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A continuum model of the orthotropic tensegrity plate-like structures with self-stress in-
cluded is proposed within the six-parameter flat shell theory. This approach allows to simplify
calculations, that is, it is not necessary to describe the whole complex tensegrity cable-strut
structure with the use of computational methods. Average displacements, strains and inter-
nal forces for orthotropic tensegrity plate-like structures can be determined within the model.
The closed form solutions for selected tensegrity plate strips and simply supported rectangular
plate with sinusoidal load are presented in the paper. Tensegrity modules, which are based on
the four-strut expanded octahedron modules with additional connecting cables are proposed
as the examples. Self-stress and some geometrical parameters are introduced for parametric
analysis.
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1. Introduction

Tensegrities are defined as cable-strut structures consisting of isolated com-
pressed elements inside a continuous net of tensioned members [1, 2]. The con-
cept of tensegrity concerns specific trusses structures, with a node configuration
that ensures occurrence of infinitesimal mechanisms balanced with self-stress
states. Tensegrity structures are complex regarding both geometry and mechan-
ical properties. The tensegrity concept has found wide applications within archi-
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tecture and civil engineering [3]. In order to estimate their actual properties and
identify features of the structure as a whole, a continuum model is considered.
The present paper focuses on the application of a continuum theory based

on the three-dimensional tensegrity plate-like structure. As a result, the two-
dimensional plate theory is built to describe mechanics of the space tensegrity
structure. The first step of the proposed modelling is the selection of an or-
thotropic repetitive segment, which is taken out from the tensegrity plate-like
structure. Then, the selected representative segment undergoes numerical ho-
mogenization [4, 5]. By comparing the elastic strain energy from the FEM truss
formulation to the energy of a solid, a continuum model of the segment is ob-
tained. The homogeneous segments are afterwards joined together to create the
three-dimensional orthotropic continuum, which includes the effect of self-stress
[6]. After applying the assumptions of plate theory to the moderately thick plates
and integration over the thickness, a two-dimensional plate model is obtained
for both membrane and bending deformations. The model includes the effect of
self-stress initially applied to the tensegrity structure.

2. Six-parameter plate theory

Mathematical model of the tensegrity plate is a linearized form of the six-
parameter shell theory [7] with the curvature tensor bαβ � 0 (α, β � 1, 2).
A detailed discussion of the theory can be found in [8]. The rectangular flat
shell of thickness h in a global coordinate system x1, x2, x3 is considered. The
middle plane is taken as the reference surface. A displacement field is described
by three linear displacements uα, w and three rotations φα, ψ. The following
equations are to be valid:

• geometrical relationships:

(2.1)
γαβ � uα,β � ǫαβψ, γα3 � φα � w,α,

γ33 � ψ, καβ � φα,β, κα3 � ψ,α,

where γαβ , γα3, γ33 καβ, κα3 are the strain components and ǫαβ is the
Ricci symbol,

• constitutive relationships:

(2.2)

Nαβ � B0

αβλµγλµ, Nα3 � k2B0

α3β3γβ3,

Mαβ � h2

12
B0

αβλµκλµ, Mα3 � h2

12
l2B0

α3β3κβ3,

where Nαβ, Nα3,Mαβ ,Mα3 are the internal forces and k
2, l2 are correction

factors,
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• equilibrium equations:

(2.3)
Nαβ,α � fβ � 0, Nα3,α � f3 � 0,

Mαβ,α �Nβ3 �mβ � 0, Mα3,α � ǫαβNαβ �m3 � 0,

where fβ, f3, mβ, m3 are the external loads. The constitutive equations
for orthotropic tensegrity plate-like structures are proposed below.

3. Constitutive relations for orthotropic

tensegrity plate-like structure

The orthotropic tensegrity plate-like structure (Fig. 1a) is selected to present
the constitutive relations. The example is a system of dully connected repetitive
expanded four-strut octahedron modules [1, 2] with additional cables (Figs. 1b,
c, d) used to ensure stability of the structure. It is assumed that a single tenseg-
rity module is included in the cube equal to the thickness of the plate. To obtain
a fully orthotropic system the distances between three orthogonal pairs of struts
are defined as follows [4]:

(3.1)
x

X
� 0.65,

y

Y
� 0.30,

z

Z
� 0.56.

