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Structural beams are important parts of engineering projects. The structural analysis of
beams is required to ensure that they provide the specifics needed to prevent and withstand
failure. Therefore, the numerical solution to analyze an Euler-Bernoulli beam with arbitrary
boundary conditions using sextic B-spline method is presented in this paper. A direct modeling
technique is applied for modeling the Euler-Bernoulli beam with arbitrary boundary conditions
on an elastic Winkler foundation. For this purpose, the effect of the translational along with
rotational support, the type of beam supports and the elastic coefficient of Winkler foundation
are assessed. Finally, some numerical examples are shown to present the efficiency of the sextic
B-spline collocation method. To validate the analysis of the Euler-Bernoulli beam with the
presented method, the results of B-spline collocation method are compared with the results of
the analytical method and the integrated finite element analysis of structures (SAP2000).
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1. Introduction

Many geotechnical engineering problems can be studied by analyzing beams
on foundations. The various foundation models such as Winkler, Pasternak,
Kerr, Vlasov, Hetenyi and viscoelastic are applied in the analysis of structures
on elastic foundations [1]. Among these models, the Winkler foundation model
is the most common model used in such analyses. However, the modelling of
soil using the Winkler approach is inadequate in the handling of the various
problems [2]. The main weakness of the Winkler model lies in the fact that it
neglects the shear interaction between the spring elements [3].

Analysis of statically indeterminate beams is an important problem in civil
engineering. But this analysis is sometimes difficult or impossible if the degree of
static indeterminacy in the beam is high. Analysis of a beam is used to determine
the values of deflection, slope, shear force and bending moment. The fourth-
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(or fifth-) order differential equations must be solved to obtain the displacement.
The differential equations of the Euler-Bernoulli beam on the uniform elastic
foundation are as follows:
• for uniformly distributed load:

(1.1) y(4)(x) +
K

EI
y(x)− q(x)

EI
= 0, x ∈ [a, b],

• for linearly distributed load:

(1.2) y(5)(x) +
K

EI
y′(x)− dq(x)

dx
· 1

EI
= 0, x ∈ [ab],

where y(x) is the transverse deflection of the mid-surface of the Euler-Bernoulli
beam and q(x) is the external force function on the beam. In addition, I, E
and K are the second moment of area, the Young’s modulus of elasticity, and
the elastic coefficient of Winkler foundation, respectively. In the Euler-Bernoulli
beam theory, the boundary conditions are given below:

∀t@x = a : M(a) = KRLθ(a), Q(a) = −KTLw(a),

∀t@x = b : M(b) = −KRRθ(b), Q(b) = KTRw(b),

where M and Q are the bending moment and the shear force, respectively
(Fig. 1) [4]. KTL, KTR, KRL and KRR are the transverse and rotational elastic
coefficients at the supports at the left and right boundary ends, respectively. For
example, the boundary condition of the simple supports on both sides associated
with a uniformly distributed load can be defined as

y(a) = 0, y(b) = 0, y′′(a) = 0, y′′(b) = 0, y(5)(a) +
K

EI
y′(a) = 0.

Fig. 1. Sign convention for shear forces, bending moments and slopes
of the Euler-Bernoulli beam.

Also, the boundary condition of the simple supports on both sides associated
with a linearly distributed load is defined as

y(a) = 0, y(b) = 0, y′′(a) = 0, y′′(b) = 0, y(4)(a) +
K

EI
y(x) = q(a).

In this paper, the collocation method based on sextic B-spline is applied to
analyze the Euler-Bernoulli beam with arbitrary boundary conditions. A spline
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function is the piecewise polynomial function of degree n. This function is the
composite of several internal points. On the other hand, the number points
must equal or be greater than (k−1) degree. The differential equations with
k degree are solved by B-spline functions of (k+1) degree [5]. Over the years,
the spline method has been used for solving the differential system of equa-
tions with different boundary conditions. For example, the sextic spline func-
tion for the solution of second-order boundary value problems associated with
unilateral, obstacle and contact problems is presented by Rashidinia et al. [6].
Their results show that the approximate solutions obtained using the present
method are better than spline and finite difference methods. A quintic non-
polynomial spline method is investigated by Ramadan et al. for the numerical
solution of the fourth-order two-point boundary value problems [7]. Based on
their findings, the quintic non-polynomial spline method presents better approx-
imations and generalizes all the existing polynomial spline methods up to fourth
order. The natural frequencies of the non-uniform Euler-Bernoulli beam on elas-
tic foundation are obtained using the spline collocation method by Hsu [8].
The Kuramoto-Sivashinsky equation is solved using septic B-spline collocation
method by Zarebnia and Parvaz [9]. The solution is approximated as the linear
combination of the septic B-spline functions. It is shown that this method is un-
conditionally stable by applying the von-Neumann stability analysis technique.
Zarebnia and Parvaz presented the cubic B-spline collocation method for the
numerical solution of the problem arising from chemical reactor theory [10].Mo-
hammadi developed a numerical method based on sextic B-spline to solve the
fourth-order time-dependent partial differential equations [11]. In this paper, the
convergence analysis of the sexticB-spline approximation for the Euler-Bernoulli
beams with fixed and cantilever boundary conditions is discussed in detail. Re-
ali and Gomez introduced an isogeometric analysis collocation method for the
solution of the Bernoulli-Euler beam and Kirchhoff plate [12]. Akram also used
the sextic spline method for solving a system of fifth-order boundary value prob-
lems [13].

