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ON A MODEL FOR PREDICTION OF THE MOVEMENTS OF A CROWD
IN NARROW EXITS

Z.Kotulski, W.Szczepinski

Institute of Fundamental Technological Research
Swietokrzyska 21, 00-049 Warsaw, Poland

In the paper a method of simulation of the movement of a crowd in narrow exits is pre-
sented. The stochastic model applied is based on the concepts proposed by J. Litwiniszyn
concerning the analysis of movements of earth masses caused by underground mining works.
The main part of the paper contains the results of mechanical simulation of the crowd move-
ment in several geometrical configurations of the exits. The concluding sections of the paper
present the diffusion interpretation of the obtained experimental results and a proposition of
further research based on several practical models of movement of granular material.

1. INTRODUCTION

Below we present an attempt to apply a stochastic model to the simulation
of the movement of a crowd in narrow exits. The model is based on the concept
proposed by J. LITWINISZYN in his early works [1-3] concerning the analysis of
movements of earth masses caused by underground mining works. In these papers
he analyzed the movements of soil particles as a random walk due to gravity
forces and random changes of mutual contacts between the particles. When the
movement of a crowd is concerned, the displacement of particular persons is
caused by their will to leave the gathering place through the particular exit and
is influenced by random contacts with other persons. Thus, one can expect that
there is a certain similarity between the random movements of particles in a
bulk of granular body and random movements of persons in a crowd leaving the
gathering place (theater, stadium, etc.), and that similar methods of analysis
may be used in the two cases. Proposing such an approach to the analysis of
movements of a crowd we do not claim that such a theoretical model strictly
corresponds to reality or that better models could not be used. To verify the
practical significances of the model, the observations of real movements of crowds
in various situations would be needed.

As the introduction to Litwiniszyn’s procedure, which constitutes the basis
of the methodology used further in this paper, let us use the well-known demon-
strating device known as the Galton’s board (see, e.g., [4]), in which small metal



348 Z. KOTULSKI, W. SZCZEPINSKI

balls falling down from a container strike numerous, regularly located pins and
are randomly directed to the right and to the left with the same probability
equal to 1/2. Finally, they fall at random into one of separate small containers
at the bottom of the device. The distribution of the number of balls in con-
secutive containers is close to the normal distribution (see, e.g., [3-5]). This is
demonstrated in Fig. 1, where the pins are shown as small circles and the field
under consideration is divided into a set of rectangular cells.
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The ball starting from the level I will be displaced to a cell on any other level
below. The probability that it falls into the left-hand or into the right-hand cell
on level IT is equal to 1/2. The probabilities of falling the ball for cells on level
III are 1/4, 1/2, 1/4, and similarly for other levels, as shown in the Fig. 1.
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2. THE METHOD OF FINITE CELLS

In the papers mentioned above, J. Litwiniszyn ingeniously analyzed the in-
verse problem in which the cavities in a bulk of a loose material move randomly
upwards from the bottom. To illustrate his idea, let us consider a two-dimensional
problem of a relatively wide container with an outlet at the middle of the bottom.
Figure 2 shows the assumed system of finite cells.
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FiG. 2.

A portion of the loose medium has just now left cell A, leaving an empty
space in it. The cavity in A formed in such a manner migrates upwards. We
assume, as in the inverse problem shown in Fig. 1, that each time a portion of
that cavity moves upwards, the probability of migrating into the right or into
the left-hand cell lying just above is equal to 1/2. It means that at the beginning
of the migration process, one half of the initial cavity A moves to the cell B and
the other half is shifted to the cell C. If the volume of each cell is assumed to
be a unit volume, the numbers in consecutive cells indicate how large portion of
the initial unit volume A passed through the cell during the migration process.
Since after migration each portion of empty space must be filled by the granular
medium falling downwards, these numbers correspond to the average vertical
displacement of the medium in particular cells. These vertical displacements are

represented in Fig. 3. Thus, the approximate field of displacements is shown by
the family of stepwise lines.
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The idea of finite cells technique shown in Fig. 3 for the basic configuration
with a single empty cell A at the bottom may be extended for more advanced

situations. An example is shown in Fig. 4 where at the bottom of a system of
cells there are several empty cells.
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These cavities move upwards in a process of movement of individuals at-
tributed to particular cells towards the exit. The numbers in consecutive cells
shown on the left-hand side of the figure indicate how large portion of the ini-
tial empty unit volume passed through the cell in question during the migration
process. On the right-hand side of the figure the stepwise lines represent the
averaged vertical displacement of individuals in the crowd moving towards the
exit.

Finally let us remark that in the both cases presented in Figs. 3, 4, the exit
should be considered as narrow, in spite of the fact that its width in both the
cases is quite different. In the paper the exit will be considered as narrow, if
the movement of the cells in the direction parallel to the symmetry axis of the
exit excites an additional intensive movement in the perpendicular direction. Its
intensity could be expressed quantitatively (in terms of the dimensions of the
container, the width of the exit and the dimensions of the cells), but this exceeds
the scope of the paper.

