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The present paper is concerned with the simplified analysis of deformation and stress
states in converging hoppers during filling and discharge of a granular material. The equilib-
rium conditions and stress-strain relations are satisfied for cylindrical slice elements assuming
dependence of displacement and stress on radial coordinate. The elastic or elasto-plastic ma-
terial model is used with the Coulomb yield condition and non-associated flow rule. The paper
presents a detailed analysis of pressure evolution of a granular material on a hopper wall during
the emptying process when the initial active state of pressure is transformed into the passive
state. The growth of wall pressure associated with this process is demonstrated. The analytical
treatment presented in this paper can be compared with the respective finite element solution.

1. INTRODUCTION

The processes of granular material filling, discharge and storage in silos are
associated with numerous important problems, such as evolution of pressures
on silo walls, modes of flow during filling and discharge of material, particle
segregation, effect of vibration and aeration, etc. The theoretical treatments
of such problems are usually based on simplified material models, treating the
granular material as linear elastic satisfying Hooke’s law or perfectly plastic sat-
isfying Coulomb yield condition and the associated or non-associated flow rule.
A more realistic material model is based on the assumption of density hard-
ening, with the varying cohesion dependent on the material density. Also the
simplified geometry of silo was assumed in theoretical analysis, by consider-
ing plane converging or conical hoppers. The numerical treatment of granular
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flow problems using the finite element method can also be found in the liter-
ature [1-4]. A large group of papers related to flow in converging channels is
based on the assumption of radial flow velocity and steady or transient state of
flow [5-11]. By accounting for gravity and inertial forces, the rate of discharge
of material can be determined [12] assuming a rigid, perfectly plastic material
model. Similarly, the stress state and material pressure on hopper walls can
be determined [5, 6, 13-15]. The density hardening model introduced by Jenike
[14-15] provided the possibility to predict the required outlet area for continuing
flow and to characterize more realistically the important material parameters,
in particular, the varying cohesion with material density and critical state para-
meters.

The present paper is devoted to the simplified analysis of material stress
evolution during the filling and emptying processes in converging channels. To
provide analytical treatment the simplifying assumptions are made, similarly as
in other analyses [16, 17|. First, the simplified radial velocity and displacement
fields are assumed, so the stress field depends only on the radial coordinate and
the material-wall interaction is treated by introducing tractions at the interface
into the equilibrium conditions. The elastic and elasto-plastic material model
is assumed satisfying the Coulomb yield condition and the non-associated flow
rule satisfying the incompressibility condition. With these assumptions the state
of material after filling and the transient states during emptying are analysed
in detail. It is shown that the initial stress state after filling is varying essen-
tially passing from the so called “active pressure state” to the “passive pressure
state”, with the transition of the major principal stress in the radial direction
to the major stress in circumferential direction during the emptying process.
The transition from the filling stage to the emptying stage is achieved by as-
suming the variation of boundary conditions at the bottom boundary, namely
from vanishing radial displacement to imposed displacement, usually dependent
on controlled emptying procedure. The analysis, though based on simplified as-
sumptions, allows for specifying the stress and wall pressure evolution in func-
tion of material parameters of the granular material. This analysis may prove
important in assessment of pressure growth during emptying and also for com-
parison with numerical solutions obtained for a discretized problem by finite
elements. The numerical elastic analysis of stress distribution after thr filling
process using the finite element method was presented by Oo1l and ROTTER [2].
The stress distribution similar to that predicted in the present paper was ob-
tained and the plastic zone was exhibited in the upper portion of the hop-
per. However, so far, there was no treatment in the literature of the transient
stress evolution during the emptying process. A more detailed analysis and
extensive discussion can be found in the research report by Cz. SZYMANSKI
and Z. MROZ [18].
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2. FUNDAMENTAL EQUATIONS OF THE PROBLEM

2.1. Constitutive equations

The constitutive relations and equilibrium or strain-displacement equations
will be formulated in the Cartesian 1, 2, 3, cylindrical (r, 6) or spherical r, 6, ¢
coordinates. The small strain theory is used with the usual linear relations be-
tween strain and displacements. The compressive stresses and contractive strains
are assumed as positive, as is usually assumed in soil mechanics. The stress and
strain tensors are decomposed into deviatoric and spherical parts, thus

1
(2.1) gij = Sij + Pdij, €ij = €ij + §5u5ij,

1
where p = go'kk and €, = e, and d;; is the Kronecker delta.

