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This article discusses the process of validating computational models of steel-concrete com-
posite beams. The validation was conducted on the basis of experimental results and covers
the process of modelling and identification of selected parameters in the model. During the
validation process the results of experimental studies were used, and during the experimental
studies the dynamic and static parameters of composite beams were assessed. The computa-
tional model and analysis were conducted for a spatial model using the finite element method
in Abaqus environment. The analysis covered the elastic performance of the beams.
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1. Introduction

Composite constructions consist of several elements with different material
parameters, permanently joined together. Typically, these include steel-concrete
composite beams, used as direct and indirect elements in composite floors or as
main beams in bridge girders. The basic composite beams consist of a steel
section, a reinforced concrete/composite slab and a connection. Due to the role
of dynamic loads applied to bridge girders and standard requirements for floor
vibration control, an additional dynamic analysis is necessary.
A reliable computational model is essential both for the engineer’s and sci-

entist’s work. The complexity of a model depends on the scope and precision

1)Paper presented at the 1st National Student’s Conference BUDMIKA 2014, Poznań, April
23–25, 2014.
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of the analysis it is meant to perform. Advanced computer technologies can be
used to develop complex computational models and to conduct in-depth analy-
ses, with the finite element method (FEM) being the standard method of choice
[3–7]. A computational model is typically developed on the basis of basic geo-
metric data and material parameters. Unfortunately, the results it generates are
not always consistent with the real parameters of an element, especially when
steel-concrete composite beams are analysed.
Almost each computational model requires validation [8–10], no matter what

kind of analysis will be conducted. The paper presents the process of validation
of steel-concrete composite beams using the finite element method (FEM). The
process of validation was conducted on the basis of experimental results. This
process consists of process modelling and identification of some parameters of
models. The processes of modelling and identification were conducted on the
basis of dynamic and static parameters of the steel-concrete composite beam
(frequencies of normal modes, eigenmodes and deflection). After validation, the
results of numerical models show high similarity to the real beam.

2. Experimental tests of composite beams

Five steel-concrete composite beams with different spacing between studs
(stud spacing is denoted as n) were made and analysed. The beams are shown
in Fig. 1. Steel-concrete composite beams consistes of a structural steel section
IPE 160 and a reinforced concrete slab (600× 60 mm). The total length of the
beam was 3200 mm. The steel section and connection slats were made from S235
steel. The reinforced concrete was made from C30/37.

Fig. 1. Steel-concrete composite beam longitudinal view and cross-section.

The paper presents the results of analysis for beams C1, C4 and C5. Beams C2
and C3 had additional rubber bushings fixed on the studs – these results are
still being analysed. The spacing between pairs of steel studs (n) in the beams
is shown in Table 1.
In the first stage of experimental tests, the basic dynamic characteristics of

the beams (i.e., frequencies of natural modes, eigenmodes and damping coeffi-
cients) were analysed. The characteristics were determined for a free-end beam
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Table 1. Types of beams and the n spacing between pairs of steel studs.

Types of beams C1 C2 C3 C4 C5

The spacing between
pairs of steel studs n [mm]

200 150 g 150 g 150 100

scheme – the beam was suspended on two steel frames using steel cables. Fig-
ure 2 shows the beam on a test measuring stand. The suspension points were
defined so that the system would not distort further analysis.

Fig. 2. Composite beam on a dynamic parameter test stand.

This phase involved impulse excitation technique and acceleration measure-
ments. The tests were performed using the procedure defined in [11]. The grid of
measurement points, where acceleration was recorded using triaxial piezoelec-
tric acceleration sensors, is shown in Fig. 3. Impulse excitation was applied at
points A, B and C – in Fig. 3 the points are marked as x. Based on the results
of dynamic tests, some parameters of the models were identified. An additional
analysis of the dynamic characteristics of the IPE 160 steel section, 320 mm in

Fig. 3. Measurement points for composite beams.
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length, was conducted. The scheme and excitation type were the same as those
for the composite beam.
The second stage of the experimental tests was the analysis of the beams

to determine their elastic parameters under the load of 30% of their bearing
capacity. The tests were conducted in the scheme of the simple beam. Bending,
deflection and wedge draw-in at concrete-steel interface were analysed at selected
points. The results were compared with those for the identified models. The
beam on the measuring stand is shown in Fig. 4.

