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The main aim of this paper is reliability analysis of the corrugated-web I-girder carried
out to verify its susceptibility to the random corrosion of the web and to make a compari-
son of the results of the first and of the second order reliability analysis. The methodology
implemented in the study is based on the stochastic finite element method related to the
generalized stochastic perturbation technique, where a discretization of the entire structure is
carried out with four-node quadrilateral shell finite elements. This is numerically implemented
using the FEM engineering system ROBOT and computer algebra system MAPLE, where all
probabilistic procedures are programmed. The perturbation-based results are compared with
these coming from the Monte-Carlo simulation and with an analytical solution obtained via
symbolic integration carried out in MAPLE also. The indices of reliability are determined for
the maximum deflections of the beam as the function of an input coefficient of variation of the
web’s thickness whose meaning is the extent of a corrosion process.
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structures, weighted least squares method.

Notations

b – input random variable (web thickness),

E[b] – expected value of the input random variable,

Var(b) – variance of the input random variable,

σ(b) – standard deviation of the input random variable,

α(b) – coefficient of variation of the input random variable,

µk(b) – k-th central moment of the input random variable,

pb(x) – probability density function of the input random variable,

u(b) – structural displacements vector,

ε – perturbation parameter,

K(b) – stiffness matrix,

q – external load vector,
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Di – real unknown coefficients in the least squares method approximation,

r(α) – residuals in the least squares method,

wαα – the weights in the least squares method approximation,

S – least squares method functional,

J – Jacobian in the least squares method,

βFORM – reliability index according to FORM (First Order Reliability Method),

fall – admissible deflection of the plate girder,

fmax – maximum deflection of the plate girder,

tw – thickness of the girder’s web,

βSORM – reliability index according to SORM (Second Order Reliability Method),

Pf2 – probability of the failure,

κ – curvature approximating the primary limit surface,

Φ – cumulative probability density function.

1. Introduction

An importance in role of the corrugated webs has been increasing in civil
engineering practice since their appearance in the 1990s principally due to their
high transverse rigidity. They tend to replace the classical I-beams and columns
with straight webs and are extensively used as the homogeneous steel large span
bridge girders as well as the hybrid bridge girders. A spread of the corrugated
web is dictated by its technological advancement allowing a superior material
usage by saving of up to 30% of steel itself. This is achieved by intense reduction
of web thickness, contributing to approximately 30–40% of the overall weight
of the I-beam; an innovative shape of the web ensures modifications within the
stress distribution in this element. The web serves solely for transfer of the shear
and as a stiffener of flanges, where it resembles diagonals and verticals of a lattice
girder. An additional asset introduced by the corrugated web is an increase of
bending resistance around the weak axis followed by better resistance to torsion
and exceedingly high buckling resistance (even without additional ribs).
The major asset of the corrugated web – its high slenderness – also con-

stitutes its biggest problem, while the structures with the SIN type webs are
exceedingly predisposed to corrosion. Each instance of such a process is danger-
ous for the elements having small thickness. Moreover a number of theoretical
and computational problems connected with the corrugated web beams are still
unresolved; some of them may lead to local buckling of the web close to the
support. It may be one of the reasons of an excessive conservativeness and am-
biguousness of design standards in ambient temperature and strictly limited
range of the beams covered by the manufacturer’s guidelines (restricted span,
flange width and web thickness of the beam). Situation is even worse for ele-
vated temperatures as currently the response of the structure in fire conditions is
a bit accidental. Furthermore, there is no actual research concerning stochastic
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reliability of such structures which are predisposed to random perturbations, in
particular (but not exclusively) those connected with a corrosion of the web.
Therefore, the major aim of this work is presentation of an effective numerical

time-independent method for validation of a stochastic reliability of the SIN-type
girder with possible fluctuations of the web thickness. Our numerical analysis
could be relatively easily replaced with the time-dependent case study while
engaging some time series representation of the corrosion process itself.

2. Computational analysis

The analysis is focused on the SIN-type girder with span of 40 m (Fig. 1),
height equal to 2.5 m and width of 1.6 m. The beam is designed strictly accord-
ing to the Polish version of the Eurocode (PN-EN 1993-1-5, 2008) and optimized
to reach 90% of its Ultimate Limit State (ULS) by manual modification of the
girder’s geometry implemented in PTC Mathcad prime engineering calculation
software. Analysis of the ULS consists in verification of the maximum bending
and shear as well as the Serviceability Limit State (SLS) related to the maxi-

a)

b)

Fig. 1. Geometry of the girder: a) layout, view and static scheme [mm],
b) corrugation and cross section geometry [mm].
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mum deflection in a middle of the girder span. The girder carry all the loads of
a half width of a 20 m wide bridge, which have a magnitude of 150 kN/m and
is distributed all over its upper flange.
The girder is modeled by using ROBOT FEM software with 24 000 of its

rectangular four-node thin shell finite elements distributed uniformly in both
flanges and the web as well as over 40 000 nodal points with six degrees of free-
dom each. Half-waves of the SIN web were discretized with 20 straight elements
each in their longitudinal direction to achieve a smooth discretization of the
actual shape of the web. All the simulations involve web thickness spectrum of
tw ∈ 〈51, 52, ... , 61〉 mm and serve for a determination of the ultimate stresses
and deflections for each web thickness of the girder (Table 1). These ultimate
values are used to determine analytical response functions of the structure to
gradual changes in web thickness (Fig. 2) and are based on the weighted least
squares method (WLSM) with a distribution of weights similar to the Dirac
function (discrete maximum in the middle is many times larger than the uni-
form distribution of the unit weights elsewhere within a computational domain).
The WLSM allows for selection of the polynomial corresponding to the ana-
lyzed continuous relationship of two variables (even if these are not available
analytically). In this particular case it approximates deflections of a beam as
a function of its web’s thickness. Subsequently, the response function is imple-
mented in three independent and parallel probabilistic procedures – analytic
method (AM), stochastic perturbation theory (SPT) and Monte Carlo simula-
tion (MCS) methods – to calculate all the basic probabilistic characteristics for

Table 1. Comparison of analytical results versus ROBOT FEM simulation.

tw

Analytical results Results from the FEM model

f
[cm]

σmax

[MPa]
τmax

[MPa]
f
[cm]

σmax

[MPa]

σMises [MPa] τmax [MPa]

Middle
of span

Support
1

Support
2

Support
1

Middle
of span

51 7.12 169.8 54.2 6.83 148.84 182.2 272.38 170.15 117.18 172.40

52 7.12 167.5 53.4 7.52 148.43 177.98 267.41 166.73 120.79 178.29

53 7.11 167.1 52.8 73.0 148.24 177.65 263.32 164.14 119.37 174.37

54 7.13 167.1 52.1 7.11 148.05 177.07 259.35 161.65 117.97 170.63

55 7.14 167.0 51.4 6.86 147.82 176.51 255.52 159.24 116.58 167.06

56 7.14 167.0 50.7 6.43 147.78 177.15 252.03 157.17 113.27 160.37

57 7.15 166.9 50.1 6.42 147.55 176.0 248.30 154.78 112.89 158.78

58 7.16 166.8 49.5 6.40 147.33 174.88 244.69 152.47 112.51 157.30

59 7.16 166.8 48.9 6.25 147.15 174.36 241.29 150.36 111.19 154.33

60 7.17 166.7 48.3 6.05 146.97 173.86 237.98 148.37 109.89 151.48

61 7.17 166.7 47.8 5.96 146.8 173.36 234.78 146.32 108.64 148.75
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Fig. 2. Maximum deflection vs. web thickness.

the expected value of web thickness. This allows for a comparison of the effi-
ciency of these three basic probabilistic methods and simultaneous validation of
their results. An exemplary graph of the probabilistic moment is presented in
Fig. 3. The output reliability indices determined according to FORM and SORM
(as well as the exemplary probabilistic moment) are presented as a function of
the web thickness corresponding to the intensity or advancement of a corrosion
process.

Fig. 3. Expectations of maximum deflection
vs. coefficient of variation of web thickness.
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3. Theoretical background

Current design standard Eurocode 0 recommends calculations of the relia-
bility of a structure by an application of the first order probabilistic methods.
Therefore, it is necessary to introduce the theoretical fundamentals for calcula-
tions of this index.

3.1. Probabilistic calculations

First, the following definitions concerning the given input random variable
b and its algebraic functions are introduced in the context of the probability
theory. The equivalent statistical estimators are also proposed below (M stands
for the total number of the Monte-Carlo trials) [1, 3, 4]
• the expected value of b

(3.1) E[b] =

+∞∫

−∞

bpb(x)dx ≡ 1

M

M∑

i=1

b(i),

• its variance

(3.2) V ar(b) =

+∞∫

−∞

(b− E[b])2 pb(x)dx ≡ 1

M − 1

M∑

i=1

(
b(i) − E[b]

)2
,

and standard deviation

(3.3) σ(b) =
√
V ar(b).

The coefficient of variation is calculated with use of the above formulae as

(3.4) α(b) =

√
V ar(b)

E[b]
,

while a relation describing k-th central probabilistic moment (for k > 2) has the
following form:

(3.5) µk(b) =

+∞∫

−∞

(b− E[b])kpb(x)dx ≡ 1

M

M∑

i=1

(
b(i) − E[b]

)k
.

The probability density function used in computations is the Gaussian one, i.e.

(3.6) pb(x) =
1

σ(b)
√
2π

exp

(
−(b− E[b])2

2σ2(b)

)
; x ∈ ℜ.
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Once the truncated Gaussian random fields are to be analyzed (most of
material and geometrical parameters take only positive values), an integration
process must be limited using three-sigma rule or taking into account some other
physical limitations of the given random variables.
Analytical formulas are further employed in the stochastic perturbation-

based approach based on the Taylor expansion of all random input and output
variables with random coefficients around their expectations. This is done on the
example of the random function u(b) with respect to the given input parameter
b in the following manner [1]:

(3.7) u(b) = u0(b0) + ε
∂u(b)

∂b

∣∣∣∣
b=b0

∆b+ ...+
εn

n!

∂nu(b)

∂bn

∣∣∣∣
b=b0

∆bn,

where ε is the given perturbation parameter (taken in all engineering computa-
tions as equal to 1), while the n-th order variation of b itself about its expectation
is given as

(3.8) εn∆bn = (δb)n = εn(b− b0)n.

The expected values are determined with this expansion in the tenth order
approach as

(3.9) E[u(b)] = u0(b0) +
ε2

2

∂2u(b)

∂b2
µ2(b) + ...+

ε10

10!

∂10u(b)

∂b10
µ10(b).

Additionally, the Gaussian distribution allows for further recursive simplification
of the central probabilistic moments

(3.10) µp(b) =

{
0; p = 2k + 1

(p− 1)!! (σ(b))p ; p = 2k

for any natural k ≥1. We apply similar expansions and procedures to recover
higher order statistics of the structural response. Further, this technique is im-
plemented in conjunction with the finite element method, where the elastostatics
require a solution of the following matrix equation [8]:

(3.11) K(b)u(b) = q,

where K(b) represents the stiffness matrix of the system including some uncer-
tainty source, q includes the boundary conditions imposed onto the system and
is assumed to be deterministic in the proposed computer analysis, while u(b)
represents random structural response of the girder.
A traditional method for a solution of this problem is the direct differenti-

ation method [2] where one includes Taylor expansion from Eq. (3.7) to form
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increasing order hierarchical equations of the static equilibrium and to insert
higher order partial derivatives of u(b) into the formulas such as Eq. (3.9). In
this paper we employ another method that is based on the initial following
polynomial approximation of the output displacements:

(3.12) u(b;m) =

m∑

i=0

Dib
i,

where Di, i = 1, ..., n are the real unknown coefficients to be determined. Quite
similarly to the polynomial chaos technique, these coefficients are sought through
the series of FEM experiments with varying design parameter inside the do-
main of its assumed uncertainty (equidistant division in-between its upper and
lower bounds). It gives the necessary condition of a probabilistic convergence
for m < n (as higher order terms in additional expansions simply vanish), while
the real numerical efficiency is found with the use of a comparison with both
statistical and semi-analytical stochastic calculus.
One non-trivial aspect of stochastic analysis is the correlation of coefficient

of variation and stochastic variable. The correspondence is not straightforward,
as governed by the probability (density) function. Therefore a proper choice
of this function is a key factor in each stochastic analysis. In the case of the
conducted research, generally the increase of coefficient of variation corresponds
to decrease of web thickness (stochastic variable) and by this can be perceived
as advancement of the corrosion process.

3.2. The weighted least squares method (WLSM)

Some details of the weighted least squares method (WLSM) are shown, where
a polynomial basis of the sth order (indexed by β here) in the numerical tests is
used and solved around the mean value of the given input random parameter b.
As a result n different pairs

(
bα, u

(α)
)
for α = 1, ..., n are obtained, where the

arguments belong to the close neighborhood of expectation of b itself. Then, we
use the following polynomial approximation:

(3.13) u(b) ∼= Dβb
β = f(D, b), β = 1, ..., s, s < n.

