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The shape of the “initial curve”, i.e. the locus of material points, which if properly il-
luminated provide (under specific conditions) the “caustic curve”, is explored. Adopting the
method of complex potentials improved formulae for the shape of the “initial curve” are ob-
tained. Application of these formulae for two typical problems, i.e. the mode-I crack and the
infinite plate with a finite circular hole under uniaxial tension, indicates that the “initial curve”
is in fact not a circular locus. It is either an open curve or a closed contour, respectively, the
actual shape of which depends also on the in-plane displacement field.
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1. Introduction

The experimental method of Caustics was first applied for the solution of
Fracture Mechanics problems by Manogg in 1964 for transparent materials in
the form of “Transmitted Caustics” [1]. A few years later Theocaris broadened
the application field of the method by introducing the theory of “Reflected
Caustics” [2]. In this way it became possible to study the stress singularity in an
elastic plate, irrespectively of whether the material of the plate is transparent
or opaque. Initially the method was applied under the title “Shadow Optical
Technique”. It was only in 1971 when Theocaris introduced the term “Method
of Caustics” (from the ancient Greek word “καυστική” originating from the
verb “καίω” which means “burn”) [3].
The underlying principle of the method is that in case a light beam impinges

on a specimen at the immediate vicinity of a singularity the transmitted or
reflected rays (received on a reference plane parallel to the specimen’s plane) will
concentrate along a strongly illuminated curve (called “caustic curve”) due to
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the strong variations of both the thickness and refractive index at the region close
to the singularity. It is exactly the shape and dimensions of this illuminated locus
that permit quantitative investigation of critical characteristics of the stress field
around the singularity, like for example the Stress Intensity Factor (SIF).
Since its introduction, the method of caustics has been used by many re-

searchers, as analytically described by Kalthoff [4] in his concise review paper.
From the very first period of its development the application of the method cov-
ered a wide field of static engineering problems ranging from the calculation of
SIFs (in either isotropic [5] or anisotropic materials [6]) to the determination of
material properties [7, 8] and to the study of contact problems [9] and deformed
boundaries [10]. In parallel the method was used to study the behaviour of mate-
rials under dynamic loading conditions [11–14]. In the same period Rosakis and
Freund [15] applied the method to confront plasticity problems while Kikuchi
and Hamanaka [16] used caustics for the experimental determination of the
J-integral.
Today the method of caustics is still under further development [17, 18] and is

widely used to determine the intensity of stress fields around static cracks [17],
to study dynamic [18] and impact problems [19], interfacial cracks [20, 21],
fatigue [22] and contact problems [23, 24] and recently problems at the nano-
scale [25]. Moreover the method is widely applied for the study of anisotropic-
[26, 27], transversely isotropic- [28], orthotropic- [29] or even graded- [30] and
composite materials [31]. Recently Gdoutos used the method of caustics for
quantification of the triaxial effects around crack tips [32]. Finally, it is worth
mentioning that Younis introduced applications of the method in engineering
education by designing appropriate experiments [33].
Although the method gradually became very popular its application is not

yet fully standardized (Carazo-Alvarez and Patterson [34] were the first
who proposed a standardizing procedure around 1999). Moreover little attention
is paid to the quantification of errors and inaccuracies introduced by various fac-
tors which can be in general classified into two broad categories related to: (i) the
experimental set-up and the specimens and (ii) approximations adopted during
the development of the theory and the derivation of the respective formulae.
For the first category Theocaris and Razem [35], already from 1981, at-

tempted a quantification of the errors due to the screen position and the spec-
imen’s thickness. Later Rossmanith [36] studied the errors due to irregular
specimen thickness. A more systematic approach to the problem was presented
by Wallhead et al. [37] while Konsta-Gdoutos and Gdoutos [38] intro-
duced useful guidelines for the correct application of the method setting also
the respective applicability limits.
In the second category the most systematic study was that by Rosakis and

Zehnder [39] who developed the exact mapping equations describing reflected
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caustics. They pointed out that if the SIFs are evaluated by caustics according
to the approximate analysis the errors could be as large as 15%. The accuracy
of the method was also assessed by Spyropoulos [40] who pointed out that
only the exact expressions of the complex potentials should be employed since
in case approximate formulae are used errors slip into the results shadowing the
actual phenomena.
In the direction of further improving the accuracy of the method an attempt

is here presented to eliminate an additional source of errors related to the “initial
curve”. This term designates the geometric locus of the plate’s points which
under specific conditions [2, 4] provide the set of reflected rays forming the
caustic curve on the screen. The “initial curve” depends on the optical constants
of the material and it is not the same for reflections from the rear and the front
face of the plate. Moreover it depends on the type of light bundle impinging on
the plate (parallel, converging or diverging light rays) as well as on the optical
arrangement.
The study is focused to the Reflected Caustics method. Disregarding the

discussion about the conditions that must be fulfilled in order for the points
of the “initial curve” to provide a caustic curve, attention is paid to the fact
that light rays impinge on an already deformed plate. Therefore it appears rea-
sonable to derive the equations of the “initial curve” by considering the de-
formed state contrary to what is commonly adopted in the classic literature
about caustics where the “initial curve” is described ignoring the in-plane de-
formation (assuming in fact that the magnitude of displacements is negligible
with respect to the size of the “initial curve” itself). The approach here de-
scribed is relieved from this restriction and improved formulae are obtained
for the “initial curve”. These formulae are then applied in two configurations
widely studied by employing the method of caustics, i.e. (i) the mode-I crack
and (ii) the infinite plate with a finite circular hole under uniaxial tension at
infinity. The results of the analysis indicate that for stiff materials the classic
approach (i.e. considering the “initial curve” a circular locus of points on the
undeformed specimen) is quite satisfactory even in the presence of strong sin-
gularities like crack tips. On the contrary, in case of materials with increased
compliance the discrepancy between the two approaches becomes non-negligible,
exceeding even 12%.

2. The “initial curve” according to the classic approach [2]

A parallel light beam (planar wave-fronts) impinges normally on a thin plate
of thickness t, which is in equilibrium under a system of external in-plane loads F
(Fig. 1). Due to lateral deformation of the plate’s initially plane surface the light
rays reflected form spherical wave-fronts S(x, y, z) the gradient ∇S of which
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Fig. 1. The classic approach to the formation of the caustic curve from reflected light rays.

at any point is parallel to the respective reflected light ray. The reflected rays
impinge on a screen parallel to the plate at a distance Zo. In case light is reflected
from points P (actually from Pp, which is P after the out of plane deformation)
with severe lateral deformation a strongly illuminated locus of pointsQ is formed
on the screen (the intersection of the three dimensional surface S(x, y, z) with
the screen), called the caustic curve.
According to the classic approach to the Reflected Caustics method [2, 4] two

Cartesian reference systems {O;x, y, z} and {O′;x′, y′, z′} are considered: One
on the front face of the undeformed plate and one on the screen, respectively.
The xy- and x′y′-planes coincide with the faces of the plate and the screen as
it is shown in Fig. 1. Assume now that P (x, y) is a point on the undeformed
plate’s front face corresponding to a point of deflection (i.e. the normal np to
the out of plane-deformed face at P – or strictly speaking at Pp – subtends an
angle φ 6= 0◦ with the vector normal to the initially planar plate). Assume also
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that P ′ is the normal projection of P on the screen. Then according to Snell’s
law rays impinging on Pp (or on P considering the negligible magnitude of the
out of plane deformation at P with respect to the distance Zo) are reflected at
an angle 2φ and the vector W defines the image Q of P on the caustic curve
(Fig. 1). It holds that:

(2.1) W = ro +w = ro + Zo∇s(x, y).

Vector ro corresponds to point P while vector w = Zo∇s(x, y) describes the
deviation of light rays on the screen due to the distortion of the plate at point P .
Moreover s(x, y) is the path change of the light rays. Furthermore for Eq. (2.1)
to be valid self-similarity for the reflected wave-fronts has been assumed (parallel
bent fronts rather than the exact spherical ones [39]):

(2.2) S(x, y, z) = z + s(x, y) = C1,

where C1 is a constant. Equation (2.2) is valid for small deflection angles φ,
an assumption well acceptable within the frame of Linear Elasticity. Along the
same line of thought it is assumed that:

(2.3) s(x, y) ≈ ∆t(x, y) =
νt

E
(σ1 + σ2).

In Eq. (2.3) ∆t(x, y) is the thickness change of the plate (due to the out of plane
deformation of the plate) at point P expressed (through Hooke’s generalized
law) in terms of the principal stresses, σ1 and σ2, Poisson’s ratio ν, and Young’s
modulus E. The sum of the two principal stresses is expressed with the aid of
the complex potential Φ(z) [41] as:

(2.4) σ1 + σ2 = 4<Φ(z),

< denotes the real part and z = x + iy = reiϑ is the complex variable (not to
be confused with the z coordinate axis). Then it is readily seen that Eq. (2.1)
for the caustic curve can be written in the quite convenient complex from:

(2.5) W = z + 4Zot

cf︷︸︸︷
ν

E︸ ︷︷ ︸
C

Φ′(z) = z + CΦ′(z),

where z = roe
iϑ is to be understood as the point P on the “initial curve”, prime

denotes first order derivative and over-bar the conjugate complex value. Sepa-
rating real, <, from imaginary, =, parts, in Eq. (2.5), the parametric equations
of the caustic curve are written as:

(2.6) Wx′ = x+ C<
{
Φ′(z)

}
, Wy′ = y + C=

{
Φ′(z)

}
.
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In Eq. (2.6) Wx′ , Wy′ are the horizontal and vertical components ofW on the
screen reference (Fig. 1).
The formation of a caustic curve on the screen is the result of a light singu-

larity. Therefore the Jacobian determinant of the transformation of Eqs. (2.6)
must be zeroed leading to:

(2.7) C
∣∣Φ′′(z)

∣∣ = 1.

Double prime denotes second order derivative. According to the classical ap-
proach and terminology Eq. (2.7) provides the so-called “initial curve” [2, 4],
i.e. the locus of points of the front face of the plate, (ignoring the in-plane de-
formation of the plate), on which the impinging light rays are reflected forming
the caustic curve on the screen.
In case of a non-parallel impinging light beam Eqs. (2.6), (2.7) become:

(2.8) Wx′ = λmx+ C<
{
Φ′(z)

}
, Wy′ = λmy + C=

{
Φ′(z)

}
,

(2.9) C

∣∣∣∣Φ′′(z)

λm

∣∣∣∣ = 1,

where λm is the magnification ratio of the optical setup equal to (Zo±Zi)/Zi for
a divergent or convergent impinging light beam, respectively; Zi is the distance
of the focus of the divergent or convergent light beam from the loaded plate [4].

3. The accurate shape of the “initial-” and caustic-curves

It is seen that according to the above line of thought the “initial curve” is
considered as a locus of points P on the in-plane undeformed face of the plate.
In fact only the out of plane deformation has been taken into account while
the in-plane displacements field induced by the external loading system is as-
sumed negligibly small compared to the size of the “initial curve” itself. Such
an assumption is quite acceptable for stiff materials, however it could lead to
erroneous results in the case of increased compliance materials for which the
magnitude of the displacement components is not ignorable. Thus it appears
necessary to discriminate between the deformed and the undeformed state of
the plate since the external load causes (in case of plane stress) both out-of-
plane as well as in-plane deformations translating any point P of the face of the
undeformed plate to a new position Pd and then to Pp. Indeed as it is shown
in Fig. 2, neglecting rigid body displacements, point P (x, y) of the undeformed
plate, corresponding to vector ro, shifts to Pd(xd, yd) due to the in-plane de-
formation of the plate through the {u, v} displacements (green line in Fig. 2).
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Fig. 2. The improved approach to the formation of the caustic curve from reflected light rays.

Moreover the out of plane deformation ∆t(x, y)/2 of the front face of the plate
(due to Poisson’s effect) binds Pd to shift to Pp on the deformed surface of the
front face. P ′

d is the normal projection of Pd as well as Pp on the screen. Then
light impinges on Pp and as long as this is a point of deflection its image Q on
the screen belongs to the caustic curve. Obviously, as it is mentioned also in
the previous paragraph, for an in-plane investigation (and assuming ∆t negli-
gible compared with Zo) points Pd can sufficiently stand instead of points Pp.
It is clear that the only difference between the classic approach (described in
Fig. 1) and the improved one here introduced (described in Fig. 2) lies only
in the fact that in the later the in-plane deformation of the plate through the
{u, v} displacements is taken also under consideration. Obviously it holds that
(Fig. 2):

(3.1) xd = x+ u = x′, yd = y + v = y′.
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Therefore Eq. (2.1) of the classic approach is modified to:

(3.2) W = r+w = (ro + u) + Zo∇s(xd, yd), u = u(x, y)i+ v(x, y)j,

where u and v are the horizontal and vertical components of the displacement at
P (x, y) (Fig. 2), vector r corresponds to point Pd(xd, yd) and w = Zo∇s(xd, xd),

∇ =
∂

∂xd
i +

∂

∂yd
j. In addition s(xd, yd) is the change of the path of light rays

in the space between points Pd of the in-plane deformed face of the plate and
the reference screen. Assuming again self-similar reflected wave-fronts instead
of Eq. (2.2) one should now write:

(3.3) S(xd, yd, z) = z + s(xd, yd) = C2,

where C2 is again a constant. Accordingly Eq. (2.3) is rewritten as:

(3.4) s(xd, yd) ≈ ∆t(x, y) =
νt

E
(σ1 + σ2).

Eq. (3.4) differs from Eq. (2.3) in that s(x, y) was substituted by s(xd, yd).
This substitution is always feasible assuming that s depends only on the out-of-
plane deformation ∆t. Therefore ∆t may equally well be superimposed either
to P (undeformed state – classic approach) or to Pd (deformed state – present
approach), according to any succession, as long as the principle of superposition
is valid. Introducing Eq. (3.4) in w = Zo∇s(xd, xd), leads to:

(3.5) w = Zo

[
∂∆t(x, y)

∂xd
i+

∂∆t(x, y)

∂yd
j
]

= Zo

[
∂∆t(x, y)

∂x

∂x

∂xd
i+

∂∆t(x, y)

∂y

∂y

∂yd
j
]
.

For relatively small deformations and taking into consideration Eqs. (3.1) it
follows that:

(3.6)

∂xd
∂x

=
∂ [x+ u(x, y)]

∂x
= 1 +

∂u(x, y)

∂x
≈ 1,

∂yd
∂y

=
∂ [y + v(x, y)]

∂y
= 1 +

∂v(x, y)

∂y
≈ 1.

Therefore Eq. (3.5) is reduced to:

(3.7) w = Zo

[
∂∆t (x, y)

∂x
i+

∂∆t (x, y)

∂y
j
]
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which is found to be identical to the respective formula obtained for w according
to the classic approach. In turn Eq. (2.5) is now written as:

(3.8) W = z + u+ iv + CΦ′(z)

while the parametric equations of the caustic curve (Eqs. (2.6) of Sec. 2) become:

(3.9)
Wx′ = xd + C<

{
Φ′(z)

}
= x+ u+ C<

{
Φ′(z)

}
,

Wy′ = yd + C=
{
Φ′(z)

}
= y + v + C=

{
Φ′(z)

}
.

Again, as in Sec. 2 the Jacobian of the transformation between the plate (con-
sidered now under in-plane deformation also) and the screen must be zeroed. In
other words:

(3.10) J =

∣∣∣∣∣∣∣∣∣
∂Wx′

∂xd

∂Wx′

∂yd

∂Wy′

∂xd

∂Wy′

∂yd

∣∣∣∣∣∣∣∣∣ = 0.

Due to the Cauchy-Riemann conditions, it holds that:

(3.11) <
{
Φ′(z)

}
=
∂<{Φ(z)}

∂x
, =

{
Φ′(z)

}
=
∂<{Φ(z)}

∂y

and taking into account Eqs. (3.6), the Jacobian’s elements become:

(3.12)

∂Wx′

∂xd
=1+C

∂<
{
Φ′(z)

}
∂xd

=1+C
∂2<{Φ(z)}

∂x2
∂x

∂xd
=1+C

∂2<{Φ(z)}
∂x2

,

∂Wx′

∂yd
=C

∂<
{
Φ′(z)

}
∂yd

=C
∂2<{Φ(z)}
∂x∂y

∂y

∂yd
=C

∂2<{Φ(z)}
∂x∂y

,

∂Wy′

∂xd
=C

∂=
{
Φ′(z)

}
∂xd

=C
∂2<{Φ(z)}
∂y∂x

∂x

∂xd
=C

∂2<{Φ(z)}
∂x∂y

,

∂Wy′

∂yd
=1+C

∂=
{
Φ′(z)

}
∂yd

=1+C
∂2<{Φ(z)}

∂y2
∂y

∂yd
=1+C

∂2<{Φ(z)}
∂y2

,

whence

(3.13) C
∣∣Φ′′(z)