Consider an elastic-perfectly, plastic model of the material (Fig. 1). Here we
neglect the effect of density hardening and softening and critical state regime,
typical for granular materials and powders.

a) b)

J1/K

55
-

F1G. 1. Linear elastic a) and elastoplastic b) material model.

In the elastic state, the Hooke’s law applies, so we have for an isotropic
material
1
26"
where K is the bulk compliance modulus and G is the shear stiffness modulus

of the material. We have also the familiar relations
1—-2v FE

D 1 s far e

(2:3) E 31 10)’

where FE and v are the Young modulus and Poisson ratio.

(2.2) €ij = KCT(S,;J' o =51 3.
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In the plastic regime, the Coulomb yield condition for a cohesionless material
is assumed to be valid, thus

(2.4) f(g) = (01— 02) — (01 + 03)sinp < 0,

where 01 > 03 > 03 > 0 are the principal stresses, and @ denotes the friction
angle which is assumed as constant. The deformation theory is applied, so the
finite stress-strain relations can be assumed in the elasto-plastic regime

(2.5) €ij = Kodyj + sij,

where 1) > 0 a secant compliance modulus dependent on the plastic strain value.

ik
In the elastic regime ¢ = 2G and in the plastic regime ¢ = ||e|| / | s]|, where

lell = (eijei)/? and ||s|| = (sijsij)/? are the moduli of strain and stress

deviators .

The analysis will be performed for plane strain or axisymmetric stress and
strain states with stress components [0, 0y, 02, Tay, Taz, Tyz = 0] or [o, .09, 0,
9, Trz = 0, Tg| in cylindrical coordinates, and [0, oy, O, Trg, Trp = 0, T =0]
in spherical coordinates. For the plane case it is assumed that o, = o3 is the
intermediate principal stress, o1 > 0, = 03 > 09, for the axisymmetric case
the Haar-Karman hypothesis is used: o, = 07 or oy, 2 02. The Coulomb yield
condition in the general stress state can now be written as follows

(2.6) Fl(g) =0z Za,]°F 4'rfy —sin? ¢ (0, + O‘y)2 <0
or
27) Fo(0) = (07 — 00)? + 47y —sin? ¢ (0 +5)? < 0.

~

Consider a physical plane or surface IT with the unit normal and tangent
vectors n and t. Asssume that the traction is specified on I7, so the stress com-
ponents oy, T, are given. From the yield condition written in the local reference
system n, t
(2.8) F3(0) = (o — at)2 + 472, —sin’ @ (on + 0,5)2 <0

the value of oy can be specified provided |7, | < oy, tgp. There are two solutions
for o4 in the plastic state, namely

(14 sin @) on F 24/02sin? @ — 72, cos?

2.9 =
o) 3t cos? o
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where at(+) is the maximal state and ag_) the minimal state. They are illustrated

by Mohr circle in Fig. 2. In this figure the stress pole position is at P and two
stress circles tangent to the Coulomb envelope specify the stress state at the
surface I1. If the stress circles are not tangent, the elastic or rigid state occurs
at the surface IT. If IT separates two material domains and is the interface
separating maximal and minimal plastic state or both sides, then it is the stress
discontinuity surface. The components o, and 7,,; are continuous on I7 , but oy
suffers discontinuity, so we have

44/02sin? p — 72, cos?

)

(2.10) [on] =0, [Tt] =0, [o4] =

cos? ¢

where || denotes the discontinuity of the enclosed symbols.

»

F1G. 2. Stress state on both sides of the stress discontinuity line.

When considering pressure of granular material on silo walls, we distinguish
passive and active regimes. For passive regime the normal pressure oy, is greater
than o; (minimal state) and for active regime o, is smaller than o;. In fact, the
active pressure on the wall is usually several times smaller than the pressure in
passive regime. The active states are usually generated during filling the hopper
and passive states develop during emptying. However, there is a transient state
when the emptying process starts and the upper part of the hopper is still in
active state with the passive regime progressing towards the upper boundary.
This transient state is most dangerous to the structure containing the granular
material as the travelling pressure peak develops at the interface IT between
active and passive regimes and moves towards the upper boundary.

The present analysis is aimed at specifcation of this pressure evolution during
the transient state. For a rigid-plastic material, the interface IT constitutes the
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stress discontinuity surface and the effect of pressure peak can be easily traced.
The present paper provides the analysis for an elastio-plastic material for which
there is no stress discountinuity. The treatment for a rigid-plastic material in-
volving stress discountinuity interface will be presented in a separate paper.