The residuals in each trial point are introduced to get an algebraic condition for
these expansion coefficients, i.e.

(3.14) r(α) = u(α) − f(D, bα), α = 1, ..., n.

Approximation of this function is done by minimization of the weighted residuals
functional

(3.15) S =
n∑

α=1

wααr
2
(α), α = 1, ..., n,
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so that

(3.16)
∂S

∂Dβ
= −2

n∑

α=1

wααr(α)
∂f(D, bα)

∂Dβ
, β = 1, ..., s.

Further, the following notation is adopted:

(3.17) J = Jαβ =
∂f(D, bα)

∂Dβ
, α = 1, ..., n, β = 1, ..., s,

modified as

(3.18)
n∑

α=1

s∑

β=1

JαβwααJαβDβ =

n∑

α=1

Jαβwααu
(α), α = 1, ..., n, β = 1, ..., s

and converted into the matrix normal equations

(3.19)
(
(J)TwJ

)
D = (J)Twu.

This system of equations (with the dimensions n × s) is solved symbolically in
MAPLE.

3.3. Reliability indices βFORM and βSORM

All the indices collected and discussed further are determined via the first and
the second order reliability methods for the maximum deflections representing
the serviceability limit state (SLS) of the girder. The index βFORM is calculated
with use of the following formula:

(3.20) βFORM =
E[b]

σ(b)
,

where E[g] is the expectation of a random limit function g and σ(g) represents
its standard deviation. This statement is further simplified in case when the
displacements measure is used to approximate structural reliability as

(3.21) βFORM=
E [fall−fmax]

σ (fall−fmax)
=

E [fall]−E [fmax]√
Var (fall)+Var (fmax)

=
E [fall]−E [fmax]

σ (fmax)
,

where fall and fmax (after numerical recovery) are given using the following
formulas:

fall =
l

350
,(3.22)

fmax = 90.451 − 2.413tw + 0.000346t3w − 3.073 · 10−10t6w,(3.23)
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where l is a span of the girder. The maximum deflections fmax are approximated
here using the above presented WLSM assuming polynomial representation,
whereas fall is assumed directly from Eurocode 3 (devoted entirely to the steel
structures basics).
Reliability index βFORM assumes the Gaussian probability distribution of

a given random (response) function. Therefore, it is irrelevant to check a reliabil-
ity of the structure using FORM method for a factor, whose random dispersion
is different than the Gauss function; the second order reliability analysis shall
be applied in these cases. The general formula for the reliability index βSORM is
the following one:

(3.24) βSORM = −Φ−1(Pf2),

where Pf2 denotes the probability of failure related to the index βFORM in the
following way:

(3.25) Pf2 =
Φ (βFORM)√
1 + βFORMκ

,

κ is the curvature approximating the primary surface defined by the following
formula

(3.26) κ =

∂2u

∂b2(
1 +

(
∂u

∂b

)2
)3/2

and

(3.27) κ >





−1

Φ (−βFORM)
,

−1

βFORM
.

A general formula of probability of failure is the following one:

(3.28) Pf2 = Φ0(−β)
n−1∏

i=1

(1 + βκ)−1/2.

The above given formulae allow calculation of the reliability index for an arbi-
trary probability density function describing the influence of the phenomenon
on the considered random function.
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4. Numerical results

The scope of numerical analysis included in this paper is a comparison of
both ULS and SLS coming from analytical calculations with these obtained in
computer simulations involving normal, shear reduced von Mises’ stresses and
deflections of the girder as well as analysis of the reliability index computed
according to both FORM and SORM techniques.

