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Summary of the whole paper: By now, the SADSF method is practically the only tool
of shape design of complex machine elements that provides an effective solution, even to the
problems of 3D distribution of the material, and at the same time it is still enough user-friendly
to be useful for engineers. This unique property of the method is due to the existence of its
simple applicatory version. When using it, a design engineer does not need to solve by oneself
any statically admissible field - which could be very difficult - but obtains such a solution
by assembling various ready-made particular solutions. The latter are in general obtained by
means of individual and complex analyses and provided to a designer in a form of libraries.

The algorithms presented in this paper break up with the individual approach to a particu-
lar field. The algorithms are the first ones of general character, as they apply to the fundamental
problems of the method. The algorithms enable solving practically any boundary problem that
one encounters in constructing 2D statically admissible, discontinuous stress fields, first of all
the limit fields. In the presented approach, one deals first with the fields arising around iso-
lated nodes of stress discontinuity lines (Parts II and III), then integrates these fields into 2D
complex fields (Part IV).

The software, created on the basis of the algorithms, among other things, allows one to
find quickly all the existing solutions of the discontinuity line systems and present them in a
graphical form. It gives the possibility of analysing, updating and correcting these systems.
In this way, it overcomes the greatest difficulty of the SADSF method following from the fact
that the systems of discontinuity lines are not known a priori, and appropriate relationships
are not known either, so that they could be found only in an arduous way by postulating the
line systems and verifying them.

Applicatory version of the SADSF method is not described in this paper; however,
a reference is given to inform the reader where it can be found.

PART IV

INEGRATION OF FIELDS AROUND NODES INTO PLANAR COMPLEX FIELDS
Summary of Part IV: In this part of the paper, the author presents a general concept of
algorithms of two program modules that integrate component fields around nodes into planar
complex fields. The first module, the auxiliary one called module C, is used to construct the
objects of incidence of the regions and the lines that are generated automatically, based on
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a freehand sketch of the field structure — which can be drawn, for example, on the monitor
screen by means of a mouse. The proper integration, however, is performed by the second
module, called module B, which utilises both the incidences brought in by module C, and the
solutions of component systems of stress discontinuity lines around nodes — the latter obtained
using the module called A. The individual partial problems are still demonstrated here, and
the example of the already known solution of the field type f90 is used for this purpose.

Attention is also focussed on the effects of partial autonomy that are revealed in the in-
tegration problems. These effects consist in decoupling of two systems of conditions: the one
defined on geometrical parameters, and that based on stress parameters. The conditions are
utilised, for example, in the algorithms of the application version software for finding par-
ticularly complicated fields that could contain as much as several dozens of homogeneous
regions. An example of such a solution is shown along with its application to shaping com-
plex elements of a structure. The example confirms once again great potential of the SADSF
method.

Key words: shape design, limit analysis, numerical methods.

15. PLANAR COMPLEX FIELDS

15.1. Parametric description of field

Let us consider an uncomplicated, planar stress fields (see Figs. 1 and 19d),
in which stress discontinuity lines form planar networks consisting of segments
of a straight line, and assume that the state of stress in each mesh of the net-
work is homogeneous. On the physical plane these fields are defined by the set
{0, a, D} (1.1).

If we assume — as in previous parts of the work — that the fundamental
component units of complex fields are the fields around their nodes, we recognise
the complex field as the one created of at least two fields around nodes. In the
case when we consider limit fields and apply yield conditions in the parametrised
form (6.2), the set (1.1) — describing the complex field - can be expressed in
a more convenient form:

(15.1) {w, d,a,D},

where: w = {(c(:z): a=1.7T}" = {(;z): o=1.7} &= {(8): w=1. W},

In this part of the work we still assume the Huber-Misses condition as the
preferable one. However, this will be explicitly visible only in the example il-
lustrating the features of the integrating algorithms. Although the algorithms
themselves are based on procedures that depend on yield conditions, these pro-
cedures are used only as auxiliary means, namely to recreate complete sets of
data out of the irreducible sets provided by the module A.



