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This paper presents a theoretical method for determining dynamic yield stress of metals.
The method is based on conversion of the part initial kinetic energy of a metal rod striking
a rigid target into the energy of elastic and plastic-strain deformation at selected period ts. By
means of this method, a theoretical simple algebraic formula has been derived for determining
the dynamic yield stress of metals loaded by the Taylor direct impact experiment (Taylor DIE).
This formula gives the results comparable with experimental data.
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1. Introduction

The Taylor DIE developed by Taylor [1] is a useful experiment for esti-
mating material behaviour at high strain rates. The test is reproducible and
reasonably economical after the initial investment has been made. This is why
the Taylor test has been commonly employed in several studies [2–11] to deter-
mine dynamic yield stress of solids at the high strain rate. However, the current
view is that Taylor’s theory fails to provide reliable yield stress estimation, es-
pecially for the tests conducted at higher velocities. It ought to be taken into
account that the theoretical model developed by Taylor is based on simplifica-
tions greatly deviating from the conventional dynamic plasticity theory.

For this reason, a lot of investigators correlate their results with sophisticated
computer analyses that utilize several complex forms of constitutive equations.
These programs can match the geometry of a post-test specimen with very
high accuracy and provide very reliable estimates for material properties. The
drawback is that these programs are expensive and often require a substantial
amount of time to execute.
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Simple engineering theories, such as that given by Taylor, are still recog-
nised. Such theories frequently give investigators insight into the interaction
of the physical parameters and their relationship to the outcome of the event.
These interactions are difficult to ascertain from complex computer outputs. As
a result, simple engineering theories often provide the basis for the design of
experiments and are frequently used to refine the areas in which computing is
to be done.

A new strain energy method for theoretical calculating dynamic yield stress
of metals loaded by Taylor DIE is presented in this paper. By means of this
method, a simple algebraic formula for estimating dynamic yield stress has been
derived in a closed form. The derivation of the formula is based on a wave
solution of the Taylor impact problem.

2. Formulation of the problem and assumptions

The considered homogeneous rod of initial dimensions: length L and cross-
sectional area A impacts perpendicularly on the rigid target. Let x denote a La-
grangian coordinate aligned with the axis of the rod and having origin at the
free end of the rod opposite to the striking one. The impact velocity of the rod
is denoted by V0. It is assumed that V0 is sufficiently high to produce plastic
strains in the rod. The characteristic of the rod material is described by an
elastic-plastic model with linear strain hardening.

It has been proved both theoretically and experimentally [3, 10–12] that
strain ε insignificantly decreases along the axis of the plastically deformed por-
tion of the rod neighbouring the target during the Taylor DIE (Fig. 1). Therefore,
the strain rate dε/dt in the initial plastically deformed part of such a loaded rod
is very small and comparable with a quasistatic value. By contrast, at the final

Fig. 1. Distributions of strain ε along the axis of the copper (Cu-ETP) rod deformed
by the Taylor DIE [10].
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stage of deformation of the rod portion, the strain rate intensively increases and
reaches the value of 104 1/s and more (Fig. 2). Bearing in mind the above men-
tioned results of the performed investigations it has been assumed that the metal
in the initial plastically deformed portion of the rod loaded by the Taylor DIE
behaves as a rate-independent material, and is described by an elastic-plastic
model with linear strain hardening (the Prandtl-Reuss model – Fig. 3).

Fig. 2. Distributions of strain rate |ε̇| =
∣∣ dε
dt

∣∣ along the axis of the copper (Cu-ETP) rod [10].

Fig. 3. Stresses and strains during loading.

The above formulated issue has been solved by means of the weak shock wave
theory and is presented in monographs [13–15]. The fragment of this solution is
applied in the following considerations.
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3. Dynamics of the metal flat-ended circular rod
perpendicularly striking a rigid flat target

At the moment when the rod strikes a rigid target two compression weak
shock waves start to propagate in the rod away from the target. Firstly the
elastic wave propagates at speed a0 and is followed by the other plastic wave
that propagates at speed a1. The trajectories of these wave fronts are described
by the equations: x = L − a0t and x = L − a1t, respectively, on the plane
x0t (Fig. 4). The compression elastic wave reflects from the free end of the
rod and propagates in the opposite direction as an elastic tension wave. This
wave reduces the compression stress in the portion of the rod contained in the
interval 0 ≤ x ≤ xs (Fig. 4). When the front of the plastic wave and that of the
reflected elastic wave meet in section S at instant ts (Fig. 4) several outcomes
are possible, depending on the magnitude of the impact velocity V0, [13–15]. In
Fig. 4, a scenario is presented when after the two wave fronts meet, the plastic
wave does not propagate any further, and the elastic waves spread then from S
in both directions.

Fig. 4. Fragment of the configuration of trajectories of shock wave fronts on plane x0t.

As it can be seen in Fig. 4, the trajectories of the wave fronts divide the zone
of the plane x0t, bounded by the values of the coordinