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The paper concerns theoretical investigations of plane trusses subject to longitudinal de-
formations, using nonlinear discrete-continuous models. An external excitation is applied to a
rigid body located in a truss joint. In this joint a visco-elastic discrete element with a spring
having a nonlinear symmetric stiffness is also located. It is assumed that the spring charac-
teristic is of a soft type. Four nonlinear functions describing this characteristic are proposed.
In the considerations the wave method is applied similarly to the case of a hard characteristic
in [1]. The numerical analysis focus on the investigation of the effect of the local nonlinearity
with a soft characteristic for two examples of plane trusses.
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1. INTRODUCTION

The considerations concentrate on the analysis of dynamics of plane trusses
with a local nonlinearity. In the discussion, discrete-continuous models consisting
of members and of rigid bodies are used. This concerns trusses with joints ide-
alised as hinges without friction. In such cases, truss members are subject only to
longitudinal deformations, [2]. The deformation of the truss is assumed to be suf-
ficiently small, so that the change of the geometry of the truss can be neglected.
The mass of the drive system mating with the truss is also taken into account as
a part of the mass of the rigid body. Rigid bodies in the models are concentrated
masses being in translatory motion. The external force can be described by an
arbitrary function, periodic or nonperiodic. In the discrete-continuous model, ad-
ditional discrete elements can be introduced. These elements consist of a spring
and a damper and represent the influence of adjoining truss members. The spring
may have a linear as well as a nonlinear characteristic.
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Linear discrete-continuous models of plane trusses are discussed in [3]. Non-
linear discrete-continuous models with the local nonlinearity having the char-
acteristic of a hard type are studied in [1]. The aim of the present paper is to
consider similar models as in [1], however the local nonlinearity has the charac-
teristic of a soft type. The inclusion of such types of nonlinearities is justified by
many engineering solutions for plane trusses, [2, 4]. The force in the nonlinear
spring is described by means of four nonlinear functions: 1) the polynomial of
the third degree, 2) the sinusoidal function, 3) the hyperbolic tangent function,
and 4) the exponential function. Such types of functions are justified by numer-
ous experimental studies, [5]. The polynomial function can be used in the case of
a spring having the soft as well as hard characteristic, while the remaining ones
— only for soft characteristics. The introduction of four different functions not
only expands the discussion on the local nonlinearities but also enables to avoid
such effects as the escape from potential wells which may appear in numerical
solutions for nonlinear models. Some examples of this escape are shown in [6]
for discrete models.

In the discussion, the wave method resulting from the method of character-
istics, is applied, similarly as in [1, 3]. In numerical calculations, the influence
of the local nonlinearity on displacements for two models of plane trusses is
investigated.

It should be pointed out that trusses have always been investigated inten-
sively. Particularly, their static investigations have a rich and long-lasting tradi-
tion, [2, 4, 7]. Not many papers deal with dynamic investigations of truss mem-
bers, e.g. [8-10]. They concern mainly impact problems in trusses with massless
joints, taking into account elastic as well as plastic materials of truss members.
The obtained results are limited to very short time intervals of the order of mi-
croseconds, while in the present paper the nonlinear models of plane trusses with
long-lasting loading are studied.

2. ASSUMPTIONS, NONLINEAR FORCES

Consider the nonlinear discrete-continuous model of a plane truss consisting
of an arbitrary number of truss members connected by rigid bodies, and of visco-
elastic discrete elements, as shown in Fig. 1. The cross-sections of members are
constant. Members are subject only to longitudinal deformations. It is assumed
that at the time instant ¢ = 0, displacements and velocities of cross-sections of
truss members are equal to zero. A real damping of truss members is represented
by an equivalent damping applied in selected cross-sections of the members in
the model. The i-th member is characterised by the Young modulus E, density
p, the length I; and the cross-section area A. The j-th rigid body having the
concentrated mass m; undergoes the translatory motion.
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Fic. 1. Nonlinear model of a plane truss.

In the description of the nonlinear discrete-continuous model, a fixed ref-
erence system Ozy, and one-dimensional coordinate systems 0;z; assigned to
individual i-th truss members are used. The origin of 0;z; system coincides with
the location of one of the ends of the i-th member in the undisturbed state at
t = 0. In this connection, the displacement of the cross-section z; in the i-th
truss member is described by the function u;(z;,t) depending on the location of
the considered cross-section and on time, whereas the time functions Uj, V; are
the components of the displacements of the j-th rigid body in the z-axis and
y-axis directions, respectively.

In the considered discrete-continuous model, a single local nonlinearity by
means of a nonlinear discrete spring is taken into account. This element can be
located in any cross-section where a rigid body is loaded by an external force
P(t) and is fixed by elements which have a nonlinear characteristic.

The moment of a nonlinear spring can be generally described by an arbitrary
nonlinear function, [5]. In the discussion of the dynamics of nonlinear discrete
systems, a polynomial of the third degree is exploited most widely for the descrip-
tion of the considered nonlinearities, [6, 11]. In the present paper it is used in the
case of the discrete-continuous systems. Analogously to nonlinearities in discrete
systems, the force acting in the nonlinear spring with a symmetric characteristic
could be described by the following function

(2'1) Fsp(X) = Ky X + Kw3X3a

where X is an appropriate displacement and K,,; and K,,3 represent linear and
nonlinear terms in (2.1), respectively. The polynomial (2.1) includes the soft
characteristic for K3 < 0, the linear case for K,,3 = 0 and the hard character-
istic for K3 > 0.
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In many nonlinear discrete systems where this function with K3 < 0 (the
soft characteristic) is used, such phenomena as escapes from potential wells may
occur, [6]. In order to avoid the escape phenomena in the case of the soft charac-
teristic, apart from the polynomial function (2.1) with K3 < 0, we also propose
three following functions for the description of forces acting in the nonlinear
spring:

(2.2) Fyp(X) = Asin(BX),
(2.3) Fyp(X) = Atanh(BX),

i Fop(X) = A(-1 +exp(BX)) for X <0,
o Fyp(X) = A(1 — exp(~BX)) for X >0,

where the constants A and B are selected in such a way that the expansions in
series of functions (2.2) - (2.4) give the same linear case and that the polynomial
function (2.1) is the approximation of the sinusoidal function (2.2). Then the
function (2.1) and the functions (2.2) - (2.4) have maximum values close to each
other, and

(2.5) AB=K,), AB?=—6K,a.

Below, especially when describing the numerical results, the nonlinear func-
tions (2.1) - (2.4) will be called the functions (1) - (4), for simplicity.

3. GOVERNING EQUATIONS

Under the above assumptions, the equation of motion for the i-th truss mem-
ber is the classical wave equation

azu'i(x‘i’t) e 282ui(x’iat)

(3.1) 512 a 3 xf

=,0:::for, 0.5 i <y

where a2 = E/p.

Equations with the damping continuously distributed should better describe
the motion of truss members. However, no effective methods have been devel-
oped as far for solving appropriate equations of motion in the case of discrete-
continuous models. For this reason, the damping is described by an equivalent
internal and external damping taken into account in the boundary conditions.

In order to find solutions for specific nonlinear cases, we must add to equa-
tions (3.1) the following initial conditions:

(3.2) ui(xi,O) ey g
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and appropriate nonlinear boundary conditions satisfied in truss joints. In the
analogy to those in [3] for the linear cases, they depend on the number of truss
members in joints. For example, for the j-th joint with n truss members, the
nonlinear boundary conditions may be written in the following general form:

dU; | dU; 0%u; o u
(2R g Porarryom a2 +a2J dt +Fsp UJ +Z(a33ka 3t+a4jk5—:;j> =0,

d%V; dv; - 02u; O uj
(33) bl] di2 + b2_7 dt =P Fsp(V) > Z (b33k8 (f;t +b4_]k6 1) G P( ) 0
k=1

ui = ui(u1,ug), ©=3,4,..,n,

where a1; and by; are determined by the mass m;, ag; and by; represent coeffi-
cients of external damping, a;x and bsji, represent the internal damping of the
Voigt type in successive truss members, agjk,bsjr are determined by material
constants, and the functions Fy,(U;) and Fip(Vj) represent local nonlinearities
in the model. In [3] Fi,(U;) and Fy,(V;) are linear functions.

The components Uj, V of the displacement of the j-th joint in the plane truss
may be described by the displacements of an arbitrary pair of truss members in
the joint. The conditions (3.3) are written for the case when they are determined
by appropriate displacements uj, ug of the first two truss members in the j-th
joint. This assumption does not reduce the generality of the considerations. In
analogy to static displacements, it is shown in [3] that if z; corresponds to the
displacement u; of the end of the i-th truss member in the j-th joint, then the
functions U}, V; and relations needed in boundary conditions (3.3) have the form

Uj = (2 cos oy — z; cos aig) sin™ (o — o),
(34)  V;=(zsinag — zxsin ;) sin ™ (o — ),

zisin(ag — ay) = zgsin(a; — a1) — z18in(oy — @), i=2,3,...,n

where i<k and o; is the angle between the i-th truss member and the y-axis,
i = 1,2,...,n, [3]. The relations (3.4) are derived under the assumptions that
the angles «; remain constant during the motion of the truss and that z; are
orthogonal projections of the displacements of the ends of the i-th truss members.
The truss members undergo small deformations and small displacements, so the
above assumptions are justifiable, [2, 3].

