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The authors investigated radial vibrations of a metal thick-walled spherical reservoir forced
by an internal surge-pressure. The reservoir is located in a compressible elastic medium. In this
paper, the medium’s compressibility is represented by the Poisson’s ratio ν. Analytical closed-
form formulae determining the dynamic state of mechanical parameters in the reservoir wall
have been derived. These formulae were obtained for the surge pressure p(t) = p0 = const. From
analysis of these formulae it follows that the Poisson’s ratio ν, substantially influences variations
of the parameters of reservoir wall in space and time. All parameters intensively decrease in
space along with an increase of the Lagrangian coordinate r. On the contrary, these parameters
oscillate versus time around their static values. These oscillations decay in the course of time.
We can mark out two ranges of parameter ν values in which vibrations of the parameters are
“damped” (there is no energy loss due to internal friction, energy is transferred from reservoir to
further layers of the medium) at a different rate. Thus, Poisson’s ratio in the range below about
0.4 causes intensive decay of parameter oscillations and reduces reservoir dynamics to static
state in no time. On the other hand, in the range 0.4 < ν < 0.5, the “damping” of parameter
vibrations of the reservoir wall is very low. In the limiting case when ν = 0.5 (incompressible
medium) “damping” vanishes and the parameters harmonically oscillate around their static
values. In the range 0.4 < ν < 0.5, insignificant increase of Poisson’s ratio causes a considerable
increase of the parameter vibration amplitude and decrease of vibration “damping”.
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1. Introduction

The issues of the dynamics of a spherical cavity and of the thick-walled
spherical reservoir, surrounded by compressible medium and loaded with an
internal surge pressure (explosion), are important with respect to theoretical
knowledge and useful applications. The comprehensive analysis of these issues is
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presented by Hopkins in [1]. Recently, several papers [2–6] have been published
within this scope.
Two problems have been theoretically investigated in the above mentioned

papers:
1. Dynamic expansion of spherical cavity and distributions of mechanical
parameters of an expanding spherical stress wave in infinite compressible
elastic medium [2–5], due to surge pressure applied to the cavity surface.
Among other things, the anomalous influence of the compressibility of
the elastic medium on vibration of the cavity surface has been revealed.
The compressibility of elastic medium is presented in the papers by the
Poisson’s ratio ν.

2. Dynamics of a thick-walled spherical reservoir located in vacuum and
loaded with internal surge pressure [6]. Material of the reservoir is in-
compressible. The reservoir vibrates radially with angular frequency and
behaves like one degree of freedom system. Spherical sections of the reser-
voir wall vibrate with constant amplitudes whose values are determined
by Lagrangian coordinate r. Its value decreases with increasing of the co-
ordinate r, due to divergence of the displacement of the wall elements.
Coupling the above mentioned two problems into one initial- boundary value

problem gives rise to a new type damping of a vibration of the reservoir wall.
This damping is due to transfer of energy from vibrating reservoir wall by an
expanding stress wave propagating into infinite compressible medium that sur-
rounds the reservoir. The wave is generated by motion of the reservoir wall due
to an internal surge pressure.
From the perspective of technical applications, significant problem is the

theoretical estimation of the damping coefficient of the reservoir vibration in
infinite, compressible medium. This problem has been solved in the analytical
form for the linear elastic medium in this paper.

2. Formulation of the problem

Let us consider the radial vibration of a thick- walled metal spherical reser-
voir, which is in an isotropic linear elastic medium that is infinite. The reservoir
was loaded with the internal surge pressure p(t). For the convenience of the
reader of analysis of the problem under investigation, successive mechanical
quantities will be defined directly as we progress in the current study. Let r0
and r1 denote the internal and external radii of the reservoir. The problem has
been solved in the spherical system of Lagrangian coordinates r, ϕ, θ. Taking
into account spherical symmetry, the problem can be assumed as a spatially
one-dimensional boundary value problem. Therefore, the states of stress and
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strain in the materials of the reservoir and medium can be represented by the
following components: σr – radial stress, σϕ = σθ – tangential stresses, εr –
radial strain and εϕ = εθ – tangential strains.
The rest of components of the stress and strain tensors are equal to zero in

this coordinate system.
The problem has been solved according to the linear elasticity theory. There-

fore, the following relations can be written [7, 8]:

(2.1) εr(r, t) =
∂u(r, t)

∂r
, εϕ(r, t) = εθ(r, t) =

u(r, t)

r
,

(2.2) σr(r, t) − σϕ(r, t) = 2µ [εr(r, t)− εϕ(r, t)] = 2µ

[
∂u(r, t)

∂r
− u(r, t)

r

]
,

(2.3) µ =
E

2(1 + ν)
,

where symbols E, µ and ν denote Young’s modulus, Lame’s constant (shear
modulus) and Poisson’s ratio, respectively, u denotes the radial displacement
of infinitesimal elements of the reservoir or medium, while r denotes their La-
grangian coordinate. In the following considerations the reservoir parameters
have been denoted by index z.
For the sake of small strains (2.1), value of the pressure p(t) is limited.
We assumed that reservoir material is incompressible, i.e., νz = 0.5 and its

density ρz = const. These assumptions have been discussed analytically in [2]
and investigated experimentally in [9–13]. The error caused by these simplifica-
tions is of the order of a fraction of a percent. At these assumptions, dynamics of
the reservoir wall, deformed within the scope of small strains can be determined
by means of equations:

∂uz
∂r

+ 2
uz
r

= 0,(2.4)

∂σrz
∂r

+ 2
σrz − σϕz

r
= ρz

∂2uz
∂t2

.(2.5)

In turn, the equation of motion of a linear elastic medium takes the form [2]:

(2.6)
∂2u

∂r2
+

2

r

∂u

∂r
− 2u

r2
=

1

c2e

∂2u

∂t2
,

where

(2.7) c2e =
1− ν

(1 + ν)(1− 2ν)
c20, c20 =

E

ρ
,

ρ – density of medium.
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Components of the stress in elastic medium are determined by formulae:

σr = (2µ + λ)
∂u

∂r
+ 2λ

u

r
,(2.8)

σϕ = σθ = λ
∂u

∂r
+ 2 (µ+ λ)

u

r
,(2.9)

where

(2.10) λ =
νE

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
.

The linearized system of equations (2.4), (2.5) and (2.6) has been solved for
the following boundary conditions:

σrz(r0, t) = −p(t) for r = r0,(2.11)

uz(r1, t) = u(r1, t) for r = r1,(2.12)

σrz(r1, t) = σr(r1, t) for r = r1,(2.13)

u(r1 + cet, t) ≡ 0 for r = r1 + cet,(2.14)

σr(r = ∞, t) ≡ 0 for r = ∞,(2.15)

where r = r1 + cet is the trajectory of the front of a stress wave propagating on
the outside of the reservoir into the medium (Fig. 1).

Fig. 1. Scheme of the under investigation initial-boundary
value problem.
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The physical scheme of the under investigation initial-boundary value prob-
lem is shown in Fig. 1.
Such a formulated problem, completed by initial conditions, has been ana-

lytically solved in the next section of this paper.

3. Analytical solution of the problem

The general solution of Eq. (2.4) has the following form:

(3.1) uz(r, t) =
C(t)

r2
,

where C(t) denotes a continuous and twice-differentiable time function, which
satisfies the condition C(0) = 0, because uz(r, 0) ≡ 0.
Subsequently, from relationships (2.2) and (3.1) it follows that

(3.2) σrz(r, t)− σϕz(r, t) = −6µz
C(t)

r3
= −6µz

uz
r
.

Upon substitution of expressions (3.1) and (3.2) into Eq. (2.5) and integra-
tion in respect to r, as well as using condition (2.11), the following expression
has been obtained:

(3.3) σrz(r, t) = 4µz

(
1

r30
− 1

r3

)
C(t) + ρz

(
1

r0
− 1

r

)
C̈(t)− p(t),

where C̈(t) = d2C/dt2.
Furthermore, the relationships (3.2) and (3.3) yield

(3.4) σϕz(r, t) = 2µz

(
2

r30
+

1

r3

)
C(t) + ρz

(
1

r0
− 1

r

)
C̈(t)− p(t).

The general solution of Eq. (2.6) fulfilling boundary condition (2.15)
σr(∞, t) ≡ 0 at infinity, can be written in the form [2, 7, 8]:

(3.5) u(r, t) =
ϕ′[r − (r1 + cet)]

r
− ϕ[r − (r1 + cet)]

r2
,

where the symbol ϕ′ denotes the derivative of function ϕ with respect to its
argument.
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In agreement with relationships (2.8), (2.9) and (3.5) the components of the
stresses in the medium can be written as

σr(r, t) = (2µ + λ)
ϕ′′

r
− 4µ

ϕ′

r2
+ 4µ

ϕ

r3
,(3.6)

σϕ(r, t) = λ
ϕ′′

r
+ 2µ

ϕ′

r2
− 2µ

ϕ

r3
,(3.7)

σϕ(r, t)− σr(r, t) = −2µ
ϕ′′

r
+ 6µ

ϕ′

r2
− 6µ

ϕ

r3
.(3.8)

Substitution of solutions (3.1) and (3.5) into condition (2.12) gives:

(3.9) C(t) = r1ϕ
′(−cet)− ϕ(−cet).

In turn, differentiation of expression (3.9) with respect to time yields:

(3.10)
Ċ(t) = −r1ceϕ′′(−cet) + ceϕ

′(−cet),

C̈(t) = r1c
2
eϕ

′′′(−cet)− c2eϕ
′′(−cet).

Upon substitution of expressions (3.9) and (3.10)2 as well as µz = Ez/2(1+νz)
= Ez/3 into (3.3) and transformations, we have

(3.11) σrz(r, t) = ρzc
2
e

(
r

r0
− 1

)
ϕ′′′(−cet)− ρzc

2
e

(
r

r0
− 1

r

)
ϕ′′(−cet)

+
4

3
Ezr

(
1

r30
− 1

r3

)
ϕ′(−cet)−

4

3
Ez

(
1

r30
− 1

r3

)
ϕ(−cet)− p(t).

Furthermore, the relationships (2.8), (2.10) and (3.6) yield:

(3.12) σr(r, t) =
1

r
ρc2eϕ

′′(−cet)−
2E

1 + ν

1

r2
ϕ′(−cet) +

2E

1 + ν

1

r3
ϕ(−cet).

Subsequently, from condition (2.13), and expressions (3.11) as well as (3.12),
we obtain:
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(3.13) ϕ′′′(−cet)−

r1
r0

− 1 +
ρ

ρz

r1

(
r1
r0

− 1

)ϕ′′(−cet)

+
(1 + ν) (1− 2ν)

(1− ν)

4

3

Ez

E

[(
r1
r0

)3

− 1

]
+

2

1 + ν

r21

(
r1
r0

− 1

) ρ

ρz
ϕ′(−cet)

− (1 + ν)(1 − 2ν)

(1− ν)

4

3

Ez

E

[(
r1
r0

)3

− 1

]
+

2

1 + ν

r21

(
r1
r0

− 1

) ρ

ρz
ϕ(−cet)

=
(1 + ν)(1− 2ν)

1− ν

r0
r1 − r0

ρ

ρz

p(t)

E
.

It is necessary to complete this equation with values of initial conditions,
namely ϕ(0), ϕ′(0), ϕ′′(0).
Substitution of relationship (3.5) into condition (2.14) gives:

(3.14)
ϕ′(0)

r1 + cet
− ϕ(0)

(r1 + cet)2
≡ 0.

From identity (3.14) it follows that

(3.15) ϕ(0) = 0 and ϕ′(0) = 0.

In turn, from relationships (3.1) and (3.10)1, we have:

(3.16)
vz(r1, 0) =

∂uz(r1, t)

∂t

∣∣∣∣
t=0

=
Ċ(0)

r21
= 0,

Ċ(0) = r21vz(r1, 0) = r21
[
−r1ceϕ′′(0) + ceϕ

′(0)
]
= 0.

From expressions (3.15)2 and (3.16) it follows that

(3.17) ϕ′′(0) = 0.
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As seen, the under investigation problem has been referred to as ordinary
differential equation of the third order (3.13) for function ϕ(−cet), that along
with its derivatives ϕ′(−cet), ϕ′′(−cet) and ϕ′′′(−cet) uniquely determines all
problem parameters. Therefore, we are going to solve Eq. (3.13) for conditions
(3.15) and (3.17) in the following considerations.
In order to simplify notations of successive expressions, the dimensionless

quantities have been introduced in the following considerations:

(3.18)

ξ =
r

r0
, η =

c0t

r0
, β =

r1
r0
,

η0 =
x0
r1

= − ce
βc0

η, g =
ρ

ρz
, k =

µ

µz
,

j =
E

Ez
, P =

p0
E
, Srz =

σrz
p0
,

Sϕz =
σϕz
p0

, Sz =
σϕz − σrz

p0
, Uz =

uz
r0
,

Sr =
σr
p0
, Sϕ =

σϕ
p0
, S =

σϕ − σr
p0

,

ϕ(x0) = r31ψ(η0), ϕ′(x0) = r21ψ
′(η0), ϕ′′(x0) = r1ψ

′′(η0),

ϕ′′′(x0) = ψ′′′(η0),

where

x0 = −cet, ce =

√
1− ν

(1 + ν)(1− 2ν)
c0, c0 =

√
E

ρ
.

Upon using of quantities (3.18), Eq. (3.13) can be written in a simple form,
namely:

(3.19) aψ′′′(η0) + bψ′′(η0) + cψ′(η0) + dψ(η0) = ep

(
−x0
ce

)/
E

with initial conditions:

(3.20) ψ(0) = ψ′(0) = ψ′′(0) = 0,
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where

(3.21)

a = β − 1, b = −(β − 1 + g),

c = −d =
2g

j

(1 + ν)(1− 2ν)

(1− ν)(1 + νz)
(β3 − 1 + k), e =

(1 + ν)(1− 2ν)

1− ν
g.

Note the fact, that for β = 1, i.e. when the reservoir vanishes and remains
only a medium with cavity factor a = 0 and Eq. (3.19), upon using (3.18)
and (3.21) can be transformed to the form

ϕ′′(x0)− 2hϕ′(x0) +
2h

r0
ϕ(x0) = −(1 + ν)(1− 2ν)

1− ν
r0p

(
−x0
ce

)/
E,

where
h =

1− 2ν

1− ν

1

r0
≥ 0, x0 = −cet.

This is the equation of the problem presented in [2], which is numbered by (3.4)
on page 467. Thus the solution of the problem given in [2] is with particular
case of the under consideration issue in this paper
The particular solution of the following homogenous equation

(3.22) aψ′′′(η0) + bψ′′(η0) + cψ′(η0) + dψ(η0) = 0

can be written as:

(3.23) ψp(η0) = exp(zη0).

Upon substitution (3.23) into (3.22) we obtain:

(3.24) az3 + bz2 + cz + d = 0.

The discriminant of Eq. (3.24) is negative, i.e.

∆ = −4ac3 + b2c2 + 18abcd − 27a2d2 − 4b3d < 0.

Accordingly the roots of Eq. (3.24) are

(3.25)

z1 =
1

3

3

√
9abc− 27a2d− 2b3 + 3a

√
−3∆

2a3

−




3ac− b2

3 a2
3

√
9abc− 27a2d− 2b3 + 3a

√
−3∆

2a3


− b

3a
,

z2 = x1 + ix2, z3 = x1 − ix2,
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where

x1 =
1

6

(
−A+

3ac− b2

Aa2

)
− b

3a
,

x2 =

√
3

6

(
A+

3ac− b2

Aa2

)
− b

3a
,

A =
3

√
9abc− 27a2d− 2b3 + 3a

√
−3∆

2a3
.

As seen, the root z1 is real number; on the contrary the roots z2 and z3 are
conjugate complex numbers that can be expressed by trigonometric functions.
Bearing in mind the above-mentioned roots, the general solution of Eq. (3.22)

can be written by means of relationship:

(3.26) ψ1(η0) = C1 exp(z1η0) + exp(x1η0) [C2 sin(x2η0) + C3 cos(x2η0)] .

In order to estimate maximal dynamical parameters of the reservoir it was
assumed that pressure of detonation products is surge-pressure and it equals
p(t) = pmax = p = const. For this loading, the particular solution of nonhomo-
geneous equation (3.19) can be expressed by formula:

(3.27) ψ2 =
e

d
P

and general solution of this equation can be written with the help of the following
sum:

(3.28) ψ(η0) = ψ1(η0) + ψ2

= C1 exp(z1η0) + exp(x1η0) [C2 sin(x2η0) + C3 cos(x2η0)] +
e

d
P.

Substitution of the function ψ(η0) and its derivatives into the initial condi-
tions (3.20) gives three equations:

C1 + C3 = −eP
d
,

z1C1 + x2C2 + x1C3 = 0,

z21C1 + 2x1x2C2 +
(
x21 − x22

)
C3 = 0
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and upon solution of these equations, we obtain:

(3.29)

C1

P
=

−e
d

[
x2(x

2
1 − x22)− 2x21x2

]

x2(x21 − x22)− 2x21x2 + 2x1x2z1 − z21x2
,

C2

P
=

e

d

[
z1(x

2
1 − x22)− z21x1

]

x2(x21 − x22)− 2x21x2 + 2x1x2z1 − z21x2
,

C3

P
=

−e
d

[
2z1x1x2 − z21x2

]

x2(x21 − x22)− 2x21x2 + 2x1x2z1 − z21x2
.

Thus an explicit function ψ(η0) has been determined, which together with its
derivatives uniquely defines all dynamical parameters of the reservoir.

4. The parameters characterizing reservoir dynamics
after explosion

By means of relationships derived in Secs. 2 and 3, after using function
ψ(η0) and its derivatives, the dimensionless parameters characterizing reservoir
dynamics can be written as:

(4.1)
Uz(ξ, η)

P
=
β3

ξ2

[
C1

P
(z1 − 1) exp

(
−cez1
c0β

η

)
+
A1(η)

P
sin

(
cex2
c0β

η

)

+
B1(η)

P
cos

(
cex2
c0β

η

)
− e

d

]
,

(4.2) εrz(ξ, η) = −2

ξ
Uz(ξ, η), εϕz(ξ, η) =

1

ξ
Uz(ξ, η),

(4.3) Srz(ξ, η) = −1 +

(
1− 1

ξ

){
C1

P
β(z1 − 1)

[
2β2

(1 + νz)j

(
1 +

1

ξ
+

1

ξ2

)

+
(1− ν)z21

(1 + ν)(1− 2ν)g

]
exp

(
−cez1
c0β

η

)

+ β exp

(
−cex1
c0β

η

)[
A2(ξ)

P
sin

(
cex2
c0β

η

)
+
B2(ξ)

P
cos

(
cex2
c0β

η

)]

− 2β3

(1 + νz)j

(
1 +

1

ξ
+

1

ξ2

)
e

d

}
,
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Sϕz(ξ, η) = Srz(ξ, η) +
2

P

Uz

ξ
,(4.4)

Sz(ξ, η) = Sϕz(ξ, η) − Srz(ξ, η) =
2

P

Uz

ξ
,(4.5)

where

(4.6)

A1(η)

P
= − exp

(
−cex1
c0β

η

)(
(1− x1)

C2

P
+ x2

C3

P

)
,

B1(η)

P
= − exp

(
−cex1
c0β

η

)(
x2
C2

P
+ (x1 − 1)

C3

P

)
,

A2(ξ)

P
=

2β2

(1 + νz)j

[
(1− x1)

C2

P
+ x2

C3

P

]

·
(
1 +

1

ξ
+

1

ξ2

)
− 1− ν

(1 + ν) (1− 2ν) g

·
[
(x31 − 3x1x

2
2 − x21 + x22)

C2

P
+ (x32 − 3x21x2 + 2x1x2)

C3

P

]
,

B2(ξ)

P
=

2β2

(1 + νz)j

[
x2
C2

P
+ (x1 − 1)

C3

P

]

·
(
1 +

1

ξ
+

1

ξ2

)
+

1− ν

(1 + ν)(1− 2ν)g

·
[
(3x21x2 − x32 − 2x1x2)

C2

P
+ (x31 − 3x1x

2
2 − x21 + x22)

C3

P

]
,

(4.7)

ce
c0

=

√
1− ν

(1 + ν)(1− 2ν)
, ξ =

r

r0
, η =

c0t

r0
,

η0 =
x0
r1

= − ce
βc0

η, c0 =

√
E

ρ
,

Sz denotes reduced stress in reservoir wall.
It should be noted, that in accordance with Eq. (4.1), the value of Uz/P is

independent of the pressure value, which is the result of C1/P , C2/P and C3/P
being independent of the pressure level (according to Eqs. (3.29)).
The static values of the mechanical parameters of the reservoir wall can

be determined by substituting infinite value η = ∞ into the above mentioned
expressions. Then we have:
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lim
η→∞

exp

(
−ce
c0

x1
β
η

)
= 0,

lim
η→∞

exp
A1(η)

P
= 0,

lim
η→∞

exp
B1(η)

P
= 0

and the parameters presented in Eqs. (4.1)–(4.5) take on the following forms:

Uz(ξ)

P

∣∣∣∣
s

= −e
d

β3

ξ2
,(4.8)

εrz(ξ)|s = 2
e

d

(
β

ξ

)3

, εϕz(ξ)|s = −e
d

(
β

ξ

)3

,(4.9)

Srz(ξ)|s = − 2β3

(1 + νz)j

(
1− 1

ξ3

)
e

d
− 1,(4.10)

Sϕz(ξ)|s = −2β3
e

d

[
1

ξ2
+

1

(νz + 1)j

(
1− 1

ξ3

)]
− 1,(4.11)

Sz(ξ)|s = −2
e

d

β3

ξ3
,(4.12)

where

(4.13)
e

d
=

−3(1 + ν)

4(β3 − 1)(1 + ν) + 6
.

Dynamical parameters of the spherical reservoir in a vacuum, i.e. with no
medium, loaded with the internal surge-pressure, according to [6] can be writ-
ten as

Ua
z (ξ, η)

Pz
=

3

4

β3

β3 − 1

1

ξ2

(
1− cos

√
4

3

(
1 +

β + 1

β2

)
η

)
, Pz =

p0
Ez
,(4.14)

εaϕz(ξ, η) = −1

2
εarz(ξ, η) =

1

ξ
Ua
z (ξ, η),(4.15)

Sa
rz(ξ, η) = − 1

β3 − 1

[(
β

ξ

)3

− 1

]
+A(ξ) cos

√
4

3

(
1 +

β + 1

β2

)
η,(4.16)
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(4.17)

A(ξ) =
1

β3 − 1

[(
β

ξ

)3

−
(
β2 + β + 1

)(β
ξ
− 1

)
− 1

]
,

Sa
ϕz(ξ, η) = Sa

rz(ξ, η) +
2

Pz

Ua
z (ξ, η)

ξ
,

Sa
z (ξ, η) = Sa

ϕz(ξ, η)− Sa
rz(ξ, η) =

2

Pz

Ua
z (ξ, η)

ξ
,(4.18)

where the additional index a denotes the parameters for the reservoir wall with-
out the surrounding medium.