ALGORITHMS OF THE METHOD OF (SADSF) — PART IV 121

15.2. Structural objects

The structural objects can be created in many ways, depending on speci-
ficity of the problems or particular applications. In the case of networks of sub-
stantially irregular stress discontinuity lines, it is convenient to transform them
first into structurally homogeneous systems. This can be done, for example, by
dividing polygonal meshes into triangular ones by introducing additional seg-
ments of the lines that are no longer the stress discontinuity lines. The object
D can then be defined in the form of a rectangular matrix of dimensions T x 3,
whose rows specify numbers of nodes associated with the vertices of consecu-
tive triangular regions a (o = 1..T'), ordered in a uniform way for the whole
network.

For the field of Fig. 19d with application of the convention of numbering
the nodes and triangles assumed there, the matrix representing the object D
has the form shown directly below the sketch of the field structure depicted in
Fig. 19d. Because the homogeneous regions bounded by the broken lines between
the vertices (1,5,6,7) and (2,8,4,3) are quadrilaterals (see Fig. 19c), we have
introduced additional segments {6,7}, {8,3}. In order to emphasise that these
are not stress discontinuity lines, the two segments are drawn as broken lines in
Fig. 19d.

One of important reasons for defining the structural objects D in this par-
ticular way is the fact that it can be mapped onto other necessary structural
objects. Among those there is one, denoted in the algorithms by an illustrative
three-letter symbol IST, whose example form is shown under the graph 19b.
This form, as well as the object D, are both valid for the field of Fig. 19. As
it can be seen, the object has the form of a matrix of dimensions L x 2, whose
rows are associated with the numbers of segments of stress discontinuity lines
(1..L) and contain specification of numbers of the homogeneous regions aj, as
adjacent to these lines (this explains the use of ST in object’s denotation).
Then, the object IST comprises the information allowing for setting the sys-
tems of conditions on individual stress discontinuity lines. This property has
been already exploited in algorithmic creation of systems of equations and in-
equalities ([4]) based on the general recursive formulas presented in Part II of
this work.

The object IST is a derivative one with respect to object D, as it is obtained
in the result of the unique mapping D — IST. The further structural objects,
defined for the purposes of the algorithm of integration of fields around the nodes,
which could be derivatives of D or not, will be consequently introduced in the
following sections. An illustrative denotation ITN = D (triangles-nodes) will
also be used there as a rightful equivalent of D. Then, the two symbols under
the graph in Fig. 19b are identical.
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Fic. 19. Field type f90 solved for the Huber-Mises yield condition with the data:

(1,2) (3,4) (5,6) (1)
{'p’ =1[0.0000, - 0.8369] -k, P = [0.0000, 1.7321]-k, B =[0.0000, 1.7321]-k ‘&’ = (-80,0),
B= (80,0), ¥= (80,90), @ = (-80,90) [mm]}, k = 0;1//3; a) limit fields around nodes 1

and 7; b) sketch of the initially assumed structure and the objects D and IST consistent
with the structure; c) limit structures of stress discontinuity lines around all nodes of the
field; d) complex field; e) set of images P*# of stress discontinuity lines in area A.
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15.8. The conditions of structure preservation

The essential feature of the object D defined in this way is the simplicity of
the conditions, formulated on the basis of this object, that are used to verify
the existence of the place for realisation of each homogeneous region on the
plane {a}. In order to do so, it is enough to demand for the fulfilment of the
straightforward conditions (1.7), presented in Part I, for all the triangles that
make up the field.

The mentioned conditions (1.7) are called the geometrical conditions of preser-
vation of the structure of stress discontinuity line system. The equivalent condi-
tions, formulated at the stage of fields around nodes, were the inequalities (10.1).
They express a similar demand, but there it is expressed in the form of weaker
conditions, which allow for the angles between the consecutive discontinuity lines
being greater than 7. One has also neglected introducing the artificial division
lines there, and the homogeneous regions have the form of half-infinite circular
segments.

Obviously, the structure of the stress discontinuity line system is preserved if
there exists each of the originally established homogeneous regions and each line
L, and if the condition (9.3), called the static condition of existence, is satisfied
for every line.

16. INTEGRATION OF FIELDS AROUND NODES INTO PLANAR
COMPLEX FIELDS

16.1. Ezample of analysis of component fields around nodes
of field type f90 (Fig. 19)

Let us consider an example of uncomplicated and generally known field type
f90 previously shown in Fig. 1. The example will be used to illustrate the concept
of solving planar complex fields that consists in analysing first the fields around
individual nodes, and then integrating them into more complicated systems.
The example will be presented as an illustrative drawing, and at this stage the
integrating algorithms will not be used. The procedure described in the example,
formulated in a more precise form, is also used in the mentioned algorithms as
well as in the latest application versions (|3, 5]).

It is necessary to find only two fields around the nodes in order to solve
the field. To avoid repetition of the already known results, let us assume that
one of the fields is a variant of field type B. It is shown in Fig. 16, and is also
presented in Fig. 19a after being completed with the lines £%!, £30 separating
the external regions from the stress-free areas. Similarly as in Figs. 19b, d, the
considered node will be denoted by number 7, and the other node by number 1.

To help one imagining the location of the two nodes in the complex field, in
Fig. 19 we present a sketch of the initially assumed structure of a field type f90.
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Such a sketch, drawn ‘manually’ with a mouse on the monitor screen, is the
starting point for solving any complex field. The numbers assigned to individual
nodes and homogeneous regions establish the system of their mutual associations
recorded in the structural object D = ITN.

It is visible in Fig. 19b that the coupling between the fields around nodes 1
and 7 (Fig. 19a) is realised in such a way that the homogeneous region 3 of the
field around node 1, and the region 1 around node 7 constitute, in this complex
field, the same triangular homogeneous region denoted by 4 in Fig. 19b.

Similarly, the homogeneous regions 2 around nodes 7 and 1 constitute the
region 8 in the complex field (Fig. 19b). The states of stress in the regions around
the mentioned nodes must then be identical. In effect, the direction of line £12
of the field around node 7, and that of line £2 of the field around node 1 are the
same. Similarly, the line £%! of the field around node 7 is parallel to the line £3:0
of the field around 1 (Fig. 19a). The line £%! of field 1, drawn parallel to £*° of
field 7, is externally loaded with a stress p%! whose vector is normal to this line,
and whose magnitude is not yet known, as the solution of field around node 7
has been assumed a priori (when one uses the numbering convention accepted

(s
for the complex field of Fig. 19d, the stress vector would be denoted lﬁ)).
In the field around node 1 we have:
(3) ®

w = 60.00, ¢ = 90.00000°,

(2) (2)
w-=90.00; %0 =117:36781%
(1) (1)
=0 o ¢g=90,

(@)
where ¢ are measured in the system {a}, where the complex field has been

defined.

In order to ensure the existence of a physical place for the region 8 (Fig. 19b,d),
one has to demand that the versor of line £? be contained between the versors
of lines £%! and £23. The state of stress in the region 1 of this field, namely the

a . . :
parameter ulz, is not yet known, and it must be determined. In order to do so,
for Q12 = 1,2, we formulate two equations of type (7.1) in the form:
@ O

(a) 2 (0, 0,Q2) = ¢ - ¢,

i 1
into which we substitute (¢) =v¥isor (qﬁ) = 90°. Due tg,the conventions congerning
the system {£}(%), it is more convenient to assume ¢ = 180° instead of ¢ = 0°,
which does not change the result on the physical plane. We then substitute
(see Table 1):

(2) (2) () (2) (@)
w =90.00, ¢ — ¢ =-62.6322° or ¢ — ¢ = 27.36781°
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Table 1. Parameters of component fields around nodes 1 and 7,
and the parameters of complex field type f90 of Fig. 19
— solved for the Huber—Mises condition.

— parameters of field arround node 1:

o1/k=0.00000
o2/k=0.00000
$[4] = 90.00000

w[3]=160.00000
o1 /k=1.73205
2/k =0.00000

(3] = 90.00000
Av[3]=35.26439
A@[3] =0.00000
A~[3] =90.00000

q(3]=0

w[2]=90.00000
o1 /k=1.00000
02/k=—1.00000
$[2] =117.36781
Av[2]=37.10342
Ag[2] = —27.36781
A~[2] =27.36781

g[2]=1

w[1]=35.26439
o1/k=1.99156
o2/k =0.83686

#[1] =180.00000
Av[1]=17.63219
Ag[1] = —62.63219
A~[1] =287.63219

q(l]=4

o1/k=0.00000
2/k=0.00000
#[0] = 180.00000
A¢[0]=0.00000
A~[0] = 270.00000
q[0]=3

v[3, 0] = 450.0000

V[2,3] = 414.7356

Ul 2] &=

377.6322

v[0, 1] = 360.0000
p[1]/k = 0.0000
p[2]/k = 0.8369

t

3

/
Lhs

..................