Taking into account initial conditions (3.2), one could seek for the solution
of equations (3.1) in the form

(3.5) ui(Zi, t) = fila(t — t5i) — zi + z5i) + gi(a(t — tg) + zi — ),
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where the functions f;, g; represent disturbances caused by the external force
P(t) in the i-th truss member in a direction consistent and opposite to the
direction of the z-axis, respectively. The constants ¢ firtgis Tfi, Tgi in the argu-
ments of these functions denote the time instant and the location of the end
of the i-th member in which the first disturbance is observed in this member.
These constants may be equal or differ from each other. The functions f;, g; are
continuous functions of a single variable, and for negative arguments they are
identically equal to zero. Their forms are determined by boundary conditions
for particular problems. Upon substituting the solution (3.5) into appropriate
nonlinear boundary conditions, nonlinear ordinary differential equations with a
retarded argument are obtained for unknown functions f;, g;.

The approach described above one can use for the consideration of complex
nonlinear discrete-continuous models similar to that shown in Fig. 1. However,
in the present paper, detailed investigations are made for two specific segments
of the plane truss. It should be pointed out that nonlinear discrete-continuous
models of trusses have not been known in the available technical literature.
Moreover, simple nonlinear models lead to solving a smaller number of nonlinear
equations, and in spite of simplification they can give useful information on
dynamic behaviour of nonlinear models for plane trusses.

4. SPECIFIC CASES OF NONLINEAR MODELS OF A PLANE TRUSS

Real trusses usually consist of repeated segments. Below, we discuss two
nonlinear models of segments where the influence of adjoining truss portions are
taken into account by means of discrete elements consisting of a spring and a
damper. It is assumed that one of springs has a nonlinear stiffness of a soft type.
The studied nonlinear models differ from linear models of segments considered
in [3] by a nonlinear spring located in the joint where an external loading is
applied, and differ from that discussed in [1] since now the soft characteristic is
described by means of four nonlinear functions (2.1) — (2.4).

The nonlinear model of a truss segment is shown in Fig. 2. It consists of 3
truss members having the lengths Iy, l2, 3. This model may be treated as a part
of the model of the plane truss shown in Fig. 1. In the description of the model
we use a fixed reference system Ozy and one-dimensional coordinate systems 0;z;
assigned to the members, ¢ = 1,2, 3. The truss members (1), (2) and the y-axis
make angles «, 3, respectively.

In the model, a rigid body m; is located in the joint with coordinates
=0,y =lcosa (z; = lj, zo2 = ly). This rigid body represents both the
mass of a drive system mating with the truss and the mass of the element
connecting truss members (1), (2). It is loaded by an external force P(t) act-
ing in the y-axis direction. The force and the member reaction cause the rigid
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F1G. 2. Nonlinear discrete-continuous model of the segment of a plane truss.

body m; to displace in the plane zy. For the simplicity, it is assumed that
the displacement of this rigid body in the z-axis direction is equal to zero
(Uh =0, V3 # 0). The rigid body m is connected with a nonlinear discrete
element in y-axis, with the nonlinear stiffness of the spring and with the damp-
ing coefficient djs. The rigid body my is located in the joint of coordinates
r=Isinf, y = 0 (z2 =0, z3 = [l3). It displaces only in the z-axis direction
(Uz #0, V2 =0). A discrete element with coefficients k21, d21 representing the
effect of adjoining truss members, is attached to this body. It is assumed that in
the joint z = —l;sina, y = 0 (z; = 0, 3 = 0), the rigid body m3 displacing
only along z-axis direction (Us # 0, V3 = 0) is located. A discrete element with
coefficients k3; and d3;, representing the influence of adjoining truss members,
is attached to the rigid body mg.

As a second nonlinear model of truss segments we consider a model described
above in the case when the mass mg3 is equal to zero and the ends of members
(1) and (3) in the joint = —I;sina, y = 0 are fixed. The suitable figure of
this model results from Fig. 2 and for this reason it is not shown in the present
paper, see [3].