In the previous studies, the Euler-Bernoulli beam on an arbitrary variable
elastic Winkler foundation was not analyzed using the B-spline collocation
method. On the other hand, these solutions can be generalized only to sim-
ple boundary conditions. In the present study, the solution using the sextic
B-spline method is introduced to analyze the Euler-Bernoulli beam with arbi-
trary boundary conditions on the partial Winkler foundation. Furthermore, the
analysis of the Euler-Bernoulli beam is written in a general form. Therefore,
the objective of this paper is:
• To present a simple and practical numerical technique for determining the

response of Euler-Bernoulli beams with elastically restrained boundary
conditions, resting on a partial Winkler foundation.
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• To state numerical solutions using the sextic B-spline function for an ana-
lysis of the beam with and without the partial Winkler foundation.

This paper is structured as follows. Section 2 outlines the sextic B-spline
collocation method. Then, in Sec. 3, the numerical solution of the differential
equation of the Euler-Bernoulli beam on uniform foundation is developed using
the B-spline method. Section 4 presents some numerical examples to illustrate
the efficiency of the presented method. Finally, in Sec. 5, brief conclusions are
drawn.

2. Definition of B-spline curve

Let x = (x0, x1, . . . , xN ) be a knot vector. A B-spline function of k-degree is
defined as [14]

B0
i (x) =

{
1 for x ∈ [xi, xi+1),
0 otherwise,

(2.1)

Bk
i (x) =

x− xi
xi+k − xi

Bk−1
i (x) +

xi+k+1 − x
xi+k+1 − xi+1

Bk−1
i+1 (x),(2.2)

where 0 ≤ i ≤ N − k − 1 and 1 ≤ k ≤ N − 1.
Sextic B-spline can be obtained by calculating the B-spline basis function

up to sixth order using Eq. (2.2). Therefore, the sextic B-spline basis function
B6
i (x) is as follows:

(2.3) B6
i (x) =

1

h6



(x− xi + 3h)6, x ∈ [xi−3, xi−2] ,

(x− xi + 3h)6 − 7 (x− xi + 2h)6 , x ∈ [xi−2, xi−1] ,

(x− xi + 3h)6 − 7 (x− xi + 2h)6

+ 21 (x− xi + h)6 , x ∈ [xi−1, xi] ,

(x− xi + 3h)6 − 7 (x− xi + 2h)6

+ 21 (x− xi + h)6 − 35 (x− xi)6 , x ∈ [xi, xi+1] ,

(x− xi − 4h)6 − 7 (x− xi − 3h)6

+ 21 (x− xi − 2h)6 , x ∈ [xi+1, xi+2] ,

(x− xi − 4h)6 − 7 (x− xi − 3h)6 , x ∈ [xi+2, xi+3] ,

(x− xi − 4h)6 , x ∈ [xi+3, xi+4] ,

0, otherwise.
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In this paper, the solution domain a ≤ x ≤ b is divided into N segments
with a uniform length of h = b−a

N at the knots xi where i = 0, 1, 2, . . . , N and
xi+1 = xi + h such that a = x0 < x1 < . . . < xN = b. In the sextic B-spline,
basis function is defined as follows:

(2.4) y(x) =
N+5∑
i=0

ciBi(x),

where B0(x), . . . , BN+5(x) are the sextic B-splines functions at the knots and are
given by Eq. (2.3). c0, . . . , cN+5 are unknown real coefficients that are determined
by satisfying the boundary conditions at each end of the beam and the continuity
conditions of displacement, slope and moment along with the shear force and
the collocation form of the differential Eqs. (1.1) and (1.2). Also, first, second,
third, fourth and fifth derivatives of Bi with respect to variable x are used to
solve the fifth-order differential equation. Values of Bi and its derivatives at the
nodal points are given in Table 1.

Table 1. Values of Bi and its derivatives at the nodal points.

xi xi+1 xi+2 xi+3 xi+4 xi+5 xi+6 xi+7

Bi 0
1

720

57

720

302

720

302

720

57

720

1

720
0

B′i 0
6

720h

150

720h

240

720h
− 240

720h
− 150

720h
− 6

720h
0

B′′i 0
30

720h2

270

720h2
− 300

720h2
− 300

720h2

270

720h2

30

720h2
0

B′′′i 0
120

720h3

120

720h3
− 960

720h3

960

720h3
− 120

720h3
− 120

720h3
0

B
(4)
i 0

360

720h4
− 1080

720h4

720

720h4

720

720h4
− 1080

720h4

360

720h4
0

B
(5)
i 0

720

720h5
− 3600

720h5

7200

720h5
− 7200

720h5

3600

720h5
− 720

720h5
0

3. Construction of the proposed solution

By substituting Eq. (2.4) into Eqs. (1.1) and (1.2), equations yield as follows:
• for uniformly distributed load:

(3.1)
N+5∑
i=0

ciB
(4)
i (xj) +

K

EI

N+5∑
i=0

ciBi(x)− q(x)

EI
= 0, for j = 0, 1, . . . , N,
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• for linearly distributed load:

(3.2)
N+5∑
i=0

ciB
(5)
i (xj) +

K

EI

N+5∑
i=0

ciB
′
i(x)− dq(x)

dx
· 1

EI
= 0,

for j = 0, 1, . . . , N.