Fig. 4. Composite beam on the test stand-static load.

3. Validation of the computational models

The process of validation allows to estimate the degree of similarity between
the computational model and the real work of particular/certain/chosen ele-
ments. The validation process of computational model consists of several anal-
yses of the model, i.e., the process of modelling of an element (definition of the
basic geometric parameters and the material constants), preliminary verifica-
tion of the model, selection of the elements with parameters having a significant
influence on the work of model and the identification of selected parameters in
the model, which will be analysed in the following paragraphs.

3.1. Development and analysis of FEM models of composite beams

The model of steel-concrete composite beams was defined in Abaqus envi-
ronment. The analysis was conducted assuming elastic behaviour of the beams.
The scheme was modelled as a spatial system with independently modelled rein-
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forced concrete slab, steel bar and connection. During the initial analysis of the
model and its identification, the scheme of elements with free ends was assumed,
and during the static analysis, the scheme of a simple beam was assumed.
Three different beam models were analysed. The first model (denoted as

Beam 1) used solid (concrete slab) and shell elements (steel bar). In the second
model (Beam 2), only shell elements were used. In the third model (Beam 3),
both shell (concrete slab) and beam elements (steel bar) were used. The schemes
of the three models are presented in Fig. 5. The present paper focuses on the
development and validation of the solid-shell (Beam 1) model. The distance
between the elements is the sum of half the thickness of shells that defines
the top flange of steel structure and reinforced concrete slab. The process of
achieving substitute stiffness of the connection in the tangential (denoted Kh)
and normal (denoted Kv) directions was presented in [12]. The contact type
definition between the elements available in the software package Abaqus was
applied Beam 1. In this model the stiffness in both the tangential and the normal
direction to the connection’s plane was defined and identified.

a) b) c)

Fig. 5. The schemes of the analysed models: a) Beam 1, b) Beam 2, c) Beam 3.

Before the ultimate modelling of the composite beam, all its components,
including the steel section and the composite slab, were analysed to account
for the type and density of the finite element mesh. First, the IPE 160 steel
I-beam was analysed. It was modelled with shell elements (M1). Three layers
were defined to independently model the top and bottom flanges and the web.
To optimise dimensions, parameter optimisation was performed to make the
equivalent section parameters close to those of the real 160 beam. The initial
and final optimisation stages are presented in Table 2.
The analysis also focused on how changes of beam dynamic parameters were

affected by the type of finite elements (four-node – S4R and eight-node – S8R),
mesh density for the flanges and the web. The computational model results for
vertical flexural vibration frequencies (Gv), horizontal flexural vibration frequen-
cies (Gh) and the first axial (A) were compared with the experimental results
(Table 3).
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Table 2. Modelled IPE 160 steel I-beam.

Dimensions
Parameters Scheme

IPE 160
section

Sectional substitute IPE 160
section

Sectional substitute

h [mm] 160.0 160.0

bf [mm] 82.0 82.0

tw [mm] 5.0 5.0

tf [mm] 7.4 7.6

R [mm] 9.0 –

Parameters Value Value Total
error [%]

As [cm2] 20.09 20.08 0.0

Jy [cm4] 869.29 871.80 0.3

Jz [cm4] 68.31 70.00 2.5

JT [cm4] 3.61 3.64 0.9

Table 3. Changes of normal mode frequencies in the steel section depending on finite element
type and grid mesh density.

