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The objects of consideration are thin linearly thermo-elastic Kirchhoff-Love-type circular
cylindrical shells having a periodically micro-inhomogeneous structure in circumferential direc-
tion (uniperiodic shells). The aim of this note is to formulate and discuss a new non-asymptotic
averaged model for the analysis of selected dynamic thermoelastic problems for these shells.
Contrary to the starting exact shell equations with highly oscillating, non-continuous and pe-
riodic coefficients, the proposed tolerance model equations have constant coefficients depending
also on a cell size. Hence, an important advantage of this model is that it makes it possi-
ble to investigate the effect of a period of inhomogeneity on the global shell thermodynamics
(the length-scale effect). This effect is neglected in the known homogenized models derived by
asymptotic methods.

Key words: periodic shells, thermoelasic problems, tolerance modelling, length-scale effect.

1. Formulation of the problem, starting equations

Thin linearly thermo-elastic Kirchhoff-Love-type circular cylindrical shells
with a periodically micro-heterogeneous structure in circumferential direction
are analysed. Shells of this kind are termed uniperiodic. At the same time, the
shells under consideration have constant properties in axial direction. Periodic
inhomogeneity means here periodically variable shell thickness and/or periodi-
cally variable inertial, elastic and thermal properties of the shell material. The
period of inhomogeneity λ is assumed to be very large compared with the max-
imum shell thickness and very small as compared to the midsurface curvature
radius as well as the length dimension of the shell midsurface in periodicity di-
rection. It means that the shells under consideration are composed of a large
number of identical elements and every such element, called a periodicity cell,
can be treated as a thin shell, cf. Fig. 1.
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Fig. 1. An example of a shell with an uniperiodic microstructure.

The dynamic thermoelastic problems of such shells are described by partial
differential equations with highly oscillating, non-continuous and periodic co-
efficients, so these equations are too complicated to apply to investigations of
engineering problems. To obtain averaged equations with constant coefficients,
a lot of different approximate modelling methods have been proposed. Periodic
cylindrical shells (plates) are usually described using homogenized models de-
rived by means of asymptotic methods, cf. [1]. Unfortunately, in the models of
this kind the effect of a microstructure size (called the length-scale effect) on the
overall shell behaviour is neglected. This effect can be taken into account using
the tolerance averaging technique, cf. [2–5]. Some applications of this method to
the modelling of mechanical and thermomechanical problems for various peri-
odic and tolerance-periodic structures are shown in many works. The extended
list of papers and books on this topic can be found in [3–5].
The aim of this contribution is to formulate and discuss a new averaged tol-

erance 2-D model for the analysis of selected dynamic thermoelastic problems for
the periodic cylindrical shells under consideration. Contrary to the starting exact
equations of the shell thermoelasticity with highly oscillating, non-continuous
and periodic coefficients, governing equations of the proposed averaged model
have constant coefficients depending also on a microstructure size λ. Hence, this
model makes it possible to describe the effect of a length scale on the thermoelas-
tic shell behaviour. The model will be derived applying the tolerance modelling
technique, cf. [2–5].
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We assume that x1 and x2 are coordinates parametrizing the shell midsur-
face M in circumferential and axial directions, respectively. We denote x � x1 P
Ω � p0, L1q and ξ � x2 P Ξ � p0, L2q, where L1, L2 are length dimensions of
M , cf. Fig. 1. Let Ox1x2x3 stand for a Cartesian orthogonal coordinate system
in the physical space R3 and denote x � px1, x2, x3q. A cylindrical shell mid-
surface M is given by M �  

x P R3 : x � r �x1, x2� , �x1, x2� P Ω� Ξ
(
, where

rp�q is the smooth function such that Br{Bx1 � Br{Bx2 � 0, Br{Bx1 � Br{Bx1 � 1,Br{Bx2 � Br{Bx2 � 1. It means that on M we have introduced the orthonormal
parametrization. Sub- and superscripts α, β, . . . run over 1, 2 and are related to
x1, x2, summation convention holds. Partial differentiation related to xα is rep-
resented by Bα. Moreover, it is denoted Bα...δ � Bα . . . Bδ. Let aαβ and bαβ stand
for the midsurface first and second covariant metric tensors, respectively. Under
orthonormal parametrization introduced on M , a11 � a22 � 1, a12 � a21 � 0