From Table 1 and Eq. (2.4), y, y′i, y
′′
i , y′′′i , y(4) and y(5) are obtained as

follows:

yi =
1

720
(ci+57ci+1+302ci+2 + 302ci+3+57ci+4 + ci+5) ,(3.3)

y′i =
1

720h
(6ci+150ci+1+240ci+2 − 240ci+3−150ci+4−6ci+5) ,(3.4)

y′′i =
1

720h2
(30ci+270ci+1−300ci+2 − 300ci+3+270ci+4+30ci+5) ,(3.5)

y′′′i =
1

720h3
(120ci+120ci+1−960ci+2 + 960ci+3−120ci+4−120ci+5) ,(3.6)

y(4) =
1

720h4
(360ci−1080ci+1+720ci+2 + 720ci+3−1080ci+4+360ci+5) ,(3.7)

y(5) =
1

720h5
(720ci−3600ci+1+7200ci+2 − 7200ci+3+3600ci+4−720ci+5) .(3.8)

y, y′i, EIy
′′
i , and EIy′′′i can be stated as displacement, slope, bending moment

and shear force in the beam, respectively. Substituting Eq. (3.7) into Eq. (3.1),
for uniformly distributed load, results in:

(3.9)
1

720h4
(360cj − 1080cj+1 + 720cj+2 + 720cj+3 − 1080cj+4 + 360cj+5)

+
K

720EI
(ci + 57ci+1 + 302ci+2 + 302ci+3 + 57ci+4 + ci+5)−

q(x)

EI
= 0,

i or j = 0, . . . , N.

The above solution for uniformly distributed load can be written in the
form of:

(3.10)
1

720

((
360

h4
+

k

EI

)
cj +

(
−1080

h4
+

57k

EI

)
cj+1 +

(
720

h4
+

302k

EI

)
cj+2

+

(
720

h4
+

302k

EI

)
cj+3 +

(
−1080

h4
+

57k

EI

)
cj+4

+

(
360

h4
+

k

EI

)
cj+5

)
− q(x)

EI
= 0, i or j = 0, . . . , N.
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Similarly, it is possible to develop the solution for the linearly distributed
load by substituting Eq. (3.8) into Eq. (3.2):

1

720h5
(720cj − 3600cj+1 + 7200cj+2 − 7200cj+3 + 3600cj+4 − 720cj+5)

+
K

720hEI
(6ci + 150ci+1 + 240ci+2 − 240ci+3 − 150ci+4 − 6ci+5)

− dq(x)

dx
· 1

EI
= 0, i or j = 0, 1, . . . , N.

By simplifying the above solution, the solution for linearly distributed load
can be rewritten as follows:

(3.11)
1

720

((
720

h5
+

6k

hEI

)
cj +

(
−3600

h5
+

150k

hEI

)
cj+1

+

(
7200

h5
+

240k

hEI

)
cj+2 −

(
7200

h5
+

240k

hEI

)
cj+3 +

(
3600

h5
− 150k

hEI

)
cj+4

−
(

720

h5
+

6k

hEI

)
cj+5

)
− dq(x)

dx
· 1

EI
= 0, i or j = 0, 1, . . . , N.

The systems (3.10) and (3.11) consist of N + 1 equations in the N + 6
unknowns {c0, cj , . . . , cN+5}. Thus, the five equations are needed at this stage.
Therefore, the boundary conditions are used to obtain theses extra equations.
Four extra equations are explicitly obtained using two boundary conditions at
each end of the beam depending on the type of end support and one extra
equation for uniformly distributed load is given below:

1

720h5
(720c0 − 3600c1 + 7200c2 − 7200c3 + 3600c4 − 720c5)

+
K

720hEI
(6c0 + 150c1 + 240c2 − 240c3 − 150c4 − 6c5) = 0.

The above solution for uniformly distributed load can be rewritten as

(3.12)
1

720

((
720

h5
+

6k

hEI

)
c0 +

(
−3600

h5
+

150k

hEI

)
c1 +

(
7200

h5
+

240k

hEI

)
c2

−
(

7200

h5
+

240k

hEI

)
c3 +

(
3600

h5
− 150k

hEI

)
c4 −

(
720

h5
+

6k

hEI

)
c5

)
= 0.

Also, one extra equation for linearly distributed load is obtained as

1

720h4
(360c0 − 1080c1 + 720c2 + 720c3 − 1080c4 + 360c5)

+
K

720EI
y(x) (ci + 57ci+1 + 302ci+2 + 302ci+3 + 57ci+4 + ci+5) = q(a).
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By simplifying the above solution, the solution for linearly distributed load
can be given as follows:

(3.13)
1

720

((
360

h4
+

k

EI

)
c0 +

(
−1080

h4
+

57k

EI

)
c1 +

(
720

h4
+

302k

EI

)
c2

+

(
720

h4
+

302k

EI

)
c3 +

(
−1080

h4
+

57k

EI

)
c4 +

(
360

h4
+

k

EI

)
c5

)
− q(x)

EI
= 0.

In addition, the continuity conditions of displacement, slope and moment
along with the shear force in the vicinities of the different segment connections
are defined as [4]

(3.14)

Y (a) = y(a),

θ(a) = y′(a),

M(a) = EIy′′(a),

V (a) = EIy′′′(a).