The joints in the models considered in the paper bond two truss members.
In such cases the relations (3.4), valid for n-member joints, reduce to
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(41) U; = (21 cos B — 22 cos ) sin™*(a + ),
4.1
V= (a1sinf + zsina)sin™(a+f) for a1 =0a, oy=2r-p,

and
(42) Uj=2z, Vj=(za—zsinB)cos™ B for og=7/2, az=040.

The above relations are used in the formulation of boundary conditions for
the specific nonlinear models studied in the paper. Moreover, in the analogy to
(2.1) the force acting in the nonlinear spring in the case of a polynomial function
takes the form

(4.3) Fsp(V1) = K121Vi + K123V;®  with K193 < 0.

The remaining nonlinear functions (2.2) — (2.4) are connected with the func-
tion (4.3) through the relation (2.5) with constants Ky, and K3, where w=12.

Below, solutions for two nonlinear models are presented together with appro-
priate numerical results.

5. SOLUTION OF THE NONLINEAR MODEL I.

The first nonlinear model discussed here is shown in Fig. 2. If one takes into
account Egs. (3.1) — (3.5) and (4.1) — (4.3), the determination of displacements
for truss members (1) — (3) of the Model I is reduced to solving the equations

82u,-(:ci, t) i 23211,1'(.’121‘, t)

(5.1) 582 a 902

=0for t=1,2,3

with the initial conditions

_du
e

and the following nonlinear boundary conditions

(5.2) ui(z;,0) (z;, 0y =0 for “1=1,23

0%us Ous 0%u3  Oug
iy e s ot A preke
i ot? da1 ot Fatiact A5 [D3 Ox30t + 03)3:'
: 82’&1 3’11,1
+ AFsina [Dlaxlat -+ 5:0_1 =0 for ri=x3=0,

—ugsinf+wu; =0 for z =2x3=0,
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upcos B —ugcosa=0 for z;=10;, z3=1Iy,

32 8 us 6u1 a’u,z
(6.3) —my [Cz Ere +Cl ETY ] —d12 [Cg 51 Cl—é-t—]
62u1 6u1
— Fp(Couy + Crug) — AE cos o [Dla v + Bxl]
0%u ou
—AEcosﬂ[D 25, 32 +a—z§:|+P(t)=0 for ‘\zy =dqy. 30 =ilo,
32 Ous 0%u3  Oug
ma g —dny ~ kavs - AE [D3 T T a_zg]
4 5211,2 8u2
_AESIHﬂI:Dzaxzat+'éx—2] =0. gfor (L‘z—o, $3—l3,

ugsinB+us =0 for z0=0, z3=I3,

where

__ sina __sinf &
(5.4) Cl__sinE’ Cz—————sing, E=a+ 0.

Upon the introduction of nondimensional quantities

Zi = xiflo, T=atflo, @ =uifuo, dij=dijlo/(amo),
D; =aD;i/ly; Ri=mi/mo, Ko= Aplo/mo, P = Pl}/(mouoa?),
kij = kijld/(moa®), T =1li/lo, Kz = Ki21l§/(moa?),
K93 = Kigz udl?/(moa?), Fyp = Fypld/(mouoa?)
relations (5.1) — (5.3) take the form
0%ui(zi,t)  0%u4(zi,t)

(5.5)

(5.6) e Tt e =0 -for: 44,28,
(5.7) wi{250)= %Q?( =0 ter i=4:2.3
02 us Ous 9 u3 Ous

Rs—m —da1 5, kaiuz + Ko [D38 v + 61:3]

(9211,1 8u1

K D
L O [ laaclat . oy

]—0 fopiiify =irgt= 0,
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—ugsinf+u; =0 for z;=1z3=0,

uycosf —ugcosa=0 for =1, xzy=Iy,

2 2
(58 —R [0236:;1 +C13 uz] s dis [023141 e auz]

ot? ot ot
— Fop(Couy + Chug) — Ko cosa[Dl ;::gt Es g—x]
_Kocosﬂ[Dzaa ’; + %J +P(t)=0 for z=1l;, zp=1I,
gl el s, 0 ey [D3 Pluy ?}_‘_3]
ot? ot O0z30t Oz
_Kosmﬂ[Dzaa;gt + %—3] =0 for.za=0, z3=ls

uzsinB+uz =0 for z29=0, z3=13,

where bars are omitted for convenience, and Iy, ug, mg are fixed values of the
length, displacement and mass, respectively.

According to Eq. (3.5), the solutions of equations (5.6), taking into account
(5.7), are sought in the form

up(z,t) = filt —z1+ b)) + 1t + 21 — 1),
(5.9) uz(z2,t) = fa(t — 22 + la) + go(t + 23 — Ip),

uz(z3,t) = fa(t — 1 — x3) + g3(t — la + z3 — I3).