and b22 � b12 � b21 � 0, b11 � �r�1.
The time coordinate is denoted by t P I � rt0, t1s. Let dpxq and r stand for

the shell thickness and the midsurface curvature radius, respectively.
The basic cell ∆ and a cell ∆pxq with the centre at point x P Ω∆ are defined

by: ∆ � r�λ{2, λ{2s, ∆pxq � x � ∆, x P Ω∆, Ω∆ � tx P Ω : ∆pxq � Ω∆u,
where λ is a cell length dimension in x-direction. The microstructure length
parameter λ satisfies conditions: λ{dmax " 1, λ{r ! 1 and λ{L1 ! 1. Setting
z � z1 P r�λ{2, λ{2s, we assume that cell ∆ has a symmetry axis: for z � 0.
It is also assumed that inside the cell not only the geometrical but also elastic,
inertial and thermal properties of the shell are described by symmetric (i.e. even)
functions of argument z.
Denote by uα � uαpx, ξ, tq, w � wpx, ξ, tq, px, ξ, tq P Ω � Ξ � I, the shell

displacements in directions tangent and normal toM , respectively. Elastic prop-
erties of the shells are described by shell stiffness tensors Dαβγδpxq, Bαβγδpxq.
Let µpxq stand for a shell mass density per midsurface unit area. Let fαpx, ξ, tq,
f px, ξ, tq be external forces per midsurface unit area, respectively tangent and
normal to M . Denote by θpx, ξ, tq the temperature field treated as the temper-
ature increment from a certain constant reference temperature T0 (by reference
temperature we shall mean the zero stress temperature). It is assumed that
θ{T0 ! 1. Let d

αβpxq stand for the membrane thermal stiffness tensor (tensor of
thermo-elastic moduli: d

αβ � Dαβγδαγδ , where αγδ are coefficients of thermal ex-
pansion). Denote by Kαβpxq and by cpxq the tensor of heat conductivity and the
specific heat, respectively. The heat sources will be neglected. For uniperiodic
shells, Dαβγδpxq, Bαβγδpxq, µpxq, dαβpxq, Kαβpxq, cpxq are highly oscillating,
non-continuous and periodic functions in x.
It is assumed that the temperature along the shell thickness is constant.

From this restriction it follows that only the coupling between temperature field
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θ and membrane stresses occurs (describing by tensor d
αβpxq) while the coupling

of temperature and bending stresses is absent.
The starting equations are the well known governing equations of linear

Kirchhoff-Love theory of thin elastic cylindrical shells combined with Duhamel-
Neumann thermo-elastic constitutive relations and coupled with the known lin-
earized Fourier heat conduction equation in which the heat sources are neglected.
Thus, the starting equations consist of:
a) the Duhamel-Neumann stress-strain-temperature relations

(1.1) nαβpx, ξ, tq � Dαβγδεγδ � d
αβ

θ, mαβpx, ξ, tq � Bαβγδκγδ,

where

εαβpx, ξ, tq � 1

2
pBβuα � Bαuβq � bαβw, καβpx, ξ, tq � �Bαβw,

b) the dynamic equilibrium equationsBβnαβ � µaαβ:uβ � fα � 0, Bαβmαβ � bαβn
αβ � µ :w � f � 0,

which after combining with (1.1) are expressed in displacement fields uα, w and
temperature field θ

(1.2)
BβpDαβγδBδuγq�r�1BβpDαβ11wq�Bβpdαβθq�µaαβ:uβ�fα� 0,

r�1Dαβ11Bβuα�BαβpBαβγδBγδwq�r�1d
11
θ�r�2D1111w�µ :w�f� 0,

c) the linearized heat conduction equation based on the Fourier law

(1.3) BαpKαβBβθq � c 9θ � T0pdαβBα 9uβ � r�1d
11 9wq.