By applying the relationships between the individual physical quantities and
the B-spline function, the continuity conditions at the first and last knot (the
end knots) can be rewritten as follows:

(3.15)

Y (a) =
1

720
(c0 + 57c1 + 302c2 + 302c3 + 57c4 + c5),

θ(a) =
1

720h
(6c0 + 150c1 + 240c2 − 240c3 − 150c4 − 6c5),

M(a) =
EI

720h2
(30c0 + 270c1 − 300c2 − 300c3 + 270c4 + 30c5),

V (a) =
EI

720h3
(120c0 + 120c1 − 960c2 + 960c3 − 120c4 − 120c5),

and

(3.16)

Y (b) =
1

720
(cN + 57cN+1 + 302cN+2 + 302cN+3 + 57cN+4 + cN+5) ,

θ(b) =
1

720h
(6cN + 150cN+1 + 240cN+2 − 240cN+3

− 150cN+4 − 6cN+5),

M(b) =
EI

720h2
(30cN + 270cN+1 − 300cN+2

− 300cN+3 + 270cN+4 + 30cN+5),

V (b) =
EI

720h3
(120cN + 120cN+1 − 960cN+2

+ 960cN+3 − 120cN+4 − 120cN+5),



ANALYSIS OF EULER-BERNOULLI BEAMS. . . 431

where Y , θ, M , and V are displacement, slope, bending moment, and shear
force of the Euler-Bernoulli beam, respectively. Finally, the matrix equation is
given as

(3.17) [A]× [C] = [F ],

where the coefficient matrix [A], matrix [C] and the load matrix [F ] are cited
in the appendix.

4. Numerical examples

To validate the sextic B-spline method, the results of different examples are
presented. First, the high computational efficiency of the method is shown and
then it is examined for the feedback with arbitrary boundary conditions. In all
the examples, E and I are assumed as

E = 2038901.91
kg

cm2
, I = 6572.4175 cm4.

4.1. Euler-Bernoulli beam under uniformly distributed load

For the purpose of verification of the presented method, the Euler-Bernoulli
beam with translational restraint supported under a uniformly distributed load
is considered (Fig. 2). The beam is assumed to have the following characteristics:

q = 15
kg

cm
, k = 2500

kg

cm
, L = 500 cm.

Fig. 2. Euler-Bernoulli beam under with translational restraint supported
under uniformly distributed load.

Analytical solution of the displacement, slope, shear force, and bending mo-
ment of the Euler-Bernoulli beam with the translational restraint supported
under a uniformly distributed load can be determined as
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Y (x) =
1

EI

(
−0.625X4 + 625X3 − 78125000x− 1.5EI

)
,

θ(x) =
1

EI

(
−2.5X3 + 1875X2 − 78125000

)
,

V (x) = 3750− 15x, M(x) = −7.5x2 + 3750x.

Table 2 compares the values of the displacement, slope, bending moment,
shear force of the Euler-Bernoulli beam with translational restraint supported
under a uniformly distributed load. It can be seen that the results are fairly close.
The maximum difference of the obtained results is approximately 0.0004%.

Table 2. The values of the displacement, slope, bending moment, shear force of the Euler-
Bernoulli beam under uniformly distributed load – translational restraint supported case.

Location
[cm]

Displacement
[cm]

Slope
[rad]

Shear force
[kg]

Bending moment
[kg/cm]

Analytical
solution

B-spline
function

Analytical
solution

B-spline
function

Analytical
solution

B-spline
function

Analytical
solution

B-spline
function

0 −1.50000 −1.50000 −0.00583 −0.00583 3750.0 3750.0 0.0 0.0

50 −1.78596 −1.78596 −0.00550 −0.00550 3000.0 3000.0 168 750.0 168 750.0

100 −2.04102 −2.04102 −0.00462 −0.00462 2250.0 2250.0 300 000.0 300 000.0

150 −2.24070 −2.24070 −0.00331 −0.00331 1500.0 1500.0 393 750.0 393 750.0

200 −2.36750 −2.36750 −0.00173 −0.00173 750.0 750.0 450 000.0 450 000.0

250 −2.41093 −2.41094 0.0 0.0 0.0 0.0 468 750.0 468 750.0

300 −2.36750 −2.36750 0.00173 0.00173 −750.0 −750.0 450 000.0 450 000.0

350 −2.24070 −2.24070 0.00331 0.00331 −1500.0 −1500.0 393 750.0 393 750.0

400 −2.04102 −2.04102 0.00462 0.00462 −2250.0 −2250.0 300 000.0 300 000.0

450 −1.78596 −1.78596 0.00550 0.00550 −3000.0 −3000.0 168 750.0 168 750.0

500 −1.50000 −1.50000 0.00583 0.00583 −3750.0 −3750.0 0.0 0.0

4.2. Euler-Bernoulli beam under linearly and uniformly distributed load

In order to illustrate the accuracy of the presented method, the Euler-
Bernoulli beam with arbitrary boundary conditions under uniformly and lin-
early distributed load is considered (Fig. 3). Analytical solution of the displace-