Model ⇒ M1 1/S4R M1 2/S8R M1 3/S4R M1 4/S8R M1 5/S4R

The number of elements in the web height

⇒ 2 3 8

The length of element in the length of a beam [mm]

⇒ 50 50 30

The number of variables in the model / CPU time [s]

⇒ 2772/1.1 7878/1.8 3168/1.1 9060/2.1 11772/2.5

Mode
⇓

fi exp

[Hz]
fi num

[Hz]

Total
error
[%]

fi num

[Hz]

Total
error
[%]

fi num

[%]

Total
error
[%]

fi num

[Hz]

Total
error
[%]

fi num

[Hz]

Total
error
[%]

1 Gv 113.4 110.3 2.8 112.5 0.8 111.6 1.6 112.5 0.8 112.2 1.1

2 Gv 295.8 288.6 2.4 293.7 0.7 291.7 1.4 293.7 0.7 292.9 1.0

3 Gv 541.8 527.9 2.6 535.6 1.1 532.8 1.7 535.6 1.1 534.4 1.4

4 Gv 824.6 803.8 2.5 813.4 1.4 810.1 1.8 813.4 1.4 811.9 1.5

1 Gh 32.5 28.5 12.4 32.7 −0.6 28.5 12.4 32.7 −0.6 32.3 0.6

2 Gh 88.9 78.3 11.9 89.5 −0.8 78.2 12.0 89.5 −0.8 88.6 0.3

3 Gh 171.5 152.8 10.9 173.1 −1.0 152.4 11.1 173.1 −0.9 171.6 −0.1

4 Gh 276.4 250.5 9.4 278.4 −0.7 248.8 10.0 278.3 −0.7 276.9 −0.2

1A 800.5 798.2 0.3 798.0 0.3 798.2 0.3 798.0 0.3 798.1 0.3

SCHEME
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Comparative analysis of the models showed that the increasing number of
variables improved the consistency of computed and experimental results. For
eight-node elements with square shape function (S8R), the mesh density is sat-
isfactory (the maximum difference of 1.4%) even for the first model M1 2/S8R.
The four-node elements (S4R) are the linear equivalents of S8R. To obtain sim-
ilar results for the model with S8R elements, the steel beam had to be divided
into eight elements at the web’s height, into six elements along the flanges’ width
and into 30 mm elements along the beam’s length. For finite element mesh uni-
fication purposes, the model M1 5/S8R was selected for further analysis.
The next analysed element was the reinforced concrete slab, modelled with

solid elements (model P1). The analysis focused on changes in vertical flexu-
ral vibration frequencies (Gv), torsional vibration (T ) and the first axial (A)
of the slab depending on the type of finite element (C3D8R, C3D8I, C3D20R)
and mesh density (60, 30, 20 mm). The analysis presented in Table 4 (just as
above) shows that the increasing number of nodes improves the consistency

Table 4. Changes of normal mode frequencies in the reinforced concrete slab section depending
on finite element type and grid mesh density.

Model P1/60 P1/30 P1/20

The global dimension element [mm]

⇒ 60 30 20

Type of finite element

⇒ C3D8R C3D81 C3D20R C3D8R C3D81 C3D20R C3D8R C3D81 C3D20R

The number of variables in the model / CPU time [s]

⇒ 3564/
3.2

10454/
2.4

12084/
2.7

20412/
7.6

76052/
18.2

73683/
31.4

59892/
19.4

247092/
62.2

222291/
107.9

Mode
⇓

fi num

[Hz]
fi num

[Hz]
fi num

[Hz]
fi num

[Hz]
fi num

[%]
fi num

[Hz]
fi num

[Hz]
fi num

[Hz]
fi num

[Hz]