2.2. Static and kinematic equations

Fic. 3. Simplified radial flow in the hopper: stresses acting on the element ABCD.

Referring to Fig. 3 consider a plane wedge-shaped or conical hopper and
select the sign 6 of cylindrical r or spherical coordinate systems r, 6, z and r, 6, ¢.
In the plane case the z-axis is orthogonal to the plane r,6 of flow and in the
conical hopper case, the plane r, 8 lies in one of meridional planes specified by
the angle ¢ = const. The simplified radial displacement field depending only on
r is assumed in both cases and it can be expressed as follows

(2.11) ur = —u(r), ug = 0, u¢ =0,

where ¢ = z for the wedge shaped hopper and ¢ = ¢ for the conical hopper. In
the following, it will be assumed that ¢ = (1 — m)z + me, where m = 0 for the
wedge hopper and m = 1 for the conical hopper [6]. The strain components in
both cases now are

dity > “du HE mu,

U u
2.12 e g -2 T L g A
( ) b dr dr’ a r r’ # (g mr’
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(l2cc'>r1xt2l) Yro =0, Yo¢ =0, Yer = 0.

The constitutive relations for the elasto—plastic regime can now be written as
follows

er=Ko+1 s, g = Ko + 1 sy, ec =Ko+ s,
(2.13)

VrO:sr pess Heni 0

1
and for the elastic case there is 1 = CYeh The yield condition now is

(2.14) F(0) = (0, — 09)* —sin® ¢ (0, +05)° <0

since o, g and o are assumed as principal stresses with o¢ being the inter-
mediate stress, so that o, < o¢ < 09 or 0y < o¢ < 0. The assumption 7,9 = 0
results from the assumption of the simplified radial flow as then the shear strain
components .9 = 0. This assumption is certainly not valid near the hopper
wall where frictional stress induces considerable shear but is strictly valid at the
hopper axis 6 = 0. The yield condition (2.14) can also be stated as

14 mnp

1
2.15 -0, <0<k ki=

and the equality sign occurs at the plastic state.

Consider now the equilibrium conditions. As it is assumed that 7,9 = 0, there
is o, = 0r (1), 09 = 09 (r) and o¢ = o¢ (r). The friction stresses acting at the wall
will be treated as the reaction stresses not entering the constitutive equations.
These friction stresses satisfy the Coulomb friction condition

(2.16) Trolg—g, = Tw = 00 | g—p,, t8H, J = const.

Consider the equilibrium of an element ABCD shown in Fig. 3, bounded by the
circular segments r and r+dr and the radial lines 8§ = F6,,. Accounting for shear
stresses at the wall and the specific gravity forces v = 7(r), the equilibrium
equation takes the form for the wedge hopper

T COS Oy + 0y, Sin Oy 70y
7 4 hor =0
sin 6,, sin 6y,

(2.17) Zdr_ (roy) —

and for the conical hopper we have

Tw €08 Oy + Ty Sin Oy e a
sin 0y, 71 +cosfy

d
(2.18) % (rPor) —2r
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These two equations can now be written as

dor,  (m+1) (agp —o;)
dr r

(2.19) +1my =0,

where

0w m
2.20 =1+t tgh. = 1) [(1-
@20 o= 1t tguctaty = (me1) [1-m) By ]
and m = 0 for the wedge hopper, m = 1 for the conical hopper.

From the strain-displacement relations (2. 12) it follows that the compatibility
conditions take the form

d
(2.21) - (reg) —er = 0, €¢c = mey, m=01.

4 i
Using the constitutive equations (2.13), the stress components can be substituted
to (2.21), so we obtain

" d% (K =) o+ o) + %1/1 (09 —ar) =0,
(K —9)o + yoc =m[(K - ¢) 0 + yog] = 0.
The pressure o and the stress o¢ can be expressed in terms of o,, oy and 1, thus
oo _Wlor+(m+1) o
(m+2)y+(1-m) K’

(229
(%= K) (1= m) oy + [ (1 +2m) — K (1 —m)] o
(m+2)y+(1-m)K

and the first equation (2.22) can be written as

d [ (K)o, + (@ +2K) 0,
@iy dr [1/1 (m+2)Yp+(1-m)K

The constitutive equations are based on the assumption that plastic strain is
incompressible, so there is no significant density variation of the material, so it
is assumed that v = const during the filling and emptying processes. This is in
fact physically not accurate assumption since the material undergoes compaction
during filling and exhibits dilatancy during emptying.