Fig. 3. Euler-Bernoulli beam with arbitrary boundary conditions
under uniformly and linearly distributed load.
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ment, slope, shear force, and bending moment of the Euler-Bernoulli beam with
translational restraint supported under a uniformly distributed load can be de-
termined as

y(x)=
1

EI



−1.25x4 +
80875

18
x3 − 4864583.334x2 0 ≤ x ≤ 500 cm,

−1.25x4 +
80875

18
x3 − 4864583.334x2

+ 0.30100763EIx− 150.503816EI 500 ≤ x ≤ 850 cm,

1173958.334x2 + 0.03255167EI · x
+ 90.67052EI 850 ≤ x ≤ 1350 cm,

− 1

1050
x5+

905

168
x4− 82125

7
x3+13215476.19x2

− 0.382741EI · x− 246.48704EI 1350 ≤ x ≤ 1700 cm,

θ(x)=
1

EI



−5x3 +
80875

6
x2 − 9729166.667x 0 ≤ x ≤ 500 cm,

−5x3 +
80875

6
x2 − 9729166.667x

+ 0.30100763EI 500 ≤ x ≤ 850 cm,

2347916.667x+ 0.03255167EI 850 ≤ x ≤ 1350 cm,

− 1

210
x4 +

905

42
x3 − 492750

14
x2

+ 26430952.381x− 0.382741EI 1350 ≤ x ≤ 1700 cm,

M(x)=


−15x2 +

80875

3
x− 9729166.667 0 ≤ x ≤ 850 cm,

2347916.667 850 ≤ x ≤ 1350 cm,

− 2

105
x3 +

905

14
x2 − 492750

7
x+ 26430952.381 1350 ≤ x ≤ 1700 cm,

V (x)=


−30x+

80875

3
0 ≤ x ≤ 850 cm,

0 850 ≤ x ≤ 1350 cm,

− 2

35
x2 +

905

7
x− 492750

7
1350 ≤ x ≤ 1700 cm.
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Table 3 presents the values of the displacement, slope, bending moment,
shear force of the Euler-Bernoulli beam with arbitrary boundary conditions
under uniformly and linearly distributed load. It can be seen that the results
are fairly close. The maximum difference of the obtained results is approximately
0.00005%.

Table 3. The values of the displacement, slope, bending moment, shear force of the Euler-
Bernoulli beam under uniformly and linear distributed load – arbitrary boundary conditions

case.

Loca-
tion
[cm]

Displacement
[cm]

Angle
[rad]

Shear
[kg]

Bending moment
[kg/cm]

Analytical
solution

B-spline
function

Analytical
solution

B-spline
function

Analytical
solution

B-spline
function

Analytical
solution

B-spline
function

0 0.00 5.92E-15 0.00000 −1.4E-13 26958.33 26958.33 −9729166.67 −9729165.94

100 −3.30418 −3.30418 −0.06292 −0.06292 23958.33 23958.34 −7183333.33 −7183332.78

200 −11.98752 −11.98750 −0.10796 −0.10796 20958.33 20958.27 −4937500.00 −4937499.75

300 −24.37406 −24.37410 −0.13735 −0.13735 17958.33 17958.45 −2991666.67 −2991666.39

400 −39.01177 −39.01180 −0.15335 −0.15335 14958.33 14958.55 −1345833.33 −1345833.36

500 −54.67244 −54.67240 −0.15819 −0.15819 11958.33 11958.75 0.00 −1.05

500 −54.67245 −54.67240 0.14282 0.14282 11958.33 11958.54 0.00 0.58

600 −40.25101 −40.25100 0.14691 0.14691 8958.33 8958.15 1045 833.33 1045 833.12

700 −25.06780 −25.06780 0.15768 0.15768 5958.33 5958.15 1791666.67 1791666.79

800 −8.56622 −8.56622 0.17290 0.17290 2958.33 2958.33 2237500.00 2237499.39

850 0.29166 0.29167 0.18148 0.18148 1458.33 1458.29 2347916.67 2347916.15

850 0.29166 0.29167 0.18148 0.18148 0.0 0.01 2347916.67 2347916.12

900 9.586411 9.58473 0.19024 0.19024 0.00 −0.04 2347916.67 2347916.12

1000 29.48662 29.48493 0.20776 0.20776 0.00 0.02 2347916.67 2347916.45

1100 51.13893 51.13725 0.22528 0.22528 0.00 0.55 2347916.67 2347917.36

1200 74.54336 74.54167 0.24280 0.24281 0.00 0.15 2347916.67 2347917.84

1300 99.69989 99.69820 0.26033 0.26033 0.00 0.19 2347916.67 2347915.09

1350 112.93520 112.93350 0.26909 0.26909 0.00 0.78 2347916.67 2347916.78

1350 −103.3721 −103.3720 0.26909 0.26909 0.00 −0.03 2347916.67 2347915.83

1400 −89.69930 −89.69930 0.27781 0.27781 −1392.86 −1392.86 2314285.71 2314285.04

1500 −61.08280 −61.08280 0.29414 0.29414 −5035.71 −5035.70 2002380.95 2002380.48

1600 −30.99825 −30.99830 0.30664 0.30664 −9821.43 −9821.43 1269047.62 1269047.35

1700 0.00 2.06E-16 0.31175 0.31175 −15750.00 −15750.00 0.00 0.00

4.3. Indeterminate beam under uniformly
and linearly distributed load

The indeterminate beam under uniformly and linearly distributed load with
spring supports is evaluated. The beam characteristics are shown in Fig. 4.
Analytical solution of the displacement, slope, shear force, and bending moment
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Fig. 4. Indeterminate beam under uniformly and linearly distributed load.

of the indeterminate beam under uniformly and linearly distributed load with
springs supports can be determined as