∣∣ = 1.
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At this point it is worth mentioning that Eq. (3.13) is identical to Eq. (2.7),
as a direct consequence of Eqs. (3.6) holding for the relatively small deforma-
tions considered here. However there is a critical difference between the two
approaches lying in the fact that according to the classic one Eq. (2.7) is the
“initial curve” itself while according to the present one Eq. (2.7) or Eq. (3.13)
describes the locus of points z (or P ) on the undeformed plate to which one
should add the respective displacements {u, v} in order to obtain the actual
“initial curve” (in the sense that the later lies on the deformed face of the plate
rather than on the undeformed one).
In case of a divergent or convergent light beam, i.e. for λm 6= 1, Eqs. (3.9),

(3.13) become:

(3.14)
Wx′ = λmxd + C<

{
Φ′(z)

}
= λm(x+ u) + C<

{
Φ′(z)

}
,

Wy′ = λmyd + C=
{
Φ′(z)

}
= λm(y + v) + C=

{
Φ′(z)

}
,

(3.15) C

∣∣∣∣Φ′′(z)

λm

∣∣∣∣ = 1.

Again Eq. (3.15) is identical to Eq. (2.9) while Eqs. (3.14) represent the improved
version of Eqs. (2.8) of the classic approach.

4. Applications

Two typical problems, widely studied by employing the method of Reflected
Caustics, are here revisited in order to reveal the main features of the present
approach and also to quantify the difference from the classic approach:
(i) The mode-I crack.
(ii) The infinite plate with a circular hole under tension.

4.1. The mode-I crack

The configuration of the problem and the optical setup in case of parallel
light impinging normally to the plate (λm = 1) are shown in Fig. 3. The initial
(undeformed) crack (thin lines) of length 2α opens symmetrically with respect
to its axis due to the uniaxial tension σo at infinity. The origin of the coordinate
axes is the crack tip. The complex potentials for the singular solution are [41]:

(4.1)
Φ(z)
Ω(z)

}
=
σo
2

(√
α

2z
∓ 1

2

)
,

ϕ(z)
ω(z)

}
=
σo
2

(√
2αz ∓ α+ z

2

)
,

whence

(4.2)
∣∣Φ′′(z)

∣∣ = 3σo
8

√
α

2

1

r5/2
.
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Fig. 3. Reflected caustic curve due to a crack tip according to the present approach.

The deformed (opened) lips of the crack, due to the singular solution, are shown
with a bold line in Fig. 3. According to the classic approach points P (x, y) (or
in complex form z = roe

iϑ) of the undeformed plate forming the “initial curve”
are obtained through Eq. (2.9) as:

(4.3) ro =

(
3Cσo
8 |λm|

√
α

2

)2/5

.

Clearly due to Eq. (4.3) the “initial curve” is a (closed) circle denoted by A
(thin line) in Fig. 3 (Fig. 3 refers to the case with λm = 1). According to the
present approach in order to obtain the actual “initial curve” the displacement
field of points P (on A) have to be added to the circle A. Taking advantage of
the well-known formula [41]:

(4.4) 2µ(u+ iv) = κφ(z)− ω (z)− (z − z)Φ(z),

(κ is Muskhelishvili’s constant and µ the shear modulus of the plate’s material)
one obtains with the aid of Eqs. (4.1) the components of the displacement of
points P (or z = roe

iϑ) on A as:
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(4.5)

u =
σo
2µ

[
(κ− 1)

√
αro
2

cos
ϑ

2
− κ+ 1

4
(α+ r cosϑ)

− 1

2

√
αro
2

(
cos

3ϑ

2
− cos

ϑ

2

)]
,

v =
σo
2µ

[
(κ+ 1)

√
αro
2

sin
ϑ

2
− κ− 1

4
r sinϑ

− 1

2

√
αro
2

(
sin

3ϑ

2
+ sin

ϑ

2

)]
.

Then by adding the above u and v (green line in Fig. 3) to points P of Eq. (4.3)
on A one obtains points Pd on the actual, according to the present approach,
“initial curve” Ad of varying radius r. As it is shown in Fig. 3, the “initial curve”
Ad (red bold line), referred to the deformed plate, is not a closed circle but an
elliptic not closed curve due to the crack opening displacement. In Fig. 3 also
the projection of Ad on the screen has been drawn (red thin line). Moreover
according to the classic approach the parametric equations of the caustic curve
are obtained through Eqs. (2.8) (for λm 6= 1) as follows:

(4.6) Wx′ = λmro

(
cosϑ− 2

3
cos

3ϑ

2

)
, Wy′ = λmro

(
sinϑ− 2

3
sin

3ϑ

2

)
,

while according to the present approach Eqs. (3.14) in combination with Eqs. (4.5)
yield the parametric equations for point Q on the caustic curve (red bold line
on the screen Fig. 3) as:

(4.7)

Wx′ = λmro

{(
cosϑ− 2

3
cos

3ϑ

2

)
+
σo
2µ

[
(κ− 1)

√
α

2ro
cos

ϑ

2

−κ+ 1

4

(
α

ro
+ cosϑ

)
− 1

2

√
α

2ro

(
cos

3ϑ

2
− cos

ϑ

2

)]}
,

Wy′ = λmro

{(
sinϑ− 2

3
sin

3ϑ

2

)
+
σo
2µ

[
(κ+ 1)

√
α

2ro
sin

ϑ

2

−κ− 1

4
sinϑ− 1

2

√
α

2ro

(
sin

3ϑ

2
+ sin

ϑ

2

)]}
.

The “initial curves” obtained according to the two approaches considered
(the classic and the present one) are plotted in juxtaposition in Fig. 4. Dotted
line corresponds to the circular “initial curve” of the classic approach while
the continuous one to the improved version. For plotting Fig. 4 plane stress
conditions were assumed for a rectangular centrally cracked plate (made from
PCBA with Young’s modulus E = 2.5 GPa and Poisson’s ratio ν = 0.38) of
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length ` = 0.10 m, thickness t = 2 mm, and half crack length α = 0.01 m. The
plate is subjected to a tensile stress at infinity equal to one fifth of the yield
stress acting normally to the crack axis. The magnification factor λm was set
equal to 4. As it is seen from Fig. 4 the improved version of the “initial curve”
is slightly displaced inwards, with respect to the crack tip, without being self-
similar with the approximate one. Moreover it is discontinuous since the initial
crack is no longer a mathematic line, but rather it’s two lips are at a finite
distance from each other and equal to the crack opening displacement at the
point where the “initial curve” intersects the crack boundaries. Although the
differences are rather small from a quantitative point of view they significantly
change the data obtained from the respective caustic curves.

Fig. 4. The “initial curve” in case of the two approaches considered. Dotted line represents the
approximate circular “initial curve” (classic approach) while the continuous line corresponds

to the exact shape according to the present approach.

For the above statement to be verified, the two caustic curves obtained from
Eqs. (4.6) and (4.7) (for the same numerical data as previously), are plotted
in Fig. 5. It is seen that the caustic curve obtained from the accurate “initial
curve” encompasses that obtained from the classic circular “initial curve” for the
major [−π, π] region. For the differences to be quantified the distance between
the two tangents to the caustic curve parallel to the crack axis are compared in
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Fig. 5. This distance is usually denoted as Dmin
1 . As it can be seen from Fig. 5

the distance Dmin
1 ,P obtained from the present approach exceeds D

min
1 ,C of the

classic approach, by about 5.5%. Taking into account the proof by Theocaris
and Pazis [42] (based on the general theory of epicycloid curves), that Dmin

1 is
directly related to the stress intensity factor through the formulae [42]:

(4.8) KI ∼ 2

√(
Dmin

1

)5
it is easily concluded that the mode-I stress intensity factors KI calculated
according to the two approaches differ by more than 12%.

Fig. 5. The caustic curves, dotted and continuous lines, in case of a strong singularity (crack
tip) as obtained from light rays reflected on the approximate and on the exact) “initial curves”,

respectively.

4.2. The infinite plate with a finite circular hole
under uniaxial tension at infinity

The configuration of the problem and the optical setup in case of parallel
light impinging normally to the plate (λm = 1) are shown in Fig. 6. The initial
(undeformed) hole (thin line) of radius R deforms to an ellipse (bold line) due
to the uniaxial tension σo at infinity. The origin of the coordinate system is
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Fig. 6. Reflected caustic curve due to a circular hole according to the present approach.

the centre of the hole. The complex potentials required for the solution of the
problem are [41]:

(4.9)

Φ(z) =
σo
4

(
1 +

2R2

z2

)
, ϕ(z) =

σo
4

(
z − 2R2

z

)
,

ψ(z) =
σo
2

(
z − R2

z
− R4

z3

)
,

whence

(4.10)
∣∣Φ′′(z)

∣∣ = 3σoR
2

r4
.