The displacement field can be expressed in terms of stress components by
using the constitutive equations, then in view of (2.23) there is

U'C::

]+%¢(Uﬂ_0’r)=0-

(2.25) u=reg=r1 (Ko +1psg) =7 (K — )0 + oy

(K —v)o, + (¥ +2K) 0
(m+2)p+(1-m)K

='r1/;
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Let us now discuss the boundary conditions. It is assumed the upper surface
r = ry is free, so the radial stress vanishes

(2.26) or(r2) = 0.

The bottom surface r = r; is rigidly supported during the filling process, but
during the emptying process the displacement is induced, thus controlling the
intensity of discharge, so we have

u(ry) =0  —filling stage,
(2.27)
u(r;) =u; — discharge stage.

The bottom surface r = r; is assumed as fixed during both stages.

At the hopper walls for 6 =70, the friction stresses are acting 7, = og(r)tgu,
but they are included in the equilibrium equations, so there are no boundary
conditions stated for § ==F6,,. In fact, the simplified radial flow satisfies the
kinematic constraints of the walls.

As there exist elastic and plastic zones within the hopper, the usual continuity
conditions are specified at the interfaces

(2.28) m&y, fopt=0; —-jus] =0,

2.3. Non-dimensional form of equations

*
Introducing the non-dimensional variables 7 = —, 7j = TE the stress and

71 +
displacement components can be reduced to a non-dimensional form

oy 2 op o¢
= ) Og:=— ) G == )
(22) ALY Y T4, ATl
.29
E E
=2, a=—,,  P=2Gp=—1
N1 g X +

and the fundamental equations (2.16), (2.19)—(2.25) now are

da, (m+1)acy—7,
dr 7
iE(E —Gr) +11(259 + 1)
E(m+2)+1/1(1-m)

+ 'Ym = 07
(2.30)

b\ + 0@ - =0,
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_ @-n)(l-m)or+ [P(1+2m)—vi(1—-m)] Ty

Ogi= T )

p(m+2)+u(l-m)

([%033) Tw = 09 tgU,

e R — (Gg — Gr) + 11 (259 + 5r)
e g P (m+2)+v (1 —m)

For the elastic region we have ¢ = 1 and ¥ > 1 for the elasto-plastic state.
Further, the following symbols are used

1+sing 1-2v
=———————.—-, 1/1:
1—singp

a=1+tgu ctghy, k .
(2.31)
1, oampn goiio odha Bp =8 100
mT sinf, 1+ cosy|’

3. SOLUTIONS IN ELASTIC AND ELASTO-PLASTIC REGIONS

3.1. Elastic solution

Let us first discuss the elastic solution. Setting ¥ = 1 in (2.30)1,2 we have

o, BDIG . on) el bl
dr T
d [(ae —or)+v1(209+0r)

dr| (m+2)+uv(l-m)

(3.1)

] +%(ao—a,.) =

The non-dimensional quantities will be used in the subsequent analysis and the
dash over the symbol is omitted. The set (3.1) can be rewritten as follows

dar+m+1 _(m+1)a

ar 0+ Ym = Oa
dr r
- dog 1 (mv+1)—a(m+1)
o my —a(m v v
o438 BECE =0
dr rar+ 1-v)r bl T
and the general integrals have the form
(S A A1m A2m .
O, = AmT + BT lm Ym ™,
(3.3)
05: )\1m+(m+1)AmT)\1m+/\2m+(m+1)BmT)\2m_dm’Ymr’

a(m+1) a(m+1)
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where Ay, By, are the integration constants and the remaining symbols are de-
fined as follows

Mn=3 (em+VBn),  dam=j (an-VBn),

_am+1ly—(m+2-v)

o 1-v 4

(3.4) S 2+ v(m — 1)
T m+2)[(m-1)rv+2—alm+1)[(m+1)rv+1)°
g 1+v(m+1)

(m+2)[(m=-1)v+2]—a(m+1)[(m+1)v+1])
a=1+tguctgly,

e m
sinfy, 1+cosf,|’

Ym=(m+1)|(1-m)

where m = 0 for the plane case and m = 1 for the axisymmetric case. Further,
we have