1 Gv 2.3 20.9 20.9 18.1 20.8 20.9 19.7 20.8 20.8

2 Gv 6.3 57.2 57.4 49.8 57.4 57.4 54.2 57.4 57.4

3 Gv 12.3 111.7 112.4 97.5 112.3 112.4 106.0 112.3 112.3

4 Gv 20.2 187.7 185.4 160.7 185.0 185.2 174.7 185.1 185.1

1 T 10.1 68.1 68.9 59.8 68.7 68.7 64.9 68.7 68.7

2 T 20.3 138.6 140.3 121.8 140.0 139.9 132.0 140.0 140.0

3 T 30.8 213.6 216.6 188.0 216.0 215.9 203.9 216.0 216.0

4 T 41.7 295.0 299.9 260.2 298.9 298.9 259.9 299.0 299.0

1 A 1079.8 1079.8 1080.5 1080.3 1080.3 1080.5 1080.4 1080.4 1080.4

⇒
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of the models. The analysed solid elements were eight-node linear shape func-
tion with reduced integration (C3D8R), linear shape functions enhanced with
incompatible mode function (C3D8I) and 20-node elements with square shape
functions (C3D20R). Full consistency of the model for C3D8R was not achieved
with the given mesh density. What is more, division into one element along the
slab’s height seems to produce results that completely deviate from others. This
is due to integration reduced to one point in the middle of an element. Not
surprisingly, such an element is not able to detect flex-induced deflection. Even
for a mesh with 20 mm elements, full convergence cannot be achieved. Some
eigenmodes of concrete slab were presented in Fig. 6.

a) b)

c)

Fig. 6. Eigenmodes of concrete slab: a) first vertical flexural mode 1 Gv,
b) second vertical flexural mode 2 Gv, c) first torsional mode (1 T).

Very good results were obtained for C3D8I and C3D20R elements, which
provided good convergence practically from the first mesh density. At the suc-
cessive mesh densities (elements of 30 mm), differences between the models were
almost eliminated. The time of analysis plays an important role in selecting finite
elements for further analysis. Although the number of variables was similar in
all the models, computation time for C3D20R was almost twice as long as that
for C3D8I. Consequently, C3D8I elements were selected for further analysis. For
finite element mesh unification purposes, the following parameters were finally
selected: elements of 50 mm length and division into two elements at the slab’s
height. An additional convergence analysis of results from Table 4 confirmed the
choice of mesh density.

3.2. Identification of the models using basic dynamic parameters

The identification process was carried out at multiple levels. The results ob-
tained during the experimental studies for basic dynamic and static parameters
of the steel-concrete composite beams were analysed.
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The first stage (STAGE 1) of identification was conducted on the basis of
experimental test of dynamic parameters. The first parameter was the dynamic
longitudinal modulus of elasticity of the concrete slab Ed, accounting for the
effect of its longitudinal reinforcement. The other two parameters concerned the
stiffness of connection, which plays an important role in composite structures.
In dynamic analysis, it is necessary to have stiffness in the direction tangential to
the plane of connection (KHz) and connection stiffness in the direction normal
to the plane of connection (Kv).
Identification of the models was limited to four flexural and one axial eigen-

modes. The best fit of computational and experimental dynamic characteristics
was assumed to be the consistency criterion. Consequently, index Sd can be
minimised and can be given by

(3.1) Sd =

5∑

I=1

(
f exp
i flex − f com

i flex

f exp
i flex

)2

+

(
f exp
1 long − f com

1 long

f exp
1 long

)2

,

where Sd is the dynamic sum of squares of relative deviations of computational
and experimental frequencies of the first five modes of flexural vibrations and
fundamental mode of axial vibration, fi flex – next flexural vibrations, f1 long –
frequency of fundamental mode of axial vibration, exp – experimental results
and com – computational results.
Parameter identification and analysis of the computational model were con-

ducted using an automatic computational loop, combining optimset tool in Mat-
lab, Python and Abaqus environments. Identification results are presented in
Table 5. During the first stage of the analysis the similarity between computa-
tional and real vectors of the form of vibrations was controlled. Some eigenmodes
of steel-concrete composite beam are presented in Fig. 7.

a) b)

c)

Fig. 7. Eigenmodes of beam: a) the first flexural mode 1 Gv, b) the second
lexural mode 2 Gv, c) the third flexural mode 3 Gv.
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Table 5. Identification results of the steel-concrete beams.