4.1. Comparison of analytical calculations and computer simulations

Analytical calculations based on the formulas valid for profiles with straight
webs (Table 1) correspond to the results of FEM simulations only in a limited
way i.e. for deflections and normal stresses (Figs. 10–11). Maximum values of
both variables and methods are localized in the middle of the girder span and
difference of magnitude does not exceed 10%. Furthermore, it is worth to men-
tion that the analytical method (AM) gives the results more disadvantageous
(on the “safe” side). This leads to conclusion that theoretical analysis based on
a straight web is quite sufficient for a rational approximation of SIN type beams
in this particular case. The hypothesis is invalid however for the shear stresses
determining the ULS of the girder. These calculations underestimate the mag-
nitude over three times, which undoubtedly would lead at least to deplanation
of the web in a vicinity of the support [6]. Therefore, it is strongly advised to
perform the additional FEM simulation during the design process of the SIN
type plate girders, especially considering shear stresses on the support [7]. One
more remark considering the results presented in Table 1 should be raised, i.e.
a dependence of an ultimate deflection on the thickness of the web according to
analytical calculus. This correlation shows an increase of a deflection of the beam
with increasing web thickness, which is tentatively converse to the engineering
expectations. It really means a higher dependence of deflection on the mass of
the girder than the change of an inertia moment of the girder connected with
an increase of its cross-sectional area. Secondly, we notice some fluctuations of
a function f(tw) for simulations with thicknesses 51 mm and 57 mm that may
be connected with a discretization density with the finite elements applied in
the ROBOT’s computer model. An additional comment is required for the two
ultimate values for support von Mises’ stress. The difference in their magnitude
is caused by different boundary conditions on each side of the beam. Support 2
has two degrees of freedom, i.e. rotation and horizontal displacement, while the
first only rotation.
The results collected in Table 1 enable to provide some polynomial represen-

tations for the maximum deflection (Fig. 2), for the maximum normal stresses
(Fig. 4) and maximum shear stresses (Fig. 6) as well as for the maximum re-
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Fig. 4. Maximum normal stress vs. web thickness.

duced stresses (Fig. 8) – all via the weighted least squares method taking as the
independent parameter the web’s thickness. It is apparent that the very regu-
lar set of points is obtained only for the reduced stresses, but all polynomial
approximations are found as very smooth functions with no local oscillations
which guarantees reliable determination of their higher order partial derivatives
with respect to this parameter. These functions enable relatively easy determi-
nation of the basic probabilistic characteristics for these state functions and this
is demonstrated by using the expectations only for brevity of further presenta-
tion. Then, we have in turn expected values of maximum deflection in Fig. 3,
and analogously for maximum normal stresses (Fig. 5), maximum shear stresses

Fig. 5. Expectations of maximum normal stress
vs. coefficient of variation of web thickness.
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(Fig. 7) as well as maximum reduced stresses (Fig. 9) – all determined as the
functions of the input coefficient of variation of tw (α(tw) ∈ [0.00, 0.25]). Such
a wide interval of the input stochastic fluctuations is driven by the real cor-
rosion mechanisms and accompanying statistical parameters, even at the very
beginning of the exploitation period for steel structures. We employ here three
different stochastic computational strategies, namely in turn – stochastic per-
turbation technique (SPT), Monte-Carlo simulation (MCS) and, finally, the an-
alytical method (AM) all based on the same polynomial representation adjacent
to the WLSM.

Fig. 6. Maximum shear stress vs. web thickness.

Fig. 7. Expectations of maximum shear stress
vs. coefficient of variation of web thickness.
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Fig. 8. Maximum von Mises stress vs. web
thickness.

Fig. 9. Expectations of maximum von Mises stress
vs. coefficient of variation of web thickness.

Fig. 10. Deflection map of the girder for tw = 56 mm.
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Fig. 11. Normal stress pattern for tw = 56 mm.

Fundamental observation is that all the numerical techniques coincide per-
fectly with each other in the entire domain of input uncertainty. It is also re-
markable that the vertical ranges of Figs. 3, 5, 7 and 9 exhibit significant vari-
ations of all these state parameters caused by the web thickness uncertainty
fluctuations. It proves the paramount importance of this specific design pa-
rameter on the overall strength and safety of the SIN-web girder (and remains
true for all plate girders with the webs that are very slender). Generally, the
larger the input coefficient of variation, the larger the resulting expectations
of the given state parameter. The maximum deflection of the girder noticed in
a half of its span is somewhat out of this trend as it increases up to the cer-
tain local extreme maximum and then starts to decrease. The reason of this
complex behavior is that the increasing web thickness enlarges the mass of a
structure and its stiffness at the same time and their combination gives such
a result.