(1 —m)vog 4+ (m +v)o§

T

(3.5) (T my + 1 d
Tw = 0% tg 1
and
14+v
(3.6) [T — 7(m/ e i (ﬂlmAmr)‘l"‘ + Bam B 77?™ + Xin Yo 7") T,
where
(=) (Mm+m+1) _(1=-v)(dem+m+1)

an B m AT ot L

e 2v-1)(mv+1)
C (m+2)[(m-Dr+2—am+1)[(m+)r+1]

Xm

The solution presented is valid provided

es — (m+2) [(m—l)l/+2]

(3.8) a#* ol m+ D) [(mEDP I me=0; 1

Let us note that when o = afs, then Iy, dr, and Ay, tend to infinity.
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For a = of?, we have a different form of general integrals, called a singular
solution specified by the relations

= AS,r+ B r™m — ke r Inr,

m+2 s (m+1)_a$nBs T—aﬁn

ES____________ D P L

B W T e ) O
(m+2) km7m v la (l“km) '77%191”
ags(m+1) GESNH Y

where A}, B;, are the integration constants and

s _ (m+2)[(m =1 +2 2 =arctg< tgu )

== €8
acs =

“m = A ) [(m+ Dy + 1) w(m)

963
es _ w(m) m
Tm = (m+1) | m)smees( < 1 + cos ¢ j| :
(3.10) w(m) w(m)
: (m+3)(mv+1)

B S | P

[(m+ 1)y +1][(m—1)v+2]
1-v)[(m2+4dm+ 1) v+ (m+4)]

)

Ky =

The displacement field for a singular solution is

ey Sffi (Bim AT + B Bt ™" + 6n 5 T — DT Int)r,
where
e il T b i i
el (m_l)V+2 ) 2m = m+2 )
(3.12) : Sl (1-2v)(mv+1) [(m+1)v+1]
. T (m2+dm+Dv+m+4] [(m-1)v+2)
_ (A -=2)(mrv+1) [(m+1)v+]1]

1-v)[(m2+4dm+1) v+m+4]

Consider now the filling and emptying processes for the elastic material. For the
filling process the boundary conditions are

(3.13) g8 pami= 0, u(r) # 0; (n=11/r3).
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Using the general solutions (3.3) and (3.6) for stress and displacement fields,
these conditions provide the equations for the constants A,, and B,,, namely

1 >\1m )\Zm
Ap = + Bp l = lm'Yml =0,
(3.14) n n n

BimAm + BoinBm + XmYm = 0,

and we have

(3.15) Ay = X0 (B 1T, o K03, -
Bim Bom

where

1+ lﬂﬁlmn(’\l"‘_l)
3.16 K, = —Xm .
( ) m 1 e /HlmnAlm_AZm

:82m

For the emptying process it is assumed that the upper surface is free, but the
bottom material surface undergoes increasing displacement u; starting from the
initial zero value. We assume therefore the boundary conditions

(3.17) or (N)lyp=1/n =0, u(r)|.—; |1, (n=ri/ry).
We obtain therefore the equations

1 A1m 1 A2m 1
Am <'—) + Bm ('ﬁ) . lm'YmE =0,

(3.18) 7

1+v
mv + 1

and the integration constants A,,, B, now depend on the emptying parameter
u1, thus

(,Blm Am + Bom Bm + Xm "Ym) =45

A (1) = 20 [y g )],

1m
(3.19) (1)
u
By, (Ul) i inv.gz : K (Ul),
where
1+mv
gm(u1) = T3p 1~ XmYm,
l W
(3.20) i, mg;n)ﬁlm (n)()‘lm 1)
Km (ul) 2 dm 1

i ﬁl_mn(/\lm—hm)

,32m
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Similar relations are obtained for the singular case but the respective formulae
are not quoted here.

The illustrative solutions are obtained for both plane and axisymmetrical
hoppers assuming the following parameters v = 1/3, u = 30°, ro/r; = 1/n = 15,
0 = 15° 30° and 6, = 657, m = 0,1 where 6¢° denotes the singular value of the
wedge angle, namely 05’ = 21° 03’ for the wedge hopper, m = 0, 02 = 35° 49/,
for the conical hopper, m = 1.