5. Quantitative analysis of dynamical parameters
of the reservoir

We assume that the densities and Young’s moduli of materials of the reservoir
and medium are identical, i.e. g = (ρ/ρz) = 1 and j = (E/Ez) = 1. Then
quantitative analysis of all dimensionless parameters of the reservoir (3.16) can
be carried out in terms of dimensionless independent variables ξ and η.
Exemplary motions of the relative displacement of the reservoir internal sur-

face (ξ = 1), Uz(1, η)/P , versus dimensionless time η = ct/r0, for a few values
of Poisson’s ratio ν and β = 2, are shown in Fig. 2a. Parameter ν, similarly
as bulk modulus characterizes compressibility of the medium in this paper. As
it can be seen, the parameter ν substantially influences the behaviour of the
function Uz(1, η)/P in terms of η.
We can determine two ranges of ν values in which vibration of the reservoir

internal surface is “damped” (there is no energy loss due to internal friction in
reservoir wall, but energy is transferred from vibrating reservoir to further layers
of medium) with a different degree. Thus, decrease of the parameter ν below
the value of about 0.4 causes intense decaying of the reservoir internal surface
vibration. In this range of ν values the displacement of the internal surface of the
reservoir approaches its static value, i.e. (Uz/P )|s = 12(1+ν)/[14(1+ν)+3], after
a few cycles of vibrations (Fig. 2a). On the other hand in the range 0.4 < ν < 0.5,
i.e. in quasi-incompressible media the vibration “damping” is very low. In the
limiting case, when ν = 0.5, i.e. in the incompressible medium “damping” van-
ishes and the reservoir surface harmonically vibrates around its static position
(Uz/P )|s = 0.75, with the constant amplitude Au = 0.75 (Fig. 2a).
The increase of the thickness of the reservoir wall β−1 also reduces damping

of its vibration (see Figs. 2a and 2b). This damping is due to increase of the
reservoir mass.
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a)

b)

Fig. 2. Calculated relative displacement of the internal surface of the reservoir
Uz(1, η)/P versus η for selected values of the Poisson’s ratio ν and the thickness

of the reservoir wall β−1.
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In the other limiting case, when β = 1, i.e., where there is only ca-
vity in medium with no reservoir, the motions of the relative displacement of
the cavity surface Uz(1, η)/P versus η = ct/r, for a few values of ν, are shown in
Fig. 3. The same results for vibrations of the spherical cavity surface in elastic
medium, loaded with surge – pressure, has been published in [2] (see Fig. 2 –
p. 470).

Fig. 3. Calculated relative displacement of the cavity surface U(1, η)/P with no reser-
voir (β = 1) versus η for selected values of the Poisson’s ratio ν.

The relative displacement of the boundary surfaces of the reservoir wall
(internal ξ = 1 and external ξ = 2) and of the surface of its middle spherical
section ξ = 1.5 versus dimensionless time η for ν = 0.3 and β = 2 are depicted
in Fig. 4 (solid line). Vibrations of these surfaces intensively decay and approach
their static values, i.e. (Uz/P )|s = 0.73585/ξ2 after a few cycles of vibrations.
If the reservoir is in a vacuum (with no medium), then according to (4.14)

the same surfaces of the reservoir wall harmonically vibrate around their static
positions (Ua

z /P )|s = (6/7)/ξ2 with constant amplitudes Aa
u = (6/7)/ξ2. This

case is depicted in Fig. 4 by dashed lines. As it can be seen, the elastic com-
pressible medium intensively takes up the energy of the vibrating reservoir and
very effectively reduces its dynamics to static state in range of several periods
of reservoir vibrations.
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Fig. 4. Calculated relative displacements Uz(ξ, η)/P and Ua
z (ξ, η)/P of the selected

reservoir surfaces: ξ = 1, ξ = 1.5 and ξ = 2 for β = 2 and ν = 0.3 versus η.