Y (x)=
1

EI



−5

6
x4 + 988.77103x3

− 262393786.2x− 2.96631309EI 0 ≤ x ≤ 800 cm,

− 1

6400
x5 − 5

24
x4 + 3677.895637x3

− 8053899.056x2 + 0.4851101EI

− 140.09774885EI 800 ≤ x ≤ 1600 cm,

θ(x)=
1

EI


−10

3
x3 + 2966.31309x2 − 262393786.2 0 ≤ x ≤ 800 cm,

− 1

1280
x4 − 5

6
x3 + 11033.68691x2

− 16107798.112x+ 0.4851101EI 800 ≤ x ≤ 1600 cm,

M(x)=


5932.62618x− 10x2 0 ≤ x ≤ 800 cm,

−0.003125x3 − 2.5x2 + 22067.37382x

− 16107798.112 800 ≤ x ≤ 1600 cm,

V (x)=

{
5932.62618− 20x 0 ≤ x ≤ 800 cm,

−0.009375x2 − 5x+ 22067.37382 800 ≤ x ≤ 1600 cm.

Table 4 presents the values of the displacement, slope, bending moment, shear
force of the beam under uniformly and linearly distributed load.
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4.4. Euler-Bernoulli beam on Winkler foundation
under uniformly distributed load

Now the Euler-Bernoulli beam on the uniform Winkler foundation under
a uniformly distributed load with spring supports is considered. The beam char-
acteristics are shown in Fig. 5. Figure 6 presents the displacement, slope, bending
moment, shear force of the beam on the Winkler foundation under uniformly
distributed load.

Fig. 5. Euler-Bernoulli beam on Winkler foundation under uniformly distributed load.

Fig. 6. Displacement, slope, bending moment, shear force of Euler-Bernoulli beam on Winkler
foundation under uniformly distributed load.
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4.5. Beam with the translational and rotational support on Winkler foundation
under uniformly distributed load

The Euler-Bernoulli beam with the translational and rotational support on
the uniform Winkler foundation under uniformly distributed load is considered
in this section. The beam characteristics are shown in Fig. 7. Table 5 compares
the values of the displacement, slope, bending moment, shear force of the Euler-
Bernoulli beam using the B-spline collocation method along with the integrated
finite element analysis of structures (SAP2000) [14]. It can be seen that the

Fig. 7. Euler-Bernoulli beam with the translational and rotational support on Winkler foun-
dation under uniformly distributed load.

Table 5. The values of the displacement, slope, bending moment, shear force of the beam with
the translational and rotational support on Winkler foundation under uniformly distributed

load.

Loca-
tion
[cm]

Displacement
[cm]

Slope
[rad]

Shear force
[kg]

Bending moment
[kg/cm]

SAP2000
B-spline
function SAP2000

B-spline
function SAP2000

B-spline
function SAP2000

B-spline
function

0 −1.00753 −1.00054 −0.007267 −0.007207 3026.986 3001.625 −57.6438 −57.65583

100 −1.69972 −1.68964 −0.006325 −0.006313 1354.721 1354.339 211985 212091.6

200 −2.23826 −2.22866 −0.004356 −0.004369 330.1139 329.7931 291704.9 291798.2

300 −2.56225 −2.55476 −0.002129 −0.002152 −259.742 −259.963 292492.5 292572.2

400 −2.67034 −2.66535 −0.0000919 −0.0001016 −632.781 −632.901 246944.8 247012.1

500 −2.59651 −2.59373 0.00147 0.00145 −990.25 −990.288 166401.2 166457.8

600 −2.40161 −2.40044 0.00228 0.00227 −1486.36 −1486.35 44201.65 44249.44

700 −2.17809 −2.17786 0.00197 0.00196 −2199.71 −2199.67 −138219 −138178

800 −2.06343 −2.06349 1.7E-17 0.000000086 −3146.82 −3095.23 −401981 −401943

800 −2.06343 −2.06349 1.7E-17 0.000000086 3146.819 3095.25 −401981 −401943

900 −2.17809 −2.17785 −0.001966 −0.001959 2199.706 2199.685 −138219 −138176

1000 −2.40161 −2.4004 −0.002279 −0.002265 1486.363 1486.332 44201.65 44250.98

1100 −2.59651 −2.59367 −0.001469 −0.001448 990.2504 990.2263 166401.2 166455.7

1200 −2.67034 −2.66528 0.000092 0.00012 632.7814 632.7757 246944.8 247000.7

1300 −2.56225 −2.55468 0.00213 0.00215 259.742 259.7593 292492.5 292544.3

1400 −2.23826 −2.22859 0.00436 0.00437 −330.114 −330.075 291704.9 291746

1500 −1.69972 −1.68963 0.00632 0.00631 −1354.72 −1354.67 211 985 212 008.3

1600 −1.00753 −1.00064 0.00727 0.00721 −3026.99 −3001.92 −57.6438 −57.6425
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results are close. Table 5 shows that the maximum difference of obtained results
is approximately 9.57%.

4.6. Euler-Bernoulli beam with general boundary conditions partially supported
on Winkler foundation under uniformly and linearly distributed load

In this section, the Euler-Bernoulli beam partially supported on the Winkler
foundation under uniformly and linearly distributed load is assumed with general
boundary conditions. The beam characteristics are shown in Fig. 8. Figure 9
presents the displacement, slope, bending moment, shear force of the Euler-

Fig. 8. Euler-Bernoulli beam with general boundary conditions partially supported on Winkler
foundation under uniformly and linearly distributed load.