Again according to the classic approach points P (x, y) (or z = roe
iϑ) of the

undeformed plate forming the “initial curve” are obtained through Eq. (2.9) as:

(4.11) ro =

(
3CσoR

2

|λm|

)1/4
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Eq. (4.11) is in fact the equation of a circle, denoted by A (thin line) in Fig. 6
(Fig. 6 refers to the case λm = 1). On the contrary according to the present
approach the actual “initial curve” follows from A by adding the displacement
field of points P (on A).
In this direction, employing Muskhelishvili’s formula [41]:

(4.12) 2µ (u+ iv) = κϕ(z)− zϕ′(z)− ψ(z)

in combination with Eqs. (4.9) one obtains the components of displacement of
points P (or z = roe

iϑ) on A as:

(4.13)

u =
σo
8µro

{[
κ
(
r2o − 2R2

)
+ 2R2 − 3r2o

]
cosϑ−

2R2
(
r2o −R2

)
r2o

cos 3ϑ

}
,

v =
σo
8µro

{[
κ
(
r2o + 2R2

)
+ 2R2 + r2o

]
sinϑ−

2R2
(
r2o −R2

)
r2o

sin 3ϑ

}
.

Adding u and v (green line in Fig. 6) from Eqs. (4.13) to points P of Eq. (4.11)
one obtains points Pd on the actual, according to the present approach, “ini-
tial curve” Ad (red bold line in Fig. 6) of varying radius r. In Fig. 6 also the
projection of Ad on the screen has been drawn (red dotted line).
Moreover according to the classic approach the parametric equations of the

caustic curve are obtained through Eqs. (2.8) as:

(4.14) Wx′ = λmro

(
cosϑ− 1

3
cos 3ϑ

)
, Wy′ = λmro

(
sinϑ− 1

3
sin 3ϑ

)
.

On the contrary according to the present approach Eqs. (3.14) in combination
with Eqs. (4.13) yield the parametric equations for point Q on the caustic curve
(red bold line on the screen Fig. 6) as:

(4.15)

Wx′ = λmro

{(
cosϑ− 1

3
cos 3ϑ

)
+
σo
8µ

{[
κ

(
1− 2R2

r2o

)
+

2R2

r2o
− 3

]
cosϑ−

2R2
(
r2o −R2

)
r4o

cos 3ϑ

}}
,

Wy′ = λmro

{(
sinϑ− 1

3
sin 3ϑ

)
+
σo
8µ

{[
κ

(
1 +

2R2

r2o

)
+

2R2

r2o
+ 1

]
sinϑ−

2R2
(
r2o −R2

)
r4o

sin 3ϑ

}}
.

Considering again a PCBA plate of the same as previously dimensions and
mechanical properties with a central circular hole of radius R = 0.01 m one
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can plot the caustic curves due to the classic (Eqs. (4.14)) and the present
(Eqs. (4.15)) approaches as it is seen in Fig. 7 (only one quarter of the plate is
plotted for double symmetry reasons). Obviously the differences are less striking
given that the singularity is now weaker (compared to the crack tip). However
even in this case there is an increase of the maximum transverse dimension of
the caustic (denote as Dm in Fig. 7) equal to about 2.5%.

Fig. 7. The caustic curves, dotted and continuous lines, in case of a weak singularity (circular
hole) as obtained from light rays reflected on the approximate and the exact “initial curves”,

respectively.

Recalling the familiar formula [43]:

(4.16) σo ∼ D4
m

which relates the stress induced at infinity σo to the characteristic dimension of
the caustic, differences of the order of 10% are obtained for σo if it is calculated
according to the two approaches here considered.
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5. Discussion and conclusions

The experimental method of caustics, either transmitted or reflected, is con-
sidered nowadays a useful and flexible tool for the exploration of specific features
of the stress field around singularities due to its sensitivity to deformation gradi-
ents. Despite the fact that the method was introduced almost fifty years ago, it
is not yet standardized and a few questions are still open concerning its natural
foundation, the optimum procedure for its application, as well as the assessment
of the experimental results. Despite these open questions the method is nowa-
days widely used in various modern fields of experimental strength of materials
(as it was mentioned in the introductory section) covering both mechanical- (i.e.
roller bearing contact [44]) and civil-engineering applications (i.e. behaviour of
rocks under impact [45]).
The present study was devoted to the determination of the accurate shape of