Figures 5a and 5b show distributions of maximal values of the functions
Srz(ηa, ξ) = Srzmax(ξ) and Sa

rz(ηa, ξ) = Sa
rzmax(ξ) in terms of ξ for ν = 0.3 as

well β = 2 (Fig. 5a) and β = 4 (Fig. 5b), where parameter ηa denotes dimension-
less time η = cta/r, where ta denotes time of reaching of first maximal values by
above – mentioned functions in given sections ξ of the reservoir wall during its
vibration. Graphs of the static distributions of the radial stress Srz(ξ)|s along
the thickness of the reservoir wall are also depicted in these figures.
From the graphs presented in Figs. 5a and 5b it follows that the thick-

ness of the reservoir wall, represented by difference β−1, has substantial influ-
ence on distributions of the functions Srzmax(ξ), Sa

rzmax(ξ) and Srz(ξ)|s ver-
sus ξ. Above all, increase of the parameter β brings about decaying of the
“damping” of the reservoir vibration, due to the medium, and at β = 4 is
Srzmax(ξ) ≈ Sa

rzmax(ξ). In addition, in graphs presented in Fig. 5b it can be
seen that the functions Srzmax(ξ) and Sa

rzmax(ξ) can change their sign from
negative to positive (tension) on the internal reservoir wall. The relationships
Srzmax(4) ≈ Sa

rzmax(4) ≈ Sz(4)|s ≈ 0 occurs on the boundary surface with the
medium.
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a)

b)

Fig. 5. Calculated distributions of the functions Srz max(ξ), Sa
rz max(ξ), Srz(ξ)|s

versus ξ.

Figures 6 and 7 show that functions Sϕzmax(ξ), Sa
ϕzmax(ξ), Sϕz(ξ)|s, Szmax(ξ),

Sa
zmax(ξ), Sz(ξ)|s are positive in whole reservoir wall independently from the
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a)

b)

Fig. 6. Calculated distributions of the functions Sϕzmax(ξ), Sa
ϕzmax(ξ),

Sϕz(ξ)|s versus ξ.

value of β. Besides, influence of thickness of the reservoir wall on distributions
of the above mentioned functions versus ξ is similar as in case of the radial
functions (Fig. 5).
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a)

b)

Fig. 7. Calculated distributions of the functions Szmax(ξ), Sa
zmax(ξ), Sz(ξ)|s

versus ξ.

6. Final conclusion

The main conclusions derived from the above presented theoretical investi-
gations may be briefly summarized as follows:
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• Analytical solution of the radial vibration problem of the thick-walled
spherical reservoir in compressible linear elastic medium has been solved
in the closed form. The vibration is forced by an internal surge-pressure.
In this paper, the medium’s compressibility is represented by the Poisson’s
ratio ν.

• The Poisson’s ratio ν substantially influences vibrations of the parameters
in spherical sections of the reservoir wall in the course of time.

• All parameters intensively and monotonously decrease in space along with
an increase of the Lagrangian coordinate r due to divergence of the dis-
placement of the wall elements.

• These parameters oscillate versus time around their static values. The
oscillations decay in the course of time for ν < 0.5. During the “damping”
of the parameter vibration there is no energy loss due to internal friction
in the reservoir wall, but energy is transferred from the vibrating reservoir
to further layers of the infinite medium.

• The compressibility of the medium of Poisson’s ratio in the range be-
low about 0.4 causes intense decay of parameters’ oscillations and reduces
reservoir dynamics to static state in the range of several vibration’s peri-
ods.

• On the contrary, in the range 0.4 < ν < 0.5, the “damping” of parameter
vibrations of the reservoir wall is very low, and when ν = 0.5 (incom-
pressible medium) “damping” vanishes and the parameters harmonically
oscillate around their static values.

• The reservoir located in vacuum vibrates radially with an angular fre-
quency and behaves like one degree of freedom system. Its spherical sec-
tions vibrate with constant amplitudes whose values are determined by
coordinate r.

• Results of the presented analysis can be applied during engineering design
of reservoirs located in elastic media.

• Increase of the thickness of the reservoir wall β−1 brings about decaying
of the “damping” of the reservoir vibration, due to the medium.

• According to the authors’ best knowledge, the results presented in this
paper have not been presented so far in available literature.
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