3. ANALYSIS OF DISPLACEMENTS

In Sec. 2 was described the numerical procedure allowing to calculate vertical
components of displacements vectors. However, each individual in the crowd
may be displaced also horizontally. Below is presented a simple approximate
method based on the finite cells technique described in Sec. 2. Let us analyze any
arbitrary set of adjacent cells, for example taken from the system of cells shown
in Fig. 2. They are represented in Fig. 5a. The numbers in them correspond to
the fraction of the initial volume of the cavity A, which passed through the cell
during migration towards the free surface of the bulk of the medium. According
to the finite cells methodology, only one half of these fractions migrates from each
cell A and B to the cell C. It is assumed that this migration takes place along
the respective lines A — C or B — C joining central points of the cells. Directions
and magnitudes of these migrating portions of the cavity may be represented by
vectors wpc and w4 as shown in Fig. 5b. They may be treated as components
of the resulting vector wc,y, representing the direction and the magnitude of the
averaged momentary flux of the cavity into cell C' during the migration process.
The opposite vector w,; may be treated as representation of the flux of persons
in the crowd filling the space left by cavities moving upwards.

In order to calculate the magnitude of the averaged displacement vector u of
persons in the crowd, it is assumed that its direction coincides with the direction
of the vector vpat. To make this procedure consistent with that described in
Sec. 2, it is assumed that the vertical component of the displacement vector
u is equal to the vertical displacement of the respective sector of the stepwise-
deformed boundary between the rows of cells (see Fig. 3). Using this approximate
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numerical procedure, the vectors of displacements have been calculated for the
problem shown in Fig. 4 the results are shown in Fig. 6, in which vectors represent
averaged theoretical displacements of individuals situated in the particular cell
after all persons from the first row of cells have left the chamber. It is seen that the
movement of persons takes place mainly in the central part of wedge-shaped area.
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In order to verify experimentally such a theoretical motion pattern, a prelim-
inary simple experimental simulation model composed of an assembly of coins of
three different diameters has been used. The initial configuration of the assembly
corresponding to the theoretical problem shown in Fig. 4 is presented in Fig. 7a.
The coins are located on a glass plate in the initial horizontal position. Then
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the plate is inclined with respect to the horizontal plane and the coins begin
to slide downwards due to the gravity forces. This movement is disturbed by
random mutual contacts between neighbors. The final configuration of displaced
coins is shown in Fig. 7b. By comparing both figures a and b, the displacements
of several coins have been measured. Such measured displacement vectors are
shown in Fig. 8. It is seen that the result largest displacements take place in the
central part, similarly to the result predicted by a theoretical model, see Fig. 6.
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4. EXAMPLE OF APPLICATION

Using the numerical technique described above one can analyze numerous
particular problems. As an example let us consider the movements of a crowd
through regularly located exits. The initial configuration along with the assumed
system of cells is shown in Fig. 9. It is assumed that persons occupying the first
row of cells adjacent to exits have just left the region, leaving these unit cells
empty, as shown in the figure. These empty unit spaces move then upwards
according to the stochastic numerical procedure discussed in previous sections.
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The numbers in particular cells indicate how large portion of the unit empty
space passed through the cells during the migration process. Using these numbers
one can calculate the stepwise approximation of the movement within the region,
see Fig. 10. Formation of the dead zones with no movement within them can be
seen in Figs. 9 and 10.
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In Fig. 11 are shown the displacement vectors calculated according to the
procedure described in Sec. 3. In place of the deadzones appearing in theoretical
solutions, the wedge-shaped structures near the exits have been introduced in
order to prevent pushing the people against the wall.
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The theoretical analysis of the movement presented here has been confronted
with the experimental simulation in which a large assembly of coins of three
different diameters slides down on a glass plate inclined to the horizontal plane.
The initial experimental configuration is shown in Fig. 12. The experiment was
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performed in three stages. In stage 1 one strip from each hole at the bottom
simulating the exit has been removed. In stage 2 two strips have been removed
and finally in stage 3, three strips have been removed. Figure 13 presents the
configuration assembly of displaced coins corresponding to stage 2.