the “initial curve” without falling back on the assumption that the deformation
field is negligible compared to the size of the “initial curve”. The importance of
the correct determination of the “initial curve” is better understood taking into
account that all points of the “initial curve” are mapped onto the caustic curve
while all points inside and outside this curve are mapped outside the caustic.
Considering that the light rays forming the caustic curve originate exclusively
from the “initial curve”, it is understood that all information gathered from the
caustic curve depends exclusively on the respective “initial curve”. The signif-
icance of the “initial curve” is further accentuated considering that by varying
Zo (changing for example the focal plane of the recording system), the position
of the “initial curve” varies accordingly, permitting a scanning of the near-tip
region enlightening critical features of the stress field surrounding the singularity.
In this direction closed-form formulae for the actual shape of the “initial

curve” were deduced. Taking advantage of these formulae the caustic curves
formed by light rays reflected at the points of the actual “initial curve” were
drawn and compared with the respective ones corresponding to a circular “initial
curve” on the undeformed plate. Both qualitative and quantitative differences
between the two approaches (the approximate classic one and the more accurate
one proposed here) were detected which are essentially independent from both
the kind of light bundle impinging on the plate (parallel, converging or diverging
light rays) and also from the experimental setup. From a quantitative point of
view the importance of these differences depends on the nature of the speci-
men’s material. In fact for brittle and relatively stiff materials like PMMA the
differences quantified between the two approaches are either negligible (for weak
singularities like the circular hole) or they fall well within experimental error
(i.e. less than 4%) for strong singularities (like the crack tip). On the contrary
for less stiff materials like PCBA the differences are of the order of 10% or even
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higher for both weak and strong singularities. Obviously differences of the order
here detected should not be ignored for either weak or strong singularities.
A quantitative overview of this point is gained from Fig. 8 where the percent-

age difference between the classic and the present approaches is plotted versus
the elastic modulus of a wide class of real materials ranging from stiff ones
(a type of soft rock) to materials with increased compliance (PTFE). Both the
cases of weak (hole in an infinite plate) and strong (mode-I crack) singularities
are described. For comparison reasons in the case of a weak singularity the load
induced was equal to one third of the respective yield stress while for the strong
singularity the stress at infinity was one fifth of the respective yield one. Both
the raw data (characteristic dimension of the caustic curve) and the quantities
obtained from these data (mode-I stress intensity factor KI and stress at infin-
ity σo) are plotted in Fig. 8, clearly supporting the conclusions drawn in the
previous paragraphs.

Fig. 8. The difference between the two approaches versus the elastic modulus of the specimens’
material. Triangular symbols correspond to the strong singularity while the rectangular ones to
the weak singularity. Empty symbols represent the raw data obtained directly from the caustic

while the filled ones correspond to the indirectly calculated quantities.

Before concluding it is once again emphasized that the approach introduced
here assumes relatively small deformations, as it is in the case of the classic
approach. The difference lies in that the classic approach ignores both the gra-



284 CH.F. MARKIDES, S.K KOURKOULIS

dients of the in-plane displacements and the in-plane displacements themselves.
On the contrary, in the present approach only the gradients of the displacement
field were ignored while the displacements themselves were taken into account.
This could be proved very beneficial in specific applications such as for example,
the determination of the contact length in case of two elastic bodies in contact
using the method of reflected caustics. In such a case where the quantity to be
determined (contact length) is well comparable to the dimensions of the displace-
ment field’s components it is obvious that ignoring the displacement components
themselves is erroneous. The specific problem for the case of two elastic discs
(radius R = 50 mm and thickness t = 10 mm) made of PMMA and compressed
against each other along a common generatrix of their external surfaces was
recently solved analytically [46] according to the improved approach introduced
in Sec. 4. Characteristic results of this analysis are shown in Fig. 9, where the

Fig. 9. The “initial curves” and the respective caustics obtained from the contact area of
two discs compressed against each other along a common generatrix of their external surface.
Dotted lines represent the classic formulation while the continuous ones correspond to the

present approach.
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“initial curves” and the respective contact caustics are plotted according to both
the classic and the improved approaches. According to the theoretical analysis
described in detail in ref. [46] the “elevation” q of the end-points A of the caustic
curve is directly related to the length of the contact arc developed between the
two discs. As it can be seen from Fig. 9, the difference δ of the elevation de-
termined by employing the classic and the improved approaches of the reflected
caustics method exceeds 15%. Obviously in case the discs were made from a less
stiff material (like for example PTFE or PCBA) the difference would become
higher rendering the results of the classic approach unreliable.
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