In the considered model the disturbances caused by the external force P(t)
arrive to the member (3) through the member (1) as well as through the member
(2). Thus, according to (3.5) it is taken into account in (5.9), that tf3 =1 and
z53 = 0 while lg3 = ls and Tg3 = l3.

Substituting (5.9) into the nonlinear boundary conditions (5.8), and denoting
the largest argument in each equality by z, one obtains the following equations
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for 6 unknown functions f;, g;,7i =1,2,3:

(5.10)

where

(5.11)

fi(z) =—g1(z—2l1) + [f3(z — 2l1) + g3(z — 1 — Iz — I3)] sin 3,
fa(z) = —ga(z —2l2) — [f3(z — L —la — I3) + g3(z — 2l3)] sin B,
1191 (2) = P(2) + r2g1(2) + r3f1 (2) +r4fi(2) + 5f3 (2) + 16 f3(2)

sy (fl(z) +91(Z)> ,

cosx
92(z) = —fa(2) + [f1(2) + 91(2)] cos B/ cos e,
7795 (2) + 1893(2) + rog3(2) = r10f3 (2 — l + 1l — l3)
+rify(z = b+ 1o = I3) + ri2fa (z =l + la — 13) + 11395 (2) + T1492(2),
r15f3 (2) + 116f3(2) + r17f3 (2) = r18g3(z + l — lp — la)

+r1993(z + 11 — lg — I3) + r2093(2 + 11 — lg — I3) + r2141 (2) + r2291(2),

r1 = Ry/ cosa + Ko(D; cos a + D; cos? B/ cos a),

re = —dj2/ cos o — Kp(cos a + cos? B/ cos @),

r3 = —R;/cosa + Ky(D; cosa — Do cos? B/ cos a),

r4 = —d1a/ cosa + Ko(cos o — cos? B/ cos ),

r5 = 2KgDy cos 3, ¢ = 2K cos 3,

r7 = Ry + Ko(D3 + D2 sin® B), rg = dy + Ko(1 +sin? ),
ro = ka1, T10 = —Ry + Ko(D3 — Dysin’ B),

ri1 = —dg1 + Ko(1 —sin® 8), 712 = —kg1, r13 = —2KoD;sin
r14 = —2Kpsin 8, r15 = Rz + Ko(D; sinasin 8 + Dj3),
r16 = dg1 + Ko(sinasin B+ 1), r17 = kay,

r18 = —R3 + Ko(D3 — D1 sin asin ),

r19 = —d31 + Ko(1 —sinasin 8), reo = —ks1,

ro1 = 2K0D1 sin Q, T2 = 2K0 sin a.
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Equations (5.10) consist of one nonlinear equation and linear equations. Lin-
ear equations are solved by means of the finite differences method, and the
nonlinear equation for the function g;(z) by means of the Runge-Kutta method.
Having obtained the functions f;, g; and their derivatives, one can determine
displacements, strains and velocities in arbitrary member cross-sections at an
arbitrary time instant, 1, 3, 12].

The external force P(t) occurring in (5.10) can be described by an arbitrary
time function. In the paper it is taken in the form

(56.12) P(t) = Pysin(pt)

where p is a nondimensional loading frequency.
In numerical calculations, the following values of dimensional quantities are
assumed [3, 4]:

bh=h=h=l3=2m, A=2-10"3m? p=108.10%g/m?,

: E=21-10"N/m?, ki = Ky =2.1-10°N/m, m; = 20kg,
5.13)
mg = m3 = 3.2kg, mp = 32kg, a = 5000m/s,

Py = 200kN, up=10"%m, a=8=7/6,
whereas the values of nondimensional quantities according to (5.5) are

R1'=0625, Rz =R3=01; =10,

(5.14) 2 = 2
Ko=1.0, Py =10, ki =Ko =1.05.

The efficiency of the method applied in the paper is demonstrated in [3] for
linear models of plane trusses giving the spatial diagrams of displacements in
truss members and by investigating the influence of various parameters describ-
ing the considered models.

For this reason, in numerical calculations in the present paper we concentrate
on the presentation of the influence of the local nonlinearity on displacements in
selected member cross-sections.

For parameters given by (5.14) and damping coefficients equal to d;j = Dy =
do = 0.1, displacements of the truss members (1), (2) are equal if z; = x5, and
displacements in the member (3) are antisymmetric with respect to the cross-
section z3 = 0.5.

