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The objective of this paper is to propose a mathematical model of bone remodelling,
including underload and overload resorption, equilibrium and bone grow states which can occur
during healing process. A continuous function of bone density rate vs. mechanical stimulus is
proposed. The created model is used to predict the stress-stimulated change in callus density.
It is an extension of mathematical descriptions available in literature.
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1. Introduction

Bone tissue is capable to remodel in response to mechanical internal and ex-
ternal conditions. Bone’s mass and geometry can adapt to mechanical stimulus
(stress or strain induced) which process is known as functional adaptation. Ac-
cording to the Wolff law [1], a bone has the ability to change its material proper-
ties (density) and external architecture to adapt to applied loads via a biological
process called remodelling. During this process, both bone resorption and ap-
position may occur. A bone tissue resorbs when the mechanical stimulus drops
below a lower threshold value whereas bone apposition occurs when the load ex-
ceeds an upper threshold value. If the mechanical stimulus remains between the
threshold values (lazy zone), remodelling does not occur [2]. Moreover, when the
mechanical stimulus increases excessively, overload resorption may occur caus-
ing bone loss. The current mathematical models of the bone remodelling are
often used to model changes in bone density around implants, dental the most
[3–6]. Among them a few consider bone resorption due to overload. Moreover
there are no such studies in relation to the callus, which is also a bone tissue.
The most commonly used approach takes into account three stages: underload
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resorption, equilibrium, and bone growth (apposition). Lin [6] proposes mathe-
matical description of overload resorption but it results in not physically justified
function’s discontinuity. This approach is adopted by other authors [7, 8]. Li [9]
proposes quadratic equation for continuous description of bone remodelling, but
entirely omits the lazy zone (equilibrium state).

2. Model and methods

According to the bone remodelling theory the bone tissue can adapt its
properties according to different kinds of mechanical stimulus. In this paper,
similar to the Weinans theory [10], parameter ψ is chosen as a remodelling
stimulus which denotes strain energy density U [J/cm2] per bone mass density
ρ [g/cm3] (Fig. 1). It is a local value determined at a material point, very
convenient to use because of its scalar character.

Fig. 1. Bone density rate in relation to mechanical stimulus ψ.

The local bone density changes as a function of the mechanical stimulus,
following the remodelling rate equation:

(2.1)
dρ

dt
� $''&''% Bpψ �Kminq, ψ   Kmin,

0, Kmin ¤ ψ ¤ Kmax,

Dpψ �Koverq2 �Kw, ψ ¡ Kmax,

where B and D are remodelling constants, Kmin, Kmax, Kover and Kd are the
stimulus threshold values. It is noted that there are different relations between
density and bone Young’s modulus E available. In this paper, following equation
is adopted:
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(2.2) E � cρ3,

where c is a constant. The ordinary differential equation (2.1) is integrated
numerically by using the forward-Euler method:

(2.3) ρpt�∆tq � ρptq � dρ
dt

����
t

�∆t.
Using equation (2.3) the change in bone density at each time step is calcu-

lated. Then the corresponding elastic modulus is updated according to (2.2). The
next step of calculation is then performed using modified material properties.
The iterative process continues until a 200 MPa Young’s modulus is achieved.
According to Knets [11] such a value indicates a bone union.

3. Results

Rectangular cross-section (b � h) is chosen for studying the model’s prop-
erties. Here, the analysis is mainly addressed to the interval Kmax ¤ ψ ¤ Kd,
what means a bone growth. In the first case the study is carried out by apply-
ing a tensile force N . This results in a homogenous state of stress and strain
(a point level analysis). To obtain analytical solution the relations for stress�
σ � N

bh

�
, strain

�
ε � σ

E

�
and strain energy density

�
U � 1

2E
σ2
�
are used. Then

the mechanical stimulus can be described as:

(3.1) ψ � U

ρ
� E�4{3 N2pbhq2 .