- parameters of field arround node 7:

o1/k=0.00000
o2/k=0.00000

w[3]=120.00000
o1/k=0.00000
o2/k=—1.73205

¢[3] = —90.00000
Av[3]=35.26439

w[2] =90.00000
o1/k=1.00000
o2/k =—1.00000

$[2] = —62.632190

Av[2]=90.00000

w[1]=60.00000
o1/k=1.73205
2/k=0.00000

(2] = —90.00000
Av[1]=144.73561

o1/k=0.00000

o2/k =0.00000
(0] = —90.00000

A@[0] =0.00000

pigh 000040 A¢[3]=90.00000 |Ap[2]=-27.36781 |A¢p[1]=27.36781 |A~v[0]=270.00000
A~[3]=180.00000 | Ay[2]=117.36781 |Av[1]=54.73561 | q[0]=3
q[3]=0 q2]=2 gll]=1
| #[3,0] = 360.0000 [ v[2,3] = 324.7356 [ v[1,2] = 234.7356 [ v[0, 1] = 90.0000 |
7 3 e 3 1
REN
- - I <-> >
=gy a5
™ B BB BR/K 00K (Ge/ool . W ¢ 1 -800000  0.0000
1 219 1992 1837 0000 1000 352644 —180.0000 . " 0.0000
2 843 0000 1732 0000 1000  60.0000 90.0000 o ol oo
3 657 0000 1732 0000 1000  60.0000 —90.0000 " - 90.000
4 167 0000 1732 0000 1000  60.0000 90.0000 . "0 90.000
5 789 -1.732 0000 0.000 1000 120.0000 —90.0000 . oo o0 ooo
6 328 0000 1732 0000 1000  60.0000 —90.0000 . "o 54664
7 982 -0577 0577 0816 1.000 90.0000 2426322 o . 54 664
8 179 —0577 0577 —0.816 1.000 90.0000 117.3678 0000 o5 497
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Table 1. [cont.]

b Lol Laoid s Lo d vy Wi W Wy W, Ws We Wy (W
14 399900 0%1 (26 79 00 o]l
15742 137 001040 |12 3 B0 PRt
120000 0][3 4 28000 0[[3
120000 0|4 830000 0|4
INL= |1 2 0 0 0 0 05 INN= |6 7 0 0 0 0 0|5
3100, 6 6 o6 517 90 0 096
i 025 3700 ot 5.8 6149 0 0}7
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Equations (a) must be solved with the condition:

. 8 e aig

and the given geometrical condition. The latter should be expressed in the form
of an appropriate analytical formula, but we omit explaining how to do that.

It is evident that the problem formulated in such a way is exactly equivalent
to the case of the elementary problem <3> described in Sec. 13.

We obtain here four roots: W= 144.7356, 120.0000, 60.0000, 35.2644. Sub-

stituting them into formulae (7.1), we can calculate Agb((ul)),gi),Ql’Z) for all para-

meters of the families Q%2 = 1,2, and then verify the fulfilment of conditions
(a) and the geometrical limitations imposed on the field of versors of line £12.

The whole set of these conditions is satisfied for W = 35.2644 and g2 =4, for

which A'y((c:)), w, q"?) = 287.6322°, and this makes it possible to determine the

direction of line £1:2.
The sketch of the field around node 1, shown in Fig. 19a, was drawn for the

parameters calculated in the way described above. The parameter i 35.2644

is related to the principal stresses o3 = 1.9916k, 0'» = 0.8369k, so that the
components of the stress vector applied to line £%! (n = (0, 1)), given in the
system {a}, are equal to: pg’l = —0.8369 &, p(l)’1 =0

Table 1 juxtaposes the numerical results and the sketches of the states of
stress in the homogeneous regions of fields around the component nodes 1 and 7.
It facilitates a more precise apprehension of the numerical data associated with
the presented solution, including the possibility of searching for intermediate
values of individual variables. The data are shown in the form consistent with
that edited on the monitor screen during the session with module A

The states of stress in individual homogeneous regions and their parameters
are presented in separate windows, mutually interrelated. In the pictures, we
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have applied the following method of graphical presentation:
e bold arrows denote principal stresses (3)1,(3)2; the axis {{-‘1}(0‘) has the direc-
tion (3)1;
e the numbers of homogeneous regions a are circumscribed with circles; the
centres of these circles are located at the points (0,0) of the local systems

(B
e the angles Ay(w
e the angles A¢(w , ¢@t1)) have no special denotations, as they can
be easily 1dent1ﬁed based on the positions of individual local systems {¢}(*)

e the discontinuity lines £*%*! separating regions o, o + 1 are drawn as
dotted lines, while the lines perpendicular to them are dashed lines.

@ (QJI) q(@2*1)) are marked by arches ended with arrows;

(0) (0+1)

The windows over the graphs are used for editing numerical values of field
parameters. Consequently, the windows in the first upper row contain the para-
meter values; first these associated with the system of co-ordinates {a}, next the
parameters pertaining to {£}(®)

Directly below that row, but still over the graphs, one can find the interme-
diate windows, whose positions are selected to illustrate their references to the
states of stress in both adjacent regions. There are given the values of parameters
v®2+l and the applied external loads p®®*! if these take non-zero values. The
components of these loads are expressed in the systems associated with the lines
L%t It must be emphasised that the system {¢ }(0) is defined in a different
way than the other ones (see Figs. 4 and 6). Its axis §; is directed towards the
node of line £%!, while in the other cases the direction is opposite.

Figure 19c depicts the whole set of stress discontinuity lines systems around
all the nodes of the analysed field given in the system {a}. Having the direction
of the lines, and knowing the geometry of the boundaries Sy, S, defined as:

(C) (1) ( 80, 0) () (80 0) (3) (6)

a = (80,90), @ = (-80,90) ([mm]),
we can graphically (or numerically) determine the co-ordinates of all remaining
nodes.We can also assign the states of stress calculated by means of the module A
to the homogeneous regions of the complex field. In the case when the operations
are to be performed by the algorithm, they must be defined on data structures
acceptable for the compiler.

16.2. Incidences of regions and lines

The module C is used to graphically construct the structural objects of
stress discontinuity line networks: ITN, IST, ISN, INN, INL, which respec-
tively pertain to the incidences of the following types: triangle — numbers of its
nodes, segment of line £ — the triangles separated it, segment of line £ - its
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nodes, node — adjacent nodes, and node - local numbers of lines that originate
from the node. The latter are identical with the numbers given to the lines
when solving the field with the aid of implementation of the module A algo-
rithm.

In the presented algorithms, only ITN and INL can be independent, al-
though the independence of ITN from INL is revealed only when it refers to
the artificially introduced lines.

The session with the implementation of module C starts from drawing a
sketch, by means of a mouse, of segments of the line £ network. In the next
step we numerate the nodes and then the triangles. Based on this graphical
information, the module automatically generates the objects ITN and INL.
Obviously, all the lines identified there are treated on equal rights, without paying
attention to the stress field, which does not allow for finding the lines that
separate regions of identical states. Therefore, an additional correction is needed
in order to select such lines. It is accepted that these lines are given number 0.
By doing so, all other lines are automatically re-numerated. The most important
thing is that the numbers of individual lines £%# must be consistent with those
given when solving the component fields around nodes. It can be proven that,
once the objects ITN, INL are at our disposal, we can uniquely attest the
identity of the regions specified by local numeration (associated with a node)
with those specified by global numeration (associated with the complex field). At
the same time, we can also identify the states of stress and the status of lines that
separate them. In effect, when the solutions of the fields around nodes are given,
it becomes possible to combine them into a planar complex field determined on
the physical plane {a}.

In the case of field type f90 (see Figs. 19¢ and 19d), the objects INL and
INN take the forms presented in Table 1.