From [1] it follows that the effect of the local nonlinearity can be inves-
tigated for an arbitrary cross-section of the considered truss members. In or-
der to avoid too many diagrams, we concentrate on the study of this influence
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on displacements V; of the rigid body m; located in the joint z = 0, y =
licosa (1 = l1, T3 = lz). The displacement V; is expressed by (4.1)2 with
z1 = u1(ly,t), 22 = ug(ly,t), o = @, ag = 2w — B.

Nonlinear effects in the considered system are caused directly by the nonlinear
force Fy, described by the functions (2.1) — (2.4). On the other hand, the nonlin-
ear effects are also connected with the amplitude Py of the external loading and
with the external and internal damping. In the performed numerical analysis,
the damping coefficients are assumed to be constant equal to d;; = Dj = 0.1.

The polynomial function (2.1) or rather (4.3) consists of the linear and non-
linear terms represented by coefficients K121 and Kig3, respectively. In numerical
calculations we fix the coefficient K01 while K23 can vary. If Kjg93 < 0 then we
propose to use also the functions (2.2) — (2.4) with coefficients A and B calcu-
lated from (2.5) for the given Kj21 and Ki23. One can notice that the polynomial
function (2.1) for K23 < 0 and the sinusoidal function (2.2) have their extremes
and they can be useful for the values of their arguments between these extremes
where the functions (2.1) and (2.2) are ascending functions. No limits of such
a type are noted for the hyperbolic function (2.3) and the exponential function
(2.4).

Numerical results given below are exemplary. In [1, 3] the amplitude-frequency
curves are determined in various cross-sections of the considered systems. All
diagrams in the present paper concern the cross-section where the nonlinear dis-
crete element is taken into account. The discussion is focused on the influence
of the parameters of this element having the characteristic of a soft type on
displacements V4, and on the nonlinear dynamic force Fip.

In Fig. 3 amplitude-frequency curves for the displacement V; are plotted with
Kio3 = —0.05, Py = 0.5,2.5 and p < 3.9 using four functions (2.1) — (2.4) for
the description of the nonlinear force Fyp. The diagrams corresponding to these
functions are marked in figures by (1) — (4), for simplicity. The diagrams include
two resonant regions. In the first resonant region for Py = 0.5 the functions
(2.2) — (2.4) give similar results. Only using the function (2.1) we obtained the
solution diverging to infinity in the neighbourhood of the resonance. Two extreme
values of the frequency p are marked by spots. For Py = 2.5 the functions (2.3),
(2.4) give practically the same results. Spots represent the extreme values of the
frequency p where the solution with the function (2.1) starts to diverge to infinity,
and the solution with the function (2.2) ceases to be a harmonic function. These
marks defining the application ranges of the functions (2.1) and (2.2) occur in
the first resonant region.

Amplitude-frequency curves for the nonlinear dynamic force are plotted in
Fig. 4 for K193 = —0.05, Py = 0.5. From these diagrams it follows that the max-
imal values for dynamic forces occur for the sinusoidal function, and the smallest
ones for the exponential function (2.4). Similarly to Fig. 3 for displacements, the
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Fic. 3. Amplitude-frequency curves for displacements V; of the rigid body m; in the
nonlinear Model I for Ki23 = —0.05, Py = 0.5, 2.5 with nonlinear functions (2.1) — (2.4).
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Fic. 4. Amplitude-frequency curves for dynamic force Fy,(V1) in the nonlinear Model I for
K123 = —0.05, Py = 0.5 with nonlinear functions (2.1) — (2.4).

(16]
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solution for the polynomial function has its interval for the frequency p where it
diverges to infinity. This fact is marked by spots.

Amplitude-frequency curves for the dynamic force for K 123 = —0.05, Py = 2.5
are plotted in Fig. 5. Similarly to Figs. 3 and 4, two resonant regions are taken
into account. Now the effect of the local nonlinearity is stronger. The nonlinear
forces (2.1) — (2.4) reach their maxima for assumed values of their coefficients.
As this follows from the Fig. 5, the solutions with the functions (2.1) and (2.2)
have the intervals where they are not of a harmonic type, and that is marked by
spots. At the same intervals, the amplitudes for nonlinear force Fp, described by
the functions (2.3) and (2.4) form the plateau.

2.0 — FA

1.9 =

1.2 =

0.0 T I T I T T T '} P
0.0 1.0 2.0 3.0 4.0

Fic. 5. Amplitude-frequency curves for dynamic force Fgp(V1) in the nonlinear Model I for
K123 = —0.05, Po = 2.5 with nonlinear functions (2.1) — (2.4).

The application ranges of the functions (2.1) and (2.2) are shown in Fig. 6.
This is done for K193 = —0.025, —0.05, —0.1,—-0.15 for the first resonant region.
Suitable curves are marked by dashed and continuous lines. These curves de-
termine the amplitudes of the external loading (5.12) below which numerical
solutions behave as harmonic functions with the period equal to the period of
the external loading. The smallest values for P, are acceptable in the neighbour-
hood of the resonance. From Fig. 6 it also follows that for the fixed K93, the
application ranges are slightly wider in the case of the sinusoidal function (2.2).
It is connected with the fact that. taking into account (2.1), (2.2), and (2.5),
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the function Fgp, has higher maximum values using the sinusoidal function than
using the polynomial function.

3.0 4 R
K123=-0.025
2.0 —
1.0:=1
0.0 T T T I T ] P
1.0 12 14 16

F1G. 6. Application ranges of the sinusoidal function (continuous lines) and polynomial
function (dashed lines) for the Model I with K323 = —0.025, —0.05, —0.1, —0.15.

No restrictions similar to those connected with the application of the non-
linear functions (2.1) and (2.2) have been found in the case of functions (2.3)
and (2.4). Thus, the nonlinear functions (2.3) and (2.4) can be used in the dis-
cussion of the influence of various parameters on the dynamic behaviour of the
considered models.

6. SOLUTION OF THE NONLINEAR MODEL II.

The Model II differs from the Model I shown in Fig. 2 as far as the conditions
in the joint £ = —l;sina, y = 0 (z; = z3 = 0) are concerned. Now, the rigid
body mg3 is neglected, and the ends of members (1) and (3) are fixed. In the
linear case this model corresponds to the Model I in [3].

The determination of displacements of truss members in the nonlinear Model
II is reduced to solving equations of motion (5.1) with initial conditions (5.2),
with boundary conditions (5.3)3 — (5.3)6, and with two additional boundary
conditions

Uilk =0 "or 2y=0,
(6.1)
ug(z3,t) =0 for z3=0.
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In nondimensional quantities (5.5) the problem leads to solving equations
(5.6) with (5.7), (5.8)3 — (5.8)s, and with (6.1) in the unchanged form because
bars denoting nondimensional quantities are omitted for convenience.

Now, the solution of equations (5.6) are sought in the form

u(z1,t) = filt =21+ L) + 1t + 21 — 1),
(6.2) ug(za,t) = fo(t — 3 + lo) + go(t + 22 — 1),
ug(z3,t) = f3(t —la — z3 + 13) + g3(t — la + 23 — I3).

Comparing the solution (5.9) for the nonlinear Model I with the solution
(6.2) one can notice that these solutions differ only in arguments of the function
f3. Now, according to (3.5) tf3 = ty3 = Iz and xy3 = zg3 = I3.

Substituting (6.2) into the boundary conditions (6.1), (5.8)3 — (5.8)¢, and
denoting the largest argument in each equality by z, one obtains the following
equations for unknown functions fj, g;, t=1,2,3:

fi(z) = —g1(z — 20y),
(Z) —gz(z — 2[2) [f3(z - 2l2) + g3(z — 2l2)]sinﬁ,
fa(z) = —gs(z — 213),
(6.3)  r191(2) = P(2) +12g1(2) + r3f7 (2) + rafi(2) + r5f3 (2) + refa(2)
(M0,

92(2) = —fa(z) + [f1(2) + g1(2)] cos B/ cos ,
r793(2) + r893(2) + rog3(z) = r10f3 (2) + r11f3(2) + r12f3(2)
+71395 (2) + r1495(2),

where constants r;, i=1,2,...,14, are defined by (5.11).

Exemplary numerical calculations using equations (6.3) are performed for
parameters (5.14) with R = 0. Though the method applied in the paper allows
to determine displacements in arbitrary cross-sections of the members of the
considered nonlinear Model II, for the sake of clarity in the numerical discussion
the displacements V; of the rigid body m; in the steady state are determined.
The external force is assumed in the form (5.12).

In Fig. 7 are plotted the amplitude-frequency curves for the displacement V;
for K193 = —0.05 and Py = 0.5, 2.5 using four nonlinear functions (2.1) — (2.4).
The diagrams include three resonant regions. The nonlinear effects are significant
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in the first resonant region. For the amplitude P, of the external loading (5.12)
equal to 0.5 the diagrams with functions (2.2) — (2.4) are similar. Only when
using the polynomial function (2.1), similarly to the case of the Model I, there
exists the interval of frequency p where the numerical solution diverges to infinity.
The extreme values of p are marked by spots. For Py = 2.5 by spots are marked
extreme values of p for the polynomial function as well as for the sinusoidal
function. Within these intervals the solution does not behave as a harmonic
function. Such limitations are not noted using the functions (2.3) and (2.4).
Diagrams with the use of these functions practically coincide with each other.