Figures 4a, b, c, d present the solutions for wedge hoppers after the filling
process for three values of the angle 6,,.

a) ?:LA
n
15 - ki LI
101
& 5 m=0
- 6,=1%
s Oy #=30,
. g v=13
o ey =l 2ioiigupdss
n
0 5 o,
9009
m
b) 42
r=—
rlA
T SEoE i R rFElSE
m=0
g Ty 6, =6 =2103
& gl
3 St
5 T
- P
r=1 o
nn
0 5 10 o
O'U=—IL
b
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T,
r=—A
c) - -
15 r=15
To
10 m=0
u 6,=30
B A oo
v=
5
’ B o
ey 75 n
0 5 10 o,
Oy =
m
d)

F1G. 4. Stress and displacement distribution in the wedge hopper after the filling process
for three values of the hopper angle 8,,: a) 6, = 15°, b) 05 = 21°03’, ¢) 6, = 30°, d) stress
profiles in the plane @, .

The diagrams show the stress distributions o, = 0, (), og= 0p(r), 0¢ = 0¢(r)
and v = u(r) in the non-dimensional variables. The stress profile in the plane

1
Gr, 0g is shown in. Fig. 4d, where also the yield lines 7y = EET’ and 79 = ko,

are shown.

The following conclusions can be drawn from the elastic solutions for the
filling process. It is seen that the maximal stress values occur in the middle part
of the hopper. In the lower part the active stress state occurs, of > of, but
in the upper part the passive state, of < 0§, develops. This character of stress
distribution will change during the emptying process where the passive state will
develop at the bottom hopper portion. This observation does not support the
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view, of JENIKE and JOHANSON [10, 11], that the active stress state develops
within the hopper after the filling process. We also note that the singular solution
provides the same stress and displacement profiles as in the regular case.

Further, it is seen that the elastic solution cannot exist in the whole material
domain as in the upper portion near the free boundary the stress path exceeds the
elastic domain. Thus, the plastic deformation should be considered in the upper
portion of the cohesionless material. However, when the material is cohesive,
¢ # 0, then the elastic solution can occur in the whole domain. In fact, one can
translate the limit lines to new positions resulting from the value of cohesion to
assure the stress profile to lie within the elastic domain.

Figures 5a, b, ¢, d present the elastic solutions for conical hoppers after the
filling process for 6, = 15°, 6,, = 6% = 35° 49’ and 6,, = 30°.

[F1G. 5a,b]
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G G,=k&;, = 35,(9=30)

Gp = Or

0,=6,=35'49
6, =30°

o
Iy

v Er
1 2 3 4 5 6 7 8

Fi1c. 5. Stress and displacement distributions after the filling process: a) 6, = 15°,

b) 0., = 03 =35° 49, ¢) 0, = 30°, d) stress profiles in the plane 7, 7o .

The same conclusions can be drawn as in the case of wedge hoppers, namely
the existence of the plastic zone near the upper boundary and the combined
active-passive stress function within the material.

3.2. Elasto-plastic solution

Let us now discuss the elasto-plastic solution assuming the perfectly-plastic
material model. Depending on the value of material parameters there can be two
different stress profiles. These profiles result from the boundary conditions

(3.21) or(r)lr=1/n =0, L ) e i (n=r7r1/r9).
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The vanishing displacement at the bottom boundary r =1 provides the condition
resulting from (2.30), namely

(3.22) ¥ (09— 0r) +v1 (200 +07) |,y =0
which provides

Y-—un

(3.23) crolrzl =, mar |r=1‘

In view of the yield condition EO'T- < o9 < ko,, we obtain the inequalities
specifying the elastic state, thus

V-1

1
3.24 - < ——X<k.
e k~v+21 —
Since
bxves. 2k e s pa i 0E 5
2 1+v 1—singp
the inequalities (3.24) are satisfied when
1—-v v ;
Y|, =krokd AT et yar|r=1 — elastic state or,
k+2 1—-v
3.25 P
( ) ¢|r=1 V1k+1>1; k< b

1 .
09|r=1 = |1,=1 — plastic state.

The expected stress profiles are shown in Fig. 6
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F1G. 6. Stress profiles for the elasto-plastic model: a) stress profiles in the plane o, gy,
b) plastic and elastic zones within the hopper.
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, e
When k > =Y the active plastic zone develops at the bottom domain

v
1 < r < § and the passive zone near the free boundary, n <r < 1/n, (n = r1/rs).