Equations (1.2) and (1.3) describe the dynamic thermoelastic problems for
the shells under consideration. Coefficients of these equations are highly os-
cillating, non-continuous and periodic functions in x. Applying the tolerance
modelling technique (cf. [4, 5]) to (1.2) and (1.3), we will derive the averaged
tolerance model equations with constant coefficients depending also on a mi-
crostructure size.

2. Modelling procedure, equations of tolerance model

The fundamental concepts of the tolerance approach under consideration
are those of two tolerance relations between points and real numbers determined
by tolerance parameters, slowly-varying functions, tolerance-periodic functions,
fluctuation shape functions and the averaging operation, cf. [3–5].
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Below, the mentioned above concepts and assumptions will be specified with
respect to one-dimensional region Ω � p0, L1q.
Tolerance between points. Let λ be a positive real number. Points x, y be-

longing to Ω � p0, L1q are said to be in tolerance determined by λ, if and only
if the distance between points x, y does not exceed λ, i.e. }x� y} ¤ λ.
Tolerance between real numbers. Let rδ be a positive real number. Real

numbers µ, ν are said to be in tolerance determined by rδ, if and only if |µ� ν|¤ rδ.
The above relations are denoted by: x

λ� y, µ
rδ� ν. Positive parameters λ, rδ

are called tolerance parameters.
Let F p�q be a function defined in Ω � r0, L1s, which is continuous, bounded

and differentiable in Ω together with their derivatives up to the R-th order.
Nonnegative integer R is assumed to be specified in every problem under con-
sideration. Note, that function F can also depend on ξ P Ξ � r0, L2s and time
coordinate t as parameters. Let δ � pλ, δ0, δ1, .., δRq be the set of tolerance pa-
rameters. The first of them is related to the distances between points in Ω, the
second one is related to the differences between values of function F p�q at points
x, y belonging to Ω, such that }x� y} ¤ λ, and the k-th one to the differences
between values of the k-th derivative of F p�q, k � 1, ..., R, at points x, y belong-
ing to Ω, such that }x� y} ¤ λ. A function F p�q is called slowly-varying of the
R-th kind with respect to cell ∆ and tolerance parameters δ, F P SV R

δ pΩ,∆q,
if and only if��px, yq P Ω2

��px λ� yq ñ F pxq δ0�F pyq and Bk1F pxq δk� Bk1F pyq, k � 1, 2, ..., R

�
,

where Bk1F p�q stands for the k-th derivative of F p�q in Ω. Roughly speaking,
slowly-varying function F p�q can be treated (together with its derivatives up to
the R-th order) as constant on a cell in the framework of tolerance determined
by the pertinent tolerance parameters.
In the applications of the tolerance modelling, tolerance parameter λ is

known a priori as a certain microstructure length, whereas values of tolerance
parameters δ0, δ1, ..., δR can be determined only a posteriori, i.e. after obtaining
solution to the initial-boundary value problem under consideration.
An integrable and bounded function f p�q defined in Ω � r0, L1s is called

tolerance-periodic of the R-th kind with respect to cell ∆ and tolerance param-
eters δ, f P SV R

δ pΩ,∆q, if it can be treated (together with its derivatives up to
the R-th order) as periodic on a cell.
Let hp�q be a periodic highly oscillating function defined in Ω � r0, L1s, which

is continuous together with derivatives Bk1h, k � 1, ..., R�1, and has a continuous
or a piecewise continuous bounded derivative BR1 h. Periodic function hp�q will
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be called the fluctuation shape function, hp�q P FSRpΩ,∆q, if it depends on λ as
a parameter and satisfies conditions:

h P O
�
λR

�
, Bk1h P O

�
λR�k

	
,

k � 1, 2, ..., R,

»
∆pxq µpzqhpzqdz � 0, z P ∆pxq, x P Ω∆,

where µp�q is a certain positive valued periodic function defined in Ω.
The averaging operator for an arbitrary function f p�q being integrable and

bounded in every cell is defined by:

(2.1) xf ¡ pxqy � 1

λ

x�λ{2»
x�λ{2 f pzqdz, z P ∆pxq, x P Ω∆.