16.0 A
12,0 -:
.
40 -:
0.0 -
0.0 1.0 20 3.0 4.0

F1c. 7. Amplitude-frequency curves for displacements V; of the rigid body m; in the
nonlinear Model II for K123 = —0.05, Po = 0.5,2.5 with nonlinear functions (2.1) — (2.4).

Amplitude-frequency curves for the amplitude of the dynamic force Fp for
Kj93 = —0.05 and Py = 0.5 are plotted in Fig. 8. The maximal amplitudes are
obtained for the sinusoidal function (2.2) and the smallest ones for the expo-
nential function (2.4). Similarly to the displacements V;, the spots determine
the interval where the solution diverges to infinity when using the polynomial
function (2.1).

Amplitude-frequency curves for the amplitude of the dynamic force Fp for
Ki23 = —0.05 and Py = 2.5 are plotted in Fig. 9. The diagrams include three
resonant regions. In the first resonant region the spots determine intervals where
the solution does not behave as a harmonic function. This concerns the functions
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FiG. 8. Amplitude-frequency curves for dynamic force Fyp(V4) in the nonlinear Model II for
K123 = —0.05, P = 0.5 with nonlinear functions (2.1) — (2.4).

(2.1) and (2.2). The remaining functions in the first resonant region form the
plateau. The plateau takes place in the cases when the dynamic force achieves
its maximum value for assumed parameters occurring in the function (2.1). In
the second resonant region the maximum amplitudes for the force are obtained
using the functions (2.1) and (2.2) and the minimal ones for the function (2.4).
Similar behaviour of the solution is noted in the third resonant region.

From Figs. 7 — 9 it follows that for the assumed parameters for the Model
IT some restrictions occur for the polynomial function (2.1) and the sinusoidal
function (2.2). They are noted in the first resonant region. So, application ranges
for these functions are shown in Fig. 10. They are done for K753 = —0.025, —0.05,
—0.1, —0.15. Suitable curves are marked by dashed and continuous lines. These
curves, similarly as in Fig. 6 for the Model I, determine the amplitudes Py of
the external loading (5.12) below which numerical solutions behave as harmonic
solutions with the periods equal to the periods of the external loading. The
smallest amplitudes are acceptable in the neighbourhood of the resonance.

Comparing the appropriate diagrams in Figs 3 — 6 for the Model I with
those in Figs 7 — 10 we can see that the application ranges of the functions
describing the local nonlinearity in both the models are practically the same,
however we can notice significant differences in amplitude-frequency diagrams
for the displacement V; and for the force Fyp.
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Fi1G. 9. Amplitude-frequency curves for dynamic force Fyp(V1) in the nonlinear Model II for
K123 = —0.05, Po = 2.5 with nonlinear functions (2.1) - (2.4).
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F1G. 10. Application ranges of the sinusoidal function (continuous lines) and polynomial
function (dashed lines) for the Model II with Ki23 = —0.025, —0.05, —0.1, —0.15.

[22]
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7. FINAL REMARKS

In the paper it is shown how various nonlinear functions can be incorpo-
rated in the dynamic analysis of the discrete-continuous models of multi-mass
rod systems longitudinally deformed, having a local nonlinearity with the char-
acteristic of a soft type. In the study the third-order polynomial function, the
sinusoidal function, the hyperbolic tangent function and the exponential func-
tion, are proposed for the description of the local nonlinearity assumed in the
selected cross-section of the considered systems. It is found that the polynomial
and sinusoidal functions have some limits for their application, and that the
last two functions can be applied in cases when the use of the polynomial and
sinusoidal functions leads to solutions losing the physical meaning. Within the
application ranges of the polynomial function, the solutions for all considered
nonlinear functions coincide practically.

Nonlinear discrete-continuous models of plane trusses having local nonlin-
earities with the characteristics of a hard type were studied in [1]. From the
comparison of the results in the present paper and in the paper [1] it follows
that in the case of a hard characteristic, the use of the polynomial function for
its description gives satisfactory results, while in the case of a soft characteristic
one may expect certain inconveniences. Moreover, the jumps of the amplitudes
of displacements and forces are observed in models having local nonlinearities
with the characteristics of a hard type.
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