It turns out that for a constant in time load value it is impossible to ob-
tain sufficiently high Young’s modulus (200 MPa) even after infinitely long time
(Fig. 2, solid line). This is due to asymptotic character of the solution of (2.1)
for ψ ¡ Kmax. Namely, initial increase of the density increases the value of de-
nominator in (3.1), whereas nominator remains constant for the unchanged load.
Hence, the values of the stimulator tends to Kmax, what denotes approaching
the lazy zone. In order to get the maximum rate of increase in the density the
force value should change so as to satisfy:

(3.2) ψ � 3
?
c

2
E�4{3 N2pbhq2 � Kover,

which is equivalent to initially the highest value of the bone remodelling rate Kw

(3.3)
dρ

dt
� Kw.
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This approach, in which the force increases in time, allows to obtain suffi-
ciently high Young’s modulus (Fig. 2, dashed line).

a) b)

Fig. 2. The Young’s modulus in time: asymptotically limited (a)
and monotonically increasing (b).

In the second case, the analysis is carried out for a section loaded with
constant values of bending moment M and shear force T . This initiates het-
erogonous state of stress which results in unavoidable material inhomogeneity.
A complex stress state implies that the value of strain energy density varies
along the height of the section �h{2 ¤ z ¤ h{2. Strain energy density:
(3.4) Upzq � 1

2Epzq rσpzqs2 � 1� ν

Epzq rτpzqs2.
For variable elastic modulus stress distribution is not elementary. Normal

stress:

(3.5) σ � M � Epzq � pz � z0q
IE

, IE � b

h{2»�h{2 Epzq � pz � z0q � z dz,
where IE [mm

4 �MPa] denotes the generalized moment of inertia. Shear stress:
(3.6) τ � T � SEpzq

IE � b , SEpzq � b

z»�h{2 Epξq � pξ � z0qdξ,
where SE [mm

3 �MPa] denotes the generalized static moment about neutral axis
of section cut-off lying one side of level z and z0 stands for a possible relocation
of a section neutral axis (z0 � 0 for symmetrical case with N � 0). Several
variants are presented (Fig. 3) for constant in time M and T . Unfortunately,
the results of integration do not lead to satisfactory density distribution in the
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Fig. 3. The Young modulus z-distribution for constant values of shear force and bending
moment.

Fig. 4. The Young’s modulus z-distribution
improved by the control algorithm.

entire analyzed section, neither with the value, nor homogeneity. Homogeneity
is evaluated using three parameters: maximal (Emax) and mean (Em) Young’s
modulus together with standard deviation:

s �gffffffe h{2»�h{2 �EpzqEm

� 1



2

dz

h
.

The less is s and the less is difference Emax �Em the better (the more homoge-
nous) is the obtained distribution of Epzq. As expected, similarly to homogenous
stress state, it is still impossible to obtain sufficiently high value of Young’s mod-
ulus keeping constant in time load parametersM and T . Moreover, the unwanted
resorption is met instead of the growth at some regions.
Taking conclusion from the constant-load analysis, a control algorithm is

proposed to improve homogeneity of the elasticity modulus. We require that at
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selected points of z axis (0 and h{2) the stimulus value ψ is kept constant in
time and equals Kover. It ensures maximum increase of the density at the outer
and the middle fibers of cross-section. Using (2.2), (3.4), (3.5), (3.6) we get:

(3.7) ψpzq � U

ρ
pzq � 3

?
c

2
� M2pz � z0q2 � rEpzqs2{3

I2
E

� 3
?
cp1� νqrEpzqs4{3 � T 2 rSEpzqs2

I2
E
� b2 .

Satisfying ψp0q � ψph{2q � Kover, and due to section’s symmetry and lack of
axial force N (which denotes z0 � 0 and SEph{2q � 0), we come to a set of
equations to determine values of the shear force and the bending moment:

3
?
cp1� νqrEp0qs4{3 � rSEp0qs2

I2
E
� b2 � T 2 � Kover,(3.8)

3
?
c

2
� h24 � �E�h

2


�2{3
I2
E

�M2 � Kover.(3.9)

Since the distribution of Epzq evolves in time according to (2.1) and (2.2),
so do SE and IE ((3.5), (3.6)). Hence, equations (3.6) and (3.9) define T andM
as functions of time.

4. Conclusion

The proposed new model provides a continuous function which describes the
callus remodelling process. The analyses indicate that obtaining a sufficiently
high value of callus modulus is possible only using the time-varying load param-
eters since constant loads lead to asymptotic limitation of the Young modulus
value usually much below the required level. Moreover, for a complex stress
state, undesirable distribution is observed. It is also proved that a quasi-optimal
time programs are possible, which lead to more homogenous distribution with
required value of the modulus. The investigated bone remodelling model is suit-
able for more complex finite element calculations with true bone geometry.
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