The tolerance modelling is based on two assumptions. The first of them is
called the tolerance averaging approximation.
Let f p�q be an arbitrary integrable tolerance-periodic functions defined in

Ω � r0, L1s and let F p�q P SV 1
δ pΩ,∆q, Gp�q P SV 2

δ pΩ,∆q and hp�q P FS1pΩ,∆q,
gp�q P FS2pΩ,∆q. The tolerance averaging approximation has the form�

f BR1 FD pxq � xfyBR1 F pxq �Opδq, R � 0, 1, B01F � F,�
f BR1 GD pxq � xfyBR1 Gpxq �Opδq, R � 0, 1, 2, B01G � G,xf B1phF qy pxq � xf B1hypxqF pxq �Opδq,xf B1pgGqy pxq � xf B1gypxqGpxq �Opδq,�

f B21pgGqD pxq � xf B21gypxqGpxq �Opδq.
In the course of modelling, terms Opδq will be neglected. Let us observe that

the slowly-varying functions can be regarded as invariant under averaging.
The second assumption is termed the micro-macro decomposition. In the

problem under consideration, the micro-macro decomposition is assumed in the
form

(2.2)

uαpx, ξ, tq � u0αpx, ξ, tq � hpxqUαpx, ξ, tq,
wpx, ξ, tq � w0px, ξ, tq � gpxqW px, ξ, tq,
θpx, ξ, tq � θ0px, ξ, tq � bpxqΘpx, ξ, tq,
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where macrodisplacements u0α, w
0 and macrotemperature θ0 as well as displace-

ment fluctuation amplitudes Uα, W and temperature fluctuation amplitude Θ

are the new slowly-varying unknowns, i.e. u0α, Uα, θ0, Θ P SV 1
δ pΩ,∆q, w0,

W P SV 2
δ pΩ,∆q. Fluctuation shape functions for displacements hpxq, gpxq and

fluctuation shape function for temperature bpxq are the known in every prob-
lem under consideration, λ-periodic, continuous and highly-oscillating functions.
They depend on λ as a parameter and in this work they have to satisfy con-
ditions: h P Opλq, λB1h P Opλq, g P Opλ2q, λB1g P Opλ2q, λ2B11g P Opλ2q,
b P Opλq, λB1b P Opλq, xµhy � xµ gy � xcby � 0.
We substitute the right-hand sides of (2.2) into (1.2), (1.3). For decomposi-

tion (2.2), the governing Eqs. (1.2), (1.3) do not hold, i.e. there exist residual
fields defined by

(2.3)

pα � BβpDαβγδBδpu0γ � hUγqq � r�1BβpDαβ11pw0 � gW qq� Bβpdαβpθ0 � bΘqq � µaαβp:u0β � h :Uβq � fα,

p � r�1Dαβ11Bβpu0α � hUαq � BαβpBαβγδBγδpw0 � gW qq� r�1d
11pθ0 � bΘq � r�2D1111pw0 � gW q � µp :w0 � g :W q � f,

s � BαpKαβBβpθ0 � bΘqq � cp 9θ0 � b 9Θq� T0pdαβBαp 9u0β � h 9Uβq � r�1d
11p 9w0 � g 9W qq.

Following [2], we introduce the residual orthogonality assumption which states
that residual fields (2.3) have to satisfy the following orthogonality conditions

(2.4) xpαy � 0, xpαhy � 0, xpy � 0, xpgy � 0, xsy � 0, xsby � 0,

for almost every px, ξq P Ω�Ξ and every t P I � rt0, t1s. Tolerance operation x�y
on cell ∆ is defined by (2.1).
Conditions (2.4), on the basis of the tolerance averaging approximation, lead

to the system of averaged equations for unknowns u0α, w, U
0
α, W , θ

0, Θ. Under
the extra approximation 1� λ{r � 1, this system can be written in the form of:
a) the stress-strain-temperature relations

(2.5)