This system consists of struts, regular cables and connecting cables, which
are described by stiffness: pEAqstrut, pEAqcable and pEAqconnection , respectively.
After the procedure described in the previous section (see also [4, 5] for

details) non zero coefficients of the elasticity tensor of the tensegrity plate-like
structure are as follows:

(3.2)

B0

1111 � 2EA

h
δ11, B0

2222 � 2EA

h
δ22,

B0

2323 � EA

h
δ23, B0

1313 � EA

h
δ13,

B0

1122 � 2B0

1212 � 2B0

1221 � EA

h
δ12,

where

δ11 � 1� 1.52325n � 0.13125m � 0.129225σ,(3.3)

δ22 � 1� 1.35912n � 0.35m � 0.137028σ,(3.4)

δ23 � 1.51283n � 0.168813σ,(3.5)

δ13 � 1.26604n � 0.153207σ,(3.6)

δ12 � 0.845615n � 0.105243σ.(3.7)
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The parameters (3.3)–(3.7) and, in consequence, displacements, strains and
internal forces of the tensegrity plate, depend on the coefficients n andm that de-
scribes proportions of member properties (Young’s modulus and cross-sections)
and on the level of self-stress σ (assumed even for each module and multiplied
by the force S):

(3.8)

n � pEAqcablepEAqstrut , m � pEAqconnectionpEAq
strut

,pEAqstrut � EA, σ � S

EA
.

a)

Fig. 1. a) Tensegrity plate, b), c), d) views of four modules of tensegrity based on the expanded
octahedron with additional connecting cables (yellow colour).
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4. Examples

The maximum displacements for three instructive tensegrity plate examples,
as a function of the coefficients n, m and σ, are presented in the closed form.
Two examples for membrane and bending analysis of plate strips (Fig. 2a, 3a)
and simply supported rectangular plate with sinusoidal load (Fig. 4a) are dis-
cussed.
The cantilever plate strip loaded by constant axial force F1 (Fig. 2a) is

analyzed in the first example. In this case, a membrane state of stress was con-

a) b)

Fig. 2. a) Cantilever plate strips, b) graph of the horizontal displacement u0.

a)

b) c)

Fig. 3. Cantilever plate strips (a), and graphs of the vertical displacement w0 for:
h{L � 0.2 (b), h{L � 0.1 (c).
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a)

b) c)

Fig. 4. Simply supported rectangular plate (a), and graph of the vertical displacement w0 for:
h{a � 0.2 (b), h{a � 0.1 (c).

sidered. It was assumed that the force mass f1 is neglected. Boundary conditions
are the following: up0q � 0, N11pLq � �F1. The maximum displacement can be
described with the form:

(4.1) u1,max � u1pLq � Cu0, C � �F1Lh

2EA
, u0 � 1

δ11
,

which, for constant geometrical parameters, depends only on coefficient (3.3).
The parametric study for m � n is presented graphically in Fig. 2b.
The second example is the cantilever plate strip loaded by constant trans-

verse force P (Fig. 3a). In this case, a bending state of state was considered.
It was assumed that the uniformly distributed external loads f3 and m1 are
neglected.
Boundary conditions for this case are as follows: wp0q � 0, φ1p0q � 0,

N13pLq � P , M11pLq � 0. The maximum displacement is described with the
formula:

(4.2) wmax � wpLq � Cw0, C � PL3

EAh
, w0 � �

2

δ11
� 6

5

�
h

L


2
1

δ13

�
.
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In this case, the displacement (4.2) depends on coefficients (3.3) and (3.6) and
on the ratio of thickness h to width L of plate strip. It is very important that the
displacement is valid only for the assumption that δ13 � 0 Ñ n � 0.1210128σ.
Some representative results are presented graphically in Figs. 3b and 3c.
Simply supported rectangular plate (Fig. 4a) is the third example. Sinusoidal

load was applied:

(4.3) f3px1, x2q � q0 sin
�π
a
x1

	
sin

�π
b
x2

	
.

The closed form solution for the maximum displacement, on the assumption
of square plate pb � aq, can be described with the following formula:
(4.4)

wmax � wp0.5a, 0.5aq � Cw0, C � q0a
2

k2EAhπ4
,

w0 � h4π4 rδ12p2δ22 � 3δ12q � 2δ11p2δ22 � δ12qs � 100a4δ13δ23 � a�
20a2pδ11 � δ22 � 3δ12qδ13δ23 � b� ,

where
a� � 10a2h2π2 r2δ22δ13 � 2δ11δ23 � δ12pδ13 � δ23qs,

b� � h2π2 rδ12p2δ22 � 3δ12q � 2δ11p2δ22 � δ12qs rδ13 � δ23s.
The results for selected geometrical parameters are presented graphically in
Figs. 4b and 4c.
The instructive examples presented above show, in the closed form the in-

fluence of the geometric and physical parameters as well as the influence of
self-stress level for the displacements of plate-like tensegrity structures. Simi-
lar analysis can be done for any tensegrity modules comprising the orthotropic
structure.

5. Conclusion

The continuum flat-shell six-parameter model of tensegrity plate-like struc-
tures proposed in this paper allows to estimate in a simple way the influence of
geometric and physical properties of cables and struts as well as the influence
of self-stress state for average displacements, strains and internal forces of the
structure. The model is valid for any structure composed of tensegrity modules
with orthotropic properties.
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