Fig. 9. Displacement, slope, bending moment, shear force of Euler-Bernoulli beam with general
boundary conditions partially supported on Winkler foundation under uniformly and linear

distributed load.
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Bernoulli beam with general boundary conditions partially supported on the
Winkler foundation under uniformly and linearly distributed load.

4.7. Euler-Bernoulli beam with arbitrary boundary conditions supported
on partial Winkler foundation under uniformly and linearly distributed load

The Euler-Bernoulli beam arbitrary boundary conditions supported on the
partial Winkler foundation under uniformly and linearly distributed load is con-
sidered. The beam characteristics are shown in Fig. 10. Figure 11 presents the

Fig. 10. Euler-Bernoulli beam with general boundary conditions partially supported on Win-
kler foundation under uniformly, linearly distributed and point loads.

Fig. 11. Displacement, slope, bending moment, shear force of Euler-Bernoulli beam with gen-
eral boundary conditions partially supported on Winkler foundation under uniformly, linearly

distributed and point loads.
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values of the displacement, slope, bending moment, shear force of the Euler-
Bernoulli beam using the B-spline collocation method along with the integrated
finite element analysis of structures (SAP2000) [14]. It can be seen that the re-
sults are close. Figure 10 shows the maximum difference of the obtained results
of approximately 4.32%.

5. Conclusion

This paper presents the analysis of the Euler-Bernoulli beam with arbitrary
boundary conditions partially supported on a Winkler foundation using the sex-
tic B-spline collocation method. A direct modeling technique is introduced for
modeling the beam with arbitrary boundary conditions. Thus, the effect of trans-
lational along with rotational support flexibilities, the type of beam support,
and the elastic coefficient of foundation are assessed. Finally, some numerical
examples are shown to present the efficiency of the sextic B-spline collocation
method. To validate the analysis of the Euler-Bernoulli beam with the presented
method, the results of the B-spline collocation method are compared with the
results of the analytical method and the integrated finite element analysis of
structures (SAP2000).

Appendix

The coefficient matrix [A], matrix [C] and the load matrix [F ] in Eq. (3.17)
are given for all boundary condition by:
1) for uniformly distributed load:

F =



q/EI

q/EI

q/EI

...

q/EI

q/EI

qEI

0

m1

m2

m3

m4



, C =



c0

c1

c2

...

cN

cN+1

cN+2

cN+3

cN+4

cN+5



,
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where value for mi is dependent on boundary conditions

A1 =
360

h4
+

k

EI
, A2 = −1080

h4
+

57k

EI
, A3 =

720

h4
+

302k

EI
,

A4 =
720

h5
+

6k

hEI
, A5 = −3600

h5
+

150k

hEI
, A6 =

7200

h5
+

240k

hEI
,

A =
1

720



A1 A2 A3 A3 A2 A1 0 0 · · · 0 0
0 A1 A2 A3 A3 A2 A1 0 · · · 0 0
0 0 A1 A2 A3 A3 A2 A1 · · · 0 0
. . . . . . . . . . . . . . . . . . . . . . . .

...
...

0 0 0 · · · 0 A1 A2 A3 A3 A2 A1

A4 A5 A6 −A6 −A5 −A4 0 · · · 0 0 0
u1 u2 u3 u4 u5 u6 0 · · · 0 0 0
u7 u8 u9 u10 u11 u12 0 · · · 0 0 0
0 0 0 · · · 0 u13 u14 u15 u16 u17 u18
0 0 0 · · · 0 u19 u20 u21 u21 u22 u23


,

where ui and mi depend on the boundary conditions that are determined by the
kind of support and toggle.

2) for linearly distributed load:

F =



dq(x)

dx
· 1

EI
dq(x)

dx
· 1

EI
dq(x)

dx
· 1

EI
...

dq(x)

dx
· 1

EI
dq(x)

dx
· 1

EI
dq(x)

dx
· 1

EI
0
m1

m2

m3

m4



, C =



c0

c1

c2
...

cN

cN+1

cN+2

cN+3

cN+4

cN+5



,
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where value for mi is dependent on boundary conditions

A =
1

720



A4 A5 A6 −A6 −A5 −A4 0 0 · · · 0 0
0 A4 A5 A6 −A6 −A5 −A4 0 · · · 0 0
0 0 A4 A5 A6 −A6 −A5 −A4 · · · 0 0
. . . . . . . . . . . . . . . . . . . . . . . .

...
...

0 0 0 · · · 0 A4 A5 A6 −A6 −A5 −A4

A1 A2 A3 A3 A2 A1 0 · · · 0 0 0
u1 u2 u3 u4 u5 u6 0 · · · 0 0 0
u7 u8 u9 u10 u11 u12 0 · · · 0 0 0
0 0 0 · · · 0 u13 u14 u15 u16 u17 u18
0 0 0 · · · 0 u19 u20 u21 u21 u22 u23


.

Simple spring at the first and last member of a system

Simple spring at the first and last member:

Y · k1 = V, M = 0,

[C3] = [C1] =[
k1 −

120

h3
EI 57k1 −

120

h3
EI 302k1 +

960

h3
EI 302k1 −

960

h3
EI 57k1 +

120

h3
EI k1 +

120

h3
EI

]
,

[C4] = [C2] =

[
30

h2
270

h2
−300

h2
−300

h2
270

h2
30

h2

]
,

m4 = m3 = m2 = m1 = 0,

where k1 is a stiffness coefficient of a simple spring.

Simple spring in the middle of a system

Simple spring at the first member:

Y · k1 =
(
V(right) − V(left)

)
, M(right) = M(left),

[C1] =[
k1 −

120

h3
EI 57k1 −

120

h3
EI 302k1 +

960

h3
EI 302k1 −

960

h3
EI 57k1 +

120

h3
EI k1 +

120

h3
EI

]
,

[C2] =

[
30

h2
270

h2
−300

h2
−300

h2
270

h2
30

h2

]
,

m1 = −V(left spring), m2 = M(left support).
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Simple spring at the last member:

Y(right spring) = Y(left spring), θ(right spring) = θ(left spring),

[C3] =
[

1 57 302 302 57 1
]
,

[C4] =

[
30

h2
270

h2
−300

h2
−300

h2
270

h2
30

h2

]
,

m3 = Y(right spring), m4 = θ(right spring).

Toggle in the middle of a system

Toggle at the first member:

M(right toggle) = 0, V(right toggle) = V(left spring),

[C1] =

[
30

h2
270

h2
−300

h2
−300

h2
270

h2
30

h2

]
,

[C2] =

[
120

h3
120

h3
−960

h3
960

h3
−120

h3
−120

h3

]
,

m1 = 0, m1 = V(left spring).

Toggle at the last member:

M(leftt toggle) = 0, Y(right toggle) = Y(left toggle),

[C3] =
[

1 57 302 302 57 1
]
,

[C4] =

[
30

h2
270

h2
−300

h2
−300

h2
270

h2
30

h2

]
,

m3 = Y(right spring), m4 = 0,

where matrices [C1], [C2], [C3] and [C4] are:

[C1] =
[
u1 u2 u3 u4 u5 u6

]
,

[C2] =
[
u7 u8 u9 u10 u11 u12

]
,

[C3] =
[
u13 u14 u15 u16 u17 u18

]
,

[C4] =
[
u19 u20 u21 u22 u23 u24

]
.



ANALYSIS OF EULER-BERNOULLI BEAMS. . . 445

References

1. Ghannadiasl A., Mofid M., An analytical solution for free vibration of elastically re-
strained Timoshenko beam on an arbitrary variable Winkler foundation and under axial
load, Latin American Journal of Solids and Structures, an ABCM Journal, 12(13): 2417–
2438, 2015.

2. Binesh S., Analysis of beam on elastic foundation using the radial point interpolation
method, Scientia Iranica, 19(3): 403–409, 2012.

3. Ghannadiasl A., Mofid M., Free vibration analysis of general stepped circular plates
with internal elastic ring support resting on Winkler foundation by Green function method,
Mechanics Based Design of Structures and Machines, 44(3): 212–230, 2016.

4. Wang C., Timoshenko beam-bending solutions in terms of Euler-Bernoulli solutions, Jour-
nal of Engineering Mechanics, 121(6): 763–765, 1995.

5. Hamid N.N.A., Majid A.A., Ismail A.I.M., Quartic B-spline interpolation method for
linear two-point boundary value problem, World Applied Sciences Journal, 17: 39–43, 2012.

6. Rashidinia J. et al., Sextic spline method for the solution of a system of obstacle problems,
Applied Mathematics and Computation, 190(2): 1669–1674, 2007.

7. Ramadan M., Lashien I., Zahra W., Quintic nonpolynomial spline solutions for fourth
order two-point boundary value problem, Communications in Nonlinear Science and Nu-
merical Simulation, 14(4): 1105–1114, 2009.

8. Hsu M.-H., Vibration analysis of non-uniform beams resting on elastic foundations using
the spline collocation method, Tamkang Journal of Science and Engineering, 12(2): 113–
122, 2009.

9. Zarebnia M., Parvaz R., Septic B-spline collocation method for numerical solution of
the Kuramoto-Sivashinsky equation, Communications in Nonlinear Science and Numerical
Simulation, 7(3): 354–358, 2013.

10. Zarebnia M., Parvaz R., B-spline collocation method for numerical solution of the non-
linear two-point boundary value problems with applications to chemical reactor theory,
International Journal of Mathematical Engineering and Science, 3(3): 6–10, 2014.

11. Mohammadi R., Sextic B-spline collocation method for solving Euler-Bernoulli beam mo-
dels, Applied Mathematics and Computation, 241: 151–166, 2014.

12. Reali A., Gomez H., An isogeometric collocation approach for Bernoulli-Euler beams
and Kirchhoff plates, Computer Methods in Applied Mechanics and Engineering, 284:
623–636, 2015.

13. Akram G., Solution of the system of fifth order boundary value problem using sextic
spline, Journal of the Egyptian Mathematical Society, 23(2): 406–409, 2015.

14. Prochazkova J., Derivative of B-spline function, [In:] Proceedings of the 25th Conference
on Geometry and Computer Graphics, Prague, Czech Republic, 2005.

15. Wilson E.L., Habibullah A., SAP2000: integrated finite element analysis and design
of structures, Computers and Structures, Berkeley, California, 1997.

Received September 23, 2016; February 14, 2017.