Nαβ � A
Dαβγδ

E Bδu0γ � r�1
A
Dαβ11

E
w0 � A

Dαβγ1B1hEUγ� A
Dαβγ2h

E B2Uγ � A
d
αβ
E
θ0 � A

d
αβ

b
E
Θ,

Mαβ � A
Bαβγδ

E Bγδw0 � A
Bαβ11B11gE� 2

A
Bαβ12B1gE B2W � A

Bαβ22g
E B22W,
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(2.6)

Hβ � AB1hDβ1γδ
E Bδu0γ � A

hDβ2γδ
E B2δu0γ � AB1hDβ11γB1hE

Uγ � A
hDβ22γh

E B22Uγ � r�1
AB1hDβ111

E
w0 � AB1hdβ1E θ0� A

d
β2
h
E B2θ0 � A

d
β1B1h bEΘ � A

d
β2
bh
E B2Θ,

G � AB11gB11αβ
E Bαβw0 � 2

AB1gBαβ12
E Bαβ2w0� A

gBαβ22
E Bαβ22w0 � �pB11gq2B1111

D
W � �

2
�B11gB1122g

D� 4
�pB1gq2B1212

D	 B22W � �pgq2B2222
D B2222W,

b) the dynamic equilibrium equations

(2.7)

BαNαβ � xµy aαβ:u0α � xfβy � 0,BαβMαβ � r�1N11 � xµy :w0 � xfy � 0,�
µphq2D aαβ :Uα �Hβ � A

fβh
E � 0,�

µpgq2D :W �G� xfgy � 0,

c) the heat conduction equations

(2.8)

A
Kαβ

E Bαβθ0�A
K1βB1bE BβΘ�A

K2βb
E B2βΘ�xcy 9θ0�A

T0 d
αβ
E Bα 9u0β� A

T0 d
1βB1hE 9Uβ� A

T0 d
2β
h
E B2 9Uβ�r�1

A
T0 d

11
E 9w0,A

K2βb
E B2βθ0�A

K1βB1bE Bβθ0��
K22pbq2D B22Θ��

K11pB1bq2D Θ� �
cpbq2D 9Θ�A

T0 b d
αβ
E Bα 9u0β�A

T0 d
1β
b B1hE 9Uβ�A

T0 d
2β
b h

E B2 9Uβ.

Equations (2.5)–(2.8) together with the micro-macro decomposition (2.2)
constitute the tolerance model for the analysis of selected dynamic thermoelasic
problems for uniperiodic shells under consideration. Coefficients of the derived
model equations are constant and some of them depend on microstructure length
parameter λ (underlined terms).
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3. An example of applications

In this section as an example of applications of Eqs. (2.5)–(2.8) we shall
investigate the effect of a cell size λ on the initial distributions of temperature
micro-fluctuations in the uniperiodic shells under consideration. An example of
a shell with an uniperiodic structure is shown in Fig. 1.
In order to analyse this problem, we assume that the external forces fβ, f

are equal to zero. We neglect the forces of inertia xµy aαβ:u0α, �µphq2D aαβ :Uα

in directions tangential to the shell midsurface as sufficiently small when com-
pared to the forces of inertia xµy :w0,

�
µpgq2D :W in direction normal to the shell

midsurface. At the same time we also neglect terms containing the first time
derivatives of macrodisplacements u0αp�, tq and of displacement fluctuation am-
plitudes Uαp�, tq as sufficiently small when compared to terms containing the
first time derivatives of kinematical unknowns w0p�, tq, W p�, tq.
The investigated problem is rotationally symmetric with a period λ{r; hence

u01, U1 � 0 and the remaining unknowns of the tolerance model u02, U2, w0,
W , θ0, Θ (but not total displacements u2, w and total temperature field θ in
decomposition (2.2)!) are independent of x-midsurface parameter.
Taking into account the symmetric form of a cell∆ � r�λ{2, λ{2s, we assume

that fluctuation shape functions for displacements hp�q P FS1pΩ,∆q and for
temperature bp�q P FS1pΩ,∆q are odd with respect to z P r�λ{2, λ{2s (the
cell has a symmetry axis for z � 0) whereas fluctuation shape function for
displacements gp�q P FS2pΩ,∆q is even with respect to z.
We restrict considerations to uniperiodic shells composed of homogeneous,

isotropic constituents. In this case d
12 � d

21 � 0, d
11 � d

22
and K12 � K21 � 0,

K11 � K22.
Under assumptions given above, the system of tolerance model Eqs. (2.7)–