4.2. Reliability indices βFORM and βSORM

The next part concerns entirely the reliability indices determination and
this is carried out by using two methods – the first- (FORM) and the second-
order reliability method (SORM) and also three concurrent numerical tech-
niques, namely SPT, MCS and AM, as above. This is related to the maximum
deflection at the girder center (SLS, Figs. 12, 13) as well as to the maximum
normal stresses (ULS, Figs. 14, 15), while the input uncertainty level remains
exactly the same. All these graphs show a characteristic exponential decrease
of structural reliability together with an increasing input randomness and, fur-
thermore, a perfect coincidence of all the numerical methods, which will enable
for some time savings in large scale structures while using only the SPT.
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Fig. 12. FORM index for the maximum deflection (SLS).

Fig. 13. SORM index for the maximum deflection (SLS).

Fig. 14. FORM index for maximum normal stress.

Analysis of reliability of the SIN-type beam indicates that its internal stress
state is close to the reliability limits that is allowed in various structures with
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Fig. 15. SORM index for maximum normal stress.

the highest risk class (β > 5.0) for the elements or groups of elements designed
just below their ULS. The major difference between the FORM and SORM ap-
proaches is the limit value, where the curves stabilize for the variations higher
than 0.20; for FORM it is 0, while for SORM it equals 2. This is connected
with an existence of the condition for the minimal curvature κ in calculations of
βSORM. The most suitable computational method in terms of the studied girder
is SPT, which allows determination of the continuous function in-between the
reliability index and input variance [7]. Quite analogous opportunity is behind
the analytical method, but it is known that integration of various responses to-
gether with exponential density function not always is available in traditional
application of the symbolic algebra environment and, therefore, the SPT ap-
pears to be the most efficient. Furthermore, the input coefficient of variation is
equivalent to a progress of the corrosion process, but is not directly correlated
with age of the structure (usually some power laws of corrosion in steel struc-
tures are introduced after the experimental evidence). Nevertheless, it is quite
easy to transform the below given graphs of reliability into time-dependent ones
by engagement of some time-series representation of the corrosion process itself
and to compute the probability of its failure in the given time with use of the
formulas presented in theoretical introduction. Stochastic computational analy-
sis of this girder takes into consideration solely the influence of a single random
variable, which is the web’s thickness. Generally its reliability depends upon
some other random variables such as the load, dimensions of the girder, mate-
rial and strength parameters and other as well as upon their cross-correlations,
which should be studied further with the SPT Some other important observa-
tion concerning thin-walled structures is that their numerical modeling by using
traditional beam finite elements also in the stochastic context brings a lot of
unpredictable numerical discrepancies and, therefore, should be entirely carried
out with the shell finite elements.
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5. Conclusions

Engineering calculations concerning the corrugated web girder and its reli-
ability shall be supported by the FEM and SFEM simulations. An analytical
approach based on the formulas originating from the theory adjacent to the
straight webs is valid only in a limited manner, i.e. for normal stresses and de-
flections. The method is however completely irrelevant for the shear state on the
support which in this case constitutes the ULS of the girder.
Reliability of the corrugated web girder in the context of corrosion should

be an important aspect of its design process. This type of a structure is highly
susceptible to such phenomena and, therefore it is to be subjected to a more
detailed inspections and precise conservation than the traditional steel elements
The results of the reliability analysis according to the first-order reliability

method are almost identical to these coming from te SORM for small input
coefficients of variation. They start to diverge from about α = 0.07 with an
increasing manner – the higher the variance, the higher difference between these
methods. The index βFORM approaches 0 for high initial variances, while βSORM

equals almost 2 and this is caused by the condition for minimum curvature κ
while calculating βSORM.
The first-order reliability method is sufficient solely for the random variables,

whose influence on the strength or deformation of the beam is of the Gaussian
or almost Gaussian character. In all other cases it is indispensable to use the
second-order reliability method to gain a proper result and to correct tendencies
valid for the reliability index.
The reliability indices engaged here with the stochastic finite element method

are almost identical according to the three probabilistic methods compared in
this analysis i.e. analytical, stochastic perturbation and the Monte-Carlo sim-
ulation techniques. In this case it is advised to use the stochastic perturbation
method, which allows for a notable reduction of computation time and for ob-
taining of the continuous and sufficiently smooth output function versus a set
of the discrete values determined via the MCS.
It is recommended further to extend the reliability analysis of the corrugated

web girders to the time-dependent one, e.g. by verification of dependence of this
index on exposure time of the girder to external conditions and to determine its
response function to fire conditions also. It may be done by establishing both
bending and shear capacities of the girder in a relation to its temperature.
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