Mode
⇓

fi exp
[Hz]

fi num
[Hz]

Total error
∆ [%]

BEAM C 1 STAGE 1

1 Gv 76.6 77.2 −0.8

2 Gv 178.4 177.5 0.5

3 Gv 283.0 283.1 0.0

4 Gv 383.5 384.1 −0.2

1A 626.8 620.5 1.0

Sd 2.144E–04

Ed [N/m2] 3.218E+10

Kv [N/m3] 4.000E+10

Kh [N/m3] 4.255E+10

BEAM C 4 STAGE 1

1g 77.2 77.5 −0.3

2g 178.0 177.8 0.1

3g 283.1 283.7 −0.2

4g 386.1 385.9 0.1

1o 632.2 629.4 0.4

Sd 1.459E–04

Ed [N/m2] 3.324E+10

Kv [N/m3] 3.882E+10

Kh [N/m3] 3.926E+10

BEAM C 5 STAGE 1

1g 78.2 78.8 −0.8

2g 183.7 184.2 −0.3

3g 295.7 296.9 −0.4

4g 405.9 405.7 0.1

1o 650.5 643.6 1.1

Sd 2.622E–04

Ed [N/m2] 3.722E+10

Kv [N/m3] 5.080E+10

Kh [N/m3] 6.754E+10

3.3. Identification of the models using basic static parameters

The next STAGE2 of identification was conducted using the results of exper-
imental tests, by comparing model response to the given load. Loads induced
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into the model (points and forces) were the same as those induced into the
beam in the tests. The boundary conditions of the model were the same as
those for the simple beam in the experiments. The force of 1.5 kN was applied
to the beam with 1 m spacing. Deflection was measured in points P1, P2 and
P3 that overlapped with the points selected in the tests. Next, deflection values
ui exp recorded in the experiments were compared with those ui num obtained
from the computational model. The loading scheme and measurement points
are presented in Fig. 8.

Fig. 8. Loading scheme, measurement points of beam deflection.

The second step (STAGE 2) of identification decomposed for two cases
(STAGE 2a and STAGE 2b). At the STAGE 2a, identification data were anal-
ysed, with the dynamic longitudinal modulus of elasticity Ed. At the STAGE 2b,
an attempt was made to estimate the static modulus of elasticity Ec, based on
modulus Ed. In line with the guidelines in [13] and [14], the relation between
the moduli can be given by

(3.2) Ec = 1.25 · Ed − C,

where constant C was determined for concrete types in which cement content
does not exceed 500 kg/m3.
During the STAGE 2 the index Ss can be given by

(3.3) Ss/i =

3∑

j=1

(
uexpj − ucomj

uexpj

)2

,

where Ss is the static sum of squares of relative deviations of computational and
experimental deflection of the beam, I – index a or b depending on the STAGE
of the identification, uj – value of deflection in the point, exp – experimental
results and com – computational results.
Identification results for beams C1, C4 and C5 for STAGE 2a and STAGE 2b

are presented in Tables 6, 7, and 8, respectively.
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Table 6. Identification results for beam C1 for STAGE 2a and STAGE 2b.

Analysis Static Dynamic

Point
⇓

ui exp

[mm]
ui num

[mm]
Total error
[%]

Mode
⇓

fi num

[Hz]

Beam C 1 STAGE 2a

P1 3.06 2.83 7.5 1 Gv 38.25

P2 3.52 3.22 8.4 2 Gv 121.24

P3 3.03 2.83 6.6 3 Gv 186.19

Ss/2a 1.71E–2 1A 667.94

Ed [N/m2] 3.218E+10

Beam C 1 STAGE 2b

P1 3.06 3.11 −1.5 1 Gv 36.55

P2 3.52 3.54 −0.7 2 Gv 116.15

P3 3.03 3.11 −2.5 3 Gv 178.36

Ss/2b 9.02E–4 1A 598.88

Ecm [N/m2] 2.123E+10

Table 7. Identification results for beam C4 for STAGE 2a and STAGE 2b.