3.3. Elasto-plastic solution: emptying process

The emptying process will be treated as a consecutive phase of the evolution
of stress and displacement fields by assuming that at the bottom surface r = 1'the
increasing displacement field u; = wu(r)|._; is induced with the upper surface
remaining free, so that o,(r)|,_; /n = 0. For increasing u, the passive stress
regime will be developed from the bottom surface and propagate upward in the
course of discharge. We shall study the first stage of emptying by neglecting the
configuration change of the upper surface. In fact the stress evolution process
develops for very small values of u; and the subsequent phase occurs within
passive stress regime. We shall consider two phases of the emptying process:
first, when there is the elastic zone in the lower part and the plastic zone in
the upper part, second, when the passive plastic zone develops at the bottom
domain of the hopper.

FiG. 7. Elastic and plastic zones in the a) initial and b) advanced stages of discharge.

3.3.1. Initial stage of emptying: elastic and plastic zone. Assume the bound-
ary conditions as follows

(3.26) o (PHemt o = 0; u(r) |T=1 = —uy (n=r1/rs)

and the position of elasto-plastic interface r = 1 depends on u;, thus n = 7 (u1)
or u; = uj (n). At the interface the stress and displacement continuity conditions
are satisfied, thus

(3.27) [or) = [d]'=0, “opg=4koy, for r=n.
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Taking the interface position r = n as the process progression parameter, it is
noted that for some value of 7(u;) = n” the yield condition at the bottom surface
is satisfied, so that

(3.28) Fy (ryn(w1)) lr=1 = (ko7 = 0§) lr=1 =0

and for increasing values of u; or n(u;) the passive plastic zone starts to develop
near the bottom surface.

Let us now discuss the details of the solution when the elastic and plastic
zones E and P’ exist within the solution domain. The plastic stress state within
P! is specified by (3.22) and the elastic state within E is specified by (3.3). The
integration constants A, (1), Bm(n) are specified from the boundary condition
at 7 = 1/n and continuity conditions for 7 = 1. We obtain within the zone P’

1 — (nr)(m+Dr"-1
P
(3.29) o= vl (7'), T (T‘) ke (m - 1) k' —1

and within the zone E

ot =l i) rAim B, (1) rAam _ Nl 1,

(3.30) Aim+m+1 .
€ — el ol A1m M Aom o,
Ty a(m+1) Am (77)7' * a(m+1) Bm(’?)r 7mdmra
where
— Tm 1=
Am() = 55— { [(m + )K" = Xam] Tonl)
+ [a (m+1)dm = lm(Dom + m + 1)] } ptAim
(3.31)
oM "_
Br(1) = =55 { [(m+ 1)K = M| T()

i [a (m + 1) dyn — bin (Nt £ 710 4+ 1)] } gl Aam

The initiation of the emptying process starts for u; () = 0 and proceeds for
uy > 0. The value 7’ is specified from the condition (3.18), thus

(3.32) Bim Am (77,) + BomBm ("7/) + Ym Xm = 0.

The value 1" corresponds to the onset of plasticity at r = 1, specified by the
condition

(3.33) 1 ) { [(m P /\lm] Am (1)

a(m+1

+ [+ D = dam]| B (1) } + 3 (i — Klm) = 0.
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Thus the emptying process with the elastic zone E in the lower domain occurs
when ' <n <7n".

3.3.2. Advanced stage of emptying: solution with three zones P',E and P"
(Fig. 7b). The interface radius r = £(n) between the elastic and plastic zones
P" in the bottom part of the hopper is specified from the yield condition

(3.34) Fy = koy (r,n) —og (r,n) =0
and there should be 1 < €(n) < 1. When & = 7, both plastic zones P’ and P”

contact each other and the whole material becomes plastic. The condition (3.34)
provides the equation

s | {[m+ 1)K = Am] A () rPom

.35 =
ki ¢ a(m+1

4 [(m+ k" ,\Zm] Bm(n)r’\zm} PLtas Skl yg 28

where A, (n) and Bp,(n) are specified by (3.31). The stress and displacement
states in the plastic zone P” now are

1 Y-
0'? = Cmfr(ﬂH-l)k e mnmr, 1 r < 5(77),
(3.36) op =kop, T =koltgpu,

[hm (k = 1) + 11 (2k + 1)]
Ym(m+2) + 11 (1 —m)