B1c.12:
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Comparing the positions of coins in Figs. 12 and 13 one can find their dis-
placements between the initial stage and stage 2. The displacement vectors are
shown in Fig. 14. The concentration of movement along the extended axes of
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exits is visible. Also dead zones with no remarkable movements can be observed.
In such an experimental modeling and also in real movement of a crowd, one
can hardly expect such a regularity of movement as predicted by the idealized
theoretical solution, compare Fig. 11. However, main features of the movement
are close one to the other. The disturbances in the movements are caused mainly
by random mutual contacts between the coins. As a result, the coins are ram-
bling in their way towards the exits. Such rambling in paths of a number of
coins are shown in Fig. 15. Consecutive vectors of these paths correspond to the
displacements of a coin between the stages 0-1-2-3 as indicated in the figure.
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Fig: 15:

Using this stochastic numerical procedure one can analyze numerous other
problems. As an example, the displacements of individuals in the crowd leaving
the region through a sequence of exits in the presence of repeating obstacles is
shown in Fig. 16.
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5. DISCUSSION

In the paper we have presented an elementary probabilistic model of crowd
movements based on the adapted random walk process (the superposition of
a constant velocity unidirectional movement and the one-dimensional random
walk). As it is seen, such an approach has a very good mechanical analogy: the
gravitational flow of granular media. In both cases we have applied one con-
servation law: the conservation of probability (in probabilistic interpretation)
and the mass conservation law (continuity equation) in mechanical interpreta-
tion. Following the reasoning, we could transform the persons’ movements into
the discrete (finite differences) description to the continuous model governed by
partial parabolic-type differential equations. The continuous model leads to ana-
lytical representation of the continuous approximations of the boundary surfaces
of the region occupied by the crowd. As in the case of Galton’s board cf., e.g.,
[4], in the limit we obtain the heat (diffusion) equation of the form:

OP(s,y) _ 0*P(z,y)

(5.1) s 52

— 1k

where P(z,y) represents the probability that a person will cross the level y
at point z. In the model, the independent variable y represents the direction
along “gravitation” and the variable z — the perpendicular direction. Solving the
equation under the condition:

o0

(5.2) / Pl =1

—00
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and substituting o = /2Dy, we obtain:

x

(5.3) Playirdud exp[ 2].

oV 202

This function, for some value ¢ and under appropriate interpretation, de-
scribes the shape of the top surface of the granular medium leaving a container
presented, e.g., in Figs. 3, 4 or 6, in the continuous limiting case.

Also some superposition of such horizontally shifted functions could describe
analogous surfaces at Figs. 11 and 16. The situation at Fig. 16 requires several
functions with two different values of the parameter o.

So far, we did not give any interpretation of the parameter D in Eq. (5.1).
In the model of a discrete random walk applied to obtain the diffusion equation,
the parameter D is:

(5.4) D=—

where a and b are the dimensions of unit cells in the direction of z and y,
respectively. These dimensions in our experiment and in the model of crowd
movements were equal to each other. However, there is no problem to consider
a more complicated model with cells having the two dimensions different.

6. FURTHER RESEARCH

Following the reasoning of the authors considering mechanical flow problems
of granular media, we could propose other mathematical descriptions of move-
ments of a crowd. Thus, extending the random walk description in the cellular
model, we could use cellular automata to model jumps between adjacent cells
(cf., [6, 7]). As it is known, the cellular automata are discrete dynamical sys-
tems with a simple cellular structure (e.g., similar to the structure of the cells
presented in figures shown in this paper), but with sufficiently complex behavior
describing movements from cell to cell, depending on the global state of the cells
in the previous step. The cellular automata can have several states per cell (in
the random walk model we have only two states: the cell can be empty or oc-
cupied) and complicated rules of evolution: the probabilities of jumps (or rather
changes of states) can depend on the previous states of the adjacent cells or more
distant cells (lying in several layers around a cell). In such a way we could de-
scribe non-local interactions of persons in the crowd and some non-homogeneous
disturbances of the movement.

Let us remark that the cellular automata description of the crowd movement
is strictly phenomenological. In this case we observe the behavior of the crowd
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over some period of time and then identify the laws of transformation in the
corresponding cellular model. Certainly, such an approach implicitly takes into
account any mechanical constraints of the movement as well as some social con-
ditions in the moving groups of people. In the literature one can also find papers
where the mechanical laws are explicitly included into the cellular description
of the movement, e.g., the discrete mechanical models of rigid bodies presented
in ([8)).

Trying to make a deeper analysis of the movement of crowd one can extend
the elementary model considered in this paper, where only the law of conserva-
tion of mass (the continuity equation) was taken into account, and additionally
consider the other fundamental laws of mechanics: the law of conservation of
linear momentum and the energy conservation law. For example, in the paper
[9] the authors tried to describe the road traffic using mechanical analogy. The
obtained one-dimensional model was formulated as a partial differential equation
of the hyperbolic type, what finally resulted in the finite speed of transportation
(what is more realistic than in the parabolic type of the governing equation).

Finally, let us remark that the governing hyperbolic equation could be ob-
tained not only through deep mechanical analysis of the motion of individuals
in the crowd. Restricting the considerations only to the random walk over a
cellular medium, we can also use the hyperbolic telegrapher’s equation in a one-
dimensional case (see [10]), or the system of hyperbolic equations in two and
more dimensions (see [11]). According to a certain interpretation, the equations
describe the probability of finding a particle (in our case: a person) in the place
with given spatial coordinates. Certainly, to model a realistic situation of the
crowd movements, the equations must have appropriately identified parameters.
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