Analysis Static Dynamic

Point
⇓

ui exp

[mm]
ui num

[mm]
Total error
[%]

Mode
⇓

fi num

[Hz]

Beam C 4 STAGE 2a

P1 3.06 2.81 8.2 1 Gv 38.381

P2 3.52 3.21 8.8 2 Gv 121.41

P3 3.03 2.81 7.3 3 Gv 186.42

Ss/2a 1.97E–2 1A 675.6

Ed [N/m2] 3.324E+10

Beam C 4 STAGE 2b

P1 3.06 3.07 −0.3 1 Gv 36.82

P2 3.52 3.51 0.4 2 Gv 116.74

P3 3.03 3.07 −1.3 3 Gv 179.28

Ss/2b 1.93E–4 1A 592.9

Ecm [N/m2] 2.123E+10

In computational models of Beam C 5, deflection differences were about
7%, which may suggest some inconsistencies in the model. The whole process of
model development and model identification should be analysed again at length.
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Table 8. Identification results for beam C5 for STAGE 2a and STAGE 2b.

Analysis Static Dynamic

Point
⇓

ui exp

[mm]
ui num

[mm]
Total error
[%]

Mode
⇓

fi num

[Hz]

Beam C 5 STAGE 2a

P1 3.06 2.69 12.1 1 Gv 38.935

P2 3.52 3.07 12.8 2 Gv 124.74

P3 3.03 2.69 11.2 3 Gv 191.42

Ss/2a 4.36E–2 1A 703.86

Ed [N/m2] 3.722E+10

Beam C 5 STAGE 2b

P1 3.06 2.87 6.2 1 Gv 37.72

P2 3.52 3.28 6.8 2 Gv 120.70

P3 3.03 2.87 5.3 3 Gv 185.47

Ss/2b 1.13E–2 1A 592.52

Ecm [N/m2] 2.753E+10

The same applies to the real model. During further analysis, this model will be
removed.

3.4. Validation of the computational models – the global degree of similarity

The global degree of similarity SG of computational model for the composite
beam, expressed in percent, can be given by

(3.4) SG/i = 1− (Sd + Ss/i),

where i – index a or b depending on the STAGE of the identification, Sd –
dynamic results sum of squares – STAGE 1 and Ss – static sum of squares
depending on the STAGE – a or b.
The final values of SG are presented in the fourth row of Table 9. The global

error between the results obtained in STAGE 2a and 2b is denoted as ETOT,
the values are presented in the third row of Table 9.

Table 9. The global degree of similarity SG of computational model for composite beam.

No Description Beam C 1 Beam C 4

1 Sd + Ss/2a STAGE 1 + STAGE 2a 1.73E–02 1.98E–02

2 Sd + Ss/2b STAGE 1 + STAGE 2b 1.12E–03 3.48E–04

3 ETOT The global error 94% 98%

4 SG The global degree of similarity 99.89% 99.97%
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4. Conclusions

The processes of development and validation of computational models of
the steel-concrete composite beam were presented. Beams models were defined
in FEM as a spatial system using Python, Abaqus and Matlab systems. After
validation, the results of Beam C 1 and Beam C 2 numerical analyses show high
similarity to real steel-concrete beams.
The identification process was carried out at a multi-level using the results

of the experimental studies. The STAGE 1 of identification was based on the
results of experimental research defining the dynamic parameters of the beams.
STAGE 1 was performed using equivalent section, material parameters and con-
nection stiffness. The process of identification was carried out on experimental
results, determining the dynamic parameters of the beams. On balance, iden-
tification was successful and the maximum difference between results obtained
for all the beam models was 1.1%.
The STAGE 2 of identification was based on the results of experimental re-

search defining the static parameters of the beams. Summing up the analysis
of STAGE 2 it can be concluded that the change of the static modulus of elas-
ticity Ec had a positive impact on the degree of similarity of the models. The
computational models of Beams C1 and C4 showed high convergence to the real
model.
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