(2.8) separates into the following system of five equations for u02pξ, tq, w0pξ, tq,
U2pξ, tq, W pξ, tq, θ0pξ, tq
(3.1)

�
D2222

D B22u02 � r�1
�
D2211

D B2w0 � A
d
22
E B2θ0 � 0,�

B2222
D B2222w0 � �

B2211B11gD B22W � �
B2222g

D B2222W � xµy :w0 � 0,�phq2D2222
D B22U2 � �pB1hq2D2112

D
U2 � A

d
22
bh
E B2Θ � 0,�B11gB1122

D B22w0 � �
gB2222

D B2222w0 � �pB11gq2B1111
D
W�p2 �B11gB1122g

D � 4
�pB1gq2B1212

D qB22W � �pgq2B2222
D B2222W� �
µpgq2D :W � 0,�

K22
D B22θ0 � xcy 9θ0 � r�1

A
T0d

11
E 9w0,
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and independent equation for temperature fluctuation amplitude Θpξ, tq
(3.2)

�
K22pbq2D B22Θ � �

K11pB1bq2D Θ � �
cpbq2D 9Θ � 0.

The underlined averages in (3.1) and (3.2) depend on microstructure length
parameter λ.
The subsequent analysis will be restricted to Eq. (3.2) describing micro-

fluctuations of temperature field in axial direction caused by periodic structure
of the shells under consideration.
We shall investigate the problem of time decaying of the temperature fluc-

tuation amplitude Θpξ, tq setting
Θpξ, tq � Θ�pξq expp�γtq, t ¥ 0,

with γ ¡ 0 as a time decaying coefficient. Function Θ�pξq represents an initial
distribution of temperature micro-fluctuations, i.e. Θpξ, t � 0q � Θ�pξq.
Hence, under denotationsrk2 � �

K11pB1bq2D
λ2

�
K22pbq2D, γ� � �

K11pB1bq2D
λ2

�
c pbq2D ,

where bp�q � λ�1bp�q, Eq. (3.2) yields
(3.3) B22Θ�pξq � rk2r1� pγ{γ�qsΘ�pξq � 0,

where γ� is a certain new time decaying coefficient depending on microstructure
length parameter λ. It can be shown that averages

�
K11pB1bq2D, �K22pbq2D,�

cpbq2D are greater than zero; hence rk 2 ¡ 0 and γ� ¡ 0. The boundary conditions
for Θ�pξq are assumed in the form

Θ�pξ � 0q � Θ�
0 , Θ�pξ � L2q � 0,

where Θ�
0 is the known constant.

The solution to Eq. (3.3) depends on relations between time decaying coef-
ficients γ and γ�. The following special cases can be taken into account.
1) If 0   γ ! γ� and setting rk2γ � rk2r1� pγ{γ�qs then

Θ�pξq � Θ�
0 expp�rkγξq;

in this case the temperature micro-fluctuations are strongly decaying near the
boundary ξ � 0. It means that the micro-fluctuations can be treated as equal to
zero outside a certain narrow layer near boundary ξ � 0. Thus, Eq. (3.2) being
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a starting point in the thermal problem under consideration makes it possible
to investigate the boundary layer phenomena.

2) If 0 ! γ   γ� then
Θ�pξq � Θ�

0 rexpp�rkγξqp1� expp�2rkγL2qq�1 � expprkγξqp1� expp2rkγL2qq�1s;
the initial micro-fluctuations decay exponentially but not strongly.

3) If γ � γ� then
Θ�pξq � Θ�

0 p1� ξ{L2q;
we deal with a linear decaying of temperature micro-fluctuation amplitude.

4) If γ ¡ γ� and setting κ2 � rk2rpγ{γ�q � 1s � pnπq2pL2q�2 then

Θ�pξq � Θ�
0 sinpκpL2 � ξqqpsinpκL2qq�1;

the temperature micro-fluctuations oscillate.

5) If γ¡γ� and κ2�rk2rpγ{γ�q�1s�pnπq2pL2q�2 then the solution doesn’t exist.

The above effect cannot be analysed in the framework of the asymptotic
models commonly used for investigations of thermoelastic problems for micro-
periodically shells under consideration. It can be observed that within the asymp-
totic models neglecting the length-scale terms, Eq. (3.2) reduces to equation�
K11pB1bq2D Θ � 0, which has only trivial solution Θ � 0.
Notice that in the problem under consideration, for an arbitrary but fixed

time argument t the shape of temperature micro-fluctuation amplitude Θpξ, tq is
the same as the form of initial temperature micro-fluctuation amplitude Θ�pξq.

4. Remarks and conclusions

The tolerance modelling procedure is applied to the known partial differential
equations describing dynamic thermoelastic problems for Kirchhoff-Love-type
thin linearly elastic cylindrical shells with periodic microstructure in circumfer-
ential direction.
In contrast to exact thermoelastic shell Eqs. (1.2), (1.3) with discontinuous,

highly oscillating and periodic coefficients, the tolerance model Eqs. (2.5)–(2.8)
proposed here have constant coefficients depending also on a cell size λ. Hence,
this model makes it possible to analyse the effect of a microstructure size on
the global thermodynamic shell behaviour (the length-scale effect). This effect
is neglected in the known homogenized models derived by asymptotic methods.
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The resulting model equations are uniquely determined by the highly oscillat-
ing, periodic fluctuation shape functions representing oscillations of temperature
and displacement fields inside a cell caused by a periodic structure of the shells.
These functions have to be known in every problem under consideration.
The number and form of boundary/initial conditions for unknown macrodis-

placements u0α, w
0 and macrotemperature θ0 are the same as in the classical shell

theory governed by Eqs. (1.2), (1.3). The boundary conditions for kinematic
fluctuation amplitudes Qα, V and thermal fluctuation amplitude Θ should be
defined only on boundaries ξ � 0, ξ � L2. The form of initial/boundary condi-
tions for Qα, V and Θ are the same as in the classical shell theory.
Solutions to the initial-boundary value problems have the physical sense only

if the basic unknowns u0α, w, Qα, V , θ0, Θ of the tolerance model are slowly-
varying functions in periodicity direction. This requirement can be verified only
a posteriori and it determines the range of the physical applicability of the
model.
As an example of applications of tolerance model Eqs. (2.5)–(2.8), a certain

special problem dealing with time decaying of initial micro-fluctuations of tem-
perature field was analysed. It was shown that in the uniperiodic shells under
consideration the form of initial temperature micro-fluctuations depends on re-
lations between the given time decaying coefficient γ ¡ 0 and a certain time de-
caying coefficient γ� depending on microstructure length parameter λ. The initial
temperature micro-fluctuations decay exponentially for 0   γ   γ�. They decay
linearly for γ � γ�. If γ ¡ γ� then the temperature micro-fluctuationsoscillate.
Moreover, if 0   γ ! γ� then the micro-fluctuation amplitude is strongly decay-
ing near the boundary ξ � 0. It means that the temperature micro-fluctuations
can be treated as equal to zero outside a certain narrow layer near boundary
ξ � 0. Thus, we have shown that the tolerance model proposed here makes
it possible to analyse the boundary layer phenomena. All the effects mentioned
above cannot be investigated in the framework of the asymptotic models.
Some other applications of the tolerance model proposed here to investigate

special thermoelastic or only thermal problems for uniperiodic shells under con-
sideration dealing with the effect of a cell size on the thermoelastic behaviour
of the shells, e.g. influence of a period length on vibration caused by a certain
thermal load, effect of the microstructure size on distribution of the averaged
and fluctuating parts of temperature and displacement fields, will be shown in
forthcoming papers.
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