (2.24) and (2.25) with considera-
tion of the expression (3.1) is approximately solved with the use of three assumed
functions

(3.2) v(x) = va sin
(
π
x

L

)
, u1(x) = u1a cos

(
π
x

L

)
, u2(x) = u2a cos

(
π
x

L

)
,

where va – maximal deflection, u1a, u2a – maximal displacements of the sheets.
Therefore, after application of the Galerkin’s method, the system of three

linear algebraic equations is obtained

πCvv
va
L
− Cvu1u1a − Cvu2u2a =

4

π4
pL3,(3.3)

πCvu1
va
L
−

[
Cu1u1+

(
L

π

)2

Cu1

]
u1a+

[
Cu1u2+

(
L

π

)2

Cu2

]
u2a = 0,(3.4)

πCvu2
va
L

+

[
Cu1u2+

(
L

π

)2

Cu2

]
u1a−

[
Cu2u2+

(
L

π

)2

Cu2

]
u2a = 0.(3.5)

From which, the maximal deflection of the beam

(3.6) vmax = va =
4

π5

{[
Cu1u1 +

(
L

π

)2

Cu1

][
Cu2u2 +

(
L

π

)2

Cu2

]

−

[
Cu1u2 +

(
L

π

)2

Cu2

]2 pL4

det0
,

where det0 – the eliminant – the matrix determinant.
Taking into account the classical Euler-Bernoulli beam theory (the linear hy-

pothesis in which plane cross sections before bending remains plane after bend-
ing), the bending problem of the beam with regard to the expression (3.1) is
expressed by one equation

(3.7) Cvv
d2v

dx2
= −qL

2

2b

(
1− x

L

) x
L
.
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From which, after double integration and with consideration of the boundary
conditions v(0) = v(L) = 0, one obtains the maximal deflection of the beam

(3.8) v(E−B)
max =

5

384

pL4

Cvv
.

The detailed studies are carried out for example beams of length L = 800 mm,
width b = 50 mm, thicknesses tc1 = 15 mm, tc2 = 10 mm, ts = 0.8 mm, and
pressure p = 0.05 MPa. The values of material constants of beam parts are
specified in Table 1.

Table 1. The values of Young’s modules E [MPa] and Poisson ratios ν.

Material Steel Steel foam Aluminium Al foam Polyurethane foam
E [MPa] 200 000 3150 79 000 200 4.5

ν 0.3 0.05 0.33 0.3 0.1

The seven type beams are selected to detailed studies. These types are char-
acterized by various materials of the layers (Table 2).

Table 2. The seven type beams with various materials of the layers.

Beam Main core – tc1 Inner sheets – ts Second cores – tc2 Outer sheets – ts
B-1 Steel foam Steel Steel foam Steel
B-2 Al foam Aluminium Steel foam Steel
B-3 Al foam Aluminium Al foam Aluminium
B-4 Polyurethane foam Aluminium Polyurethane foam Aluminium
B-5 Polyurethane foam Steel Polyurethane foam Steel
B-6 Polyurethane foam Steel Steel foam Steel
B-7 Polyurethane foam Aluminium Al foam Aluminium

The values of maximal deflections of the beams calculated based on the ex-
pressions (3.6) and (3.8) are specified in Table 3.

Table 3. The values of maximal deflections of the beams – analytical study.

Beam B-1 B-2 B-3 B-4 B-5 B-6 B-7
v
(Analyt)
max [mm] 1.92 2.76 6.45 56.06 52.43 10.71 21.87
v
(E-B)
max [mm] 1.85 2.03 5.04 5.12 2.02 1.86 5.04

Comparison of these values of maximal deflections of the beam types calcu-
lated with the use of two methods (Zig-Zag and Euler-Bernoulli theories) allows
to notice significant differences between the beams composed mainly of metal
layers and the ones including polyurethane cores.
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4. Bending of the beam – FEM study – ABAQUS system

4.1. Numerical FEM model

The numerical analysis of the seven layer beam is executed in two different
FEM systems: ABACUS and SolidWorks Simulation. The models of the beam
in these programs are the same to compare obtained results with each other and
to check out differences between numerical and analytical solutions. Taking into
account two planes of symmetry the beam is calculated only in 1/4 part. On
both symmetry planes, normal displacements are fixed for all the layers, while
in the support vertical displacements are fixed (along y axis). This boundary
condition is applied to whole supported planes. The scheme of the beam and
boundary conditions and load are presented in Fig. 3.

Fig. 3. The scheme of the beam with boundary conditions and load.

Total number of the nodes in SolidWorks Simulation system is 17 089, and
total number of the elements of second order (tetrahedrons with 10 nodes) is
10966 for maximum element size not exceeding 8 mm. In ABACUS System the
model includes 91 283 nodes and 19 200 elements. Two element types were used
– 6400 of them were quadrilateral shell elements and 12 800 were solid quadratic
hexahedral ones.

4.2. Bending – maximal deflections

The maximal deflection of the beam is in the plane of symmetry. The results
of analytical and FEM analysis are specified in Table 4 for two systems, where
v
(FEM_A)
max is deflection calculated in ABACUS System and v(FEM_S)

max is deflection
obtained in SolidWorks Simulation program.
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Table 4. The values of maximal deflections of beams – analytical and FEM study.

Beam B-1 B-2 B-3 B-4 B-5 B-6 B-7
v
(Analyt)
max [mm] 1.92 2.76 6.45 56.06 52.43 10.71 21.87

v
(FEM_A)
max [mm] 1.91 2.74 6.41 55.40 51.77 10.74 21.99

v
(FEM_S)
max [mm] 1.91 2.73 6.39 54.72 51.15 10.70 21.86
v
(E-B)
max [mm] 1.85 2.03 5.04 5.12 2.02 1.86 5.04

The results obtained in ABACUS System and SolidWorks Simulation pro-
gram are similar and differs no more than 2.5 per cent from analytical solution.
Bigger differences are in SolidWorks Simulation System.

5. Conclusions

The proposed objectives of the study are achieved that allowed to make the
comparative analysis of the results. The results obtained with analytical and
numerical methods specified in Table 4 allow to conclude that:
• The differences between the deflection values computed with analytical and

numerical methods do not exceed 2.5 per cent.
• The results calculated with Euler-Bernoulli beam theory differ from the

analytical and numerical values obtained for the B-1, B-2 and B-3 beams
with metal foam cores by less than 36 per cent. In case of the polyurethane
foam cores these differences are significant. For the B-5 beam the difference
is more than 25-fold.
• In order to model the multilayered structures the use of the Zig-Zag theory

is necessary.
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