16.8. Construction of complez field

Let the starting point for the problem be the set of parameters: {w}, = {(:)):
a = 1.N}, , {d}y = {(¢) Pa SR V], i (Pt U g IR 259
— determined for individual nodes w by means of the module A, and the co-
ordinates of the nodes located on S, + Sp. In this example, the set of these
co-ordinates has the form given by equalities (c) (Part IV).

On the basis of ITN and INL, given by module C, one can select the identical
homogeneous regions in the fields around nodes and in the complex field. In effect,

a) @
the states of stress in all triangular regions { (w), ¢:a = 1..T'} can be determined.
Similarly, on the basis of INN and INL (ITN — INN) one identifies the
angular parameters of lines originating from the nodes. There holds the relation-
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ship: ws = INN [w, ], 1 = INL [w, ], and this means that the number of node w,
— adjacent to node w — is placed in the object INN on the same position as the
local number of line 1 originating from this node in the object INL (see Table 1).

Obviously, when using this relationship, one must make a correction of de-
notations of the parameters v®%*!, Actually, this correction has already been
made in the module A, where — besides of the indices a, a + 1 — the lines are
also numerated with successive natural numbers, [ = 1,2,... (the same numbers
were given in the module C). In order to mark this small change, denotations
used for to the parameters: {v},, = {v! : 1 = 1..L},, are similar, but printed in
fonts of slightly different shapes.

Once we have the object ITN, the angular parameters of all its lines {v},,
originating from the nodes, and geometrical description of the boundary S, +S,,
we can determine the co-ordinates of nodes as the points of intersection of the
lines, starting from the nodes given on the boundary, and then the currently
calculated ones. The procedure is repeated until the locations of all the nodes
are determined. The fact that calculation of co-ordinates of a particular node
is completed is marked in the algorithm by giving the variable a B(*®) the value
‘TRUE’.

In the case of field type f90, with the given locations of nodes 1, 2, 6, 3 (in
the algorithm there is: aB() = aB®? = ¢B®) = ¢B(®) = TRUE), the detailed
calculations are carried out according to the following scheme:

25— 9, {1,9) = 7- (2,9} 8, (3.8} 4, {6:8-D b

The field determined in such a way is presented in Fig. 19d, while the calculated
set of its internal parameters {o, a, D} is in the middle part of Table 1. The
parameters are defined in the system {a}.

Figure 19e depicts the area A with the images of the individual lines of
discontinuity of the solved field.

Generally, the above-described tasks are performed within the module B.
Because the module makes use of ITN, INL and {w},, {$}w, {v}w — it must
communicate with the module C, and also with A. The presented numerical
results and the graphs have the form almost identical with that edited on the
monitor screen.

We omit describing the details of both integrating algorithms. As far as mod-
ule A is concerned, the principle of operation is relatively straightforward, and
possible difficulties may appear only when one gets to the level of details. The
most important difficulty results from the fact that the objects of incidence are
defined on the sets of integer numbers, while the criteria of inclusion may be
formulated only on the sets of real numbers.
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17. OTHER APPLICATIONS OF INTEGRATING MODULE ALGORITHM

The elements of the sets {W}y, {P}w, {v}y are stress parameters, unlike
the co-ordinates of nodes, which are classified as geometrical parameters of com-
plex fields. As it follows from the presented example, behind this apparently
formal classification there are hidden partial autonomies of the component prob-
lems. One of the types of these autonomies, related to the stress parameters, was
mentioned in Part III. In this part, the problem has been solved in two sepa-
rate ways, first on the set of stress parameters, then on the set of geometrical
parameters.

This effect allows us to construct not only the algorithms, but also the struc-
tures of variables it contains that represent the field parameters. These structures
make it possible to describe, in a concise form, the cases of very complicated fields
consisting of even several dozens of homogeneous regions.

One of the examples of utilisation of such data structures and the algo-
rithms that operate on them is the solution of the field type s18 presented in
Fig. 20a ([5]).

b)

BiG420;



ALGORITHMS OF THE METHOD OF (SADSF) - PART IV 131

The subsequent graphs, Figs. 20b, c, d depict the examples of application of
the field, such as: plane elements loaded with shear streses, box sections with
holes subjected to torsion and space trusses. Notice that the fields of Figs. 20c
and 20d have the same structure, although they are determined for different
data.
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