=(14+v) ¢¥m rof,

where

@30, L= {Am (1) €™ + Bpn (m) £22m

1 1
= l B8, N s —(m+1)k
K'=ak-1.
The stress and displacement states in the elastic zone E are

oy = Am (1) phim 4 B, (n) rham Ym b, S =rey

e — 1m B 2m __
09 a (m + 1) Am (77) T + a (m + 1) m (77) T 'Ymdm"',
(3.38) e i(L=m) vog +dmitv).af 9
CTc = my+1 ) Tw =a-et‘glu‘)

e (1+1) [(1-v) o§ — vo]
o mv + 1

2
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and in the upper plastic zone P’ we have
af = m T (1), o = kot, 5= kol tgu,

P ¥m[A+2m) k+(A-—m)]-n(1-m(k+1) ,
(3.39) T Um (M+2)+11 (1—m) £

Ym (k= 1)+ 11 (2k +1)
Ym (M +2) + 01 (1-m)

1
up=(1-|-1/)¢m 'I‘O’f, nSTSEa

where
y B (n 7.) (m+1) k"1
T T mAD K -1

(3.40) T (r) K = ak -1,

and ¢, (r,n) is the solution of the differential equation

dpm,
(3.41) —;pr—=

i (4 10) { [Rs(r) + 2] (i 1ma) 401 (F = mn) R}

(Ym + v1ma1)? + 1 (kf —m1) my

2

where

1 dof _1—(m+1) K (nr)mOr 1
of 8t et Pt

(3.42) R (r)=

The solution of (3.40) is obtained numerically by applying the finite difference
explicit integration scheme.

4. ILLUSTRATIVE NUMERICAL SOLUTIONS.

Numerical solutions were generated for both plane and conical hoppers
(m =0 and m = 1), for two values of the hopper angle: 6,, = 15°, ,, = 30° and
for three values of the position of the upper three surface: n = r1/ry = 5,10, 15.
The numerical results are illustrated in Figs. 8-10 presenting stress and displace-
ment distributions in consecutive stages of the discharge process.

Figures 8 a, b, c,d present the stress and displacement evolution during con-
secutive stages of emptying of the wedge hopper for n = 1/5, 6, = 15°, u = 30°,
v =1/3. As oy represents also the wall pressure evolution, it is seen that when
the plastic passive zone P” propagates upward the wall pressure reaches its
maximum at the instantaneous interface position r = ¢ between P” and E. There
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1s a moving “switch” between passive and elastic states with the peak pressure
at r = £ moving toward the upper plastic zone P’. Figures 9a, b, ¢, d present
similar distributions for the wedge hopper m = 0, u = 30°, v = 1/3, 6, = 15°,
n = 1/10. Similarly, Figures 10 a, b, ¢, d show the stress and displacement
distributions for the wedge hopper: m = 0, n = 1/15, 6,, = 15°, v = 1/3,
p = 30°. It is seen that for higher hoppers the moving interface r = £ generates
higher switching pressures with respect to initial pressures at the filling stage
or ultimate pressures for the total passive state within the hopper. The solution
for conical hoppers show the same character of stress distributions and are not
shown in this paper. As the evolution parameter we assumed the value of 7
which decreased from the initial 7 = 7’ to the final value n = ” when the total
passive plastic state develops. The displacement distribution diagrams allow for
specification of the bottom displacement v = u; in terms of the parameter 7. It
should be noted that the motion of the interface r = £ and the pressure switch
occurs for small values of u;, hence the pressure evolution may have the character
of quasi-dynamic wall loading by the pressure switch. The value of overpressure
due to moving interface depends on hopper height and material parameters. Let
us specify the ratio 8 = oy, /0g, of the maximal pressure to the pressure at
the fully passive state.
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5. CONCLUDING REMARKS

The present paper provides a simplified elasto-plastic analysis of transient
stress and wall pressure evolution during the emptying process of a granular
material in wedge or conical hoppers. The analysis indicates that the transient
evolution is characterised by a moving interface between passive plastic state
and elastic state from the bottom surface upward toward the upper free surface.
Such transient switch between passive and elastic zones generates the excessive
wall pressure with its maximum at the interface r — €. As the large interface
motion occurs for small discharge displacement at the bottom surface, the quasi-
dynamic character of pressure evolution occurs. This transient pressure evolution
may induce hopper vibration. The analysis was performed using a simple model
of material, namely, elastic-perfectly plastic with no dilatancy or compaction
effects. However, it can be generalized to a more accurate material model admit-
ting density hardening or softening and also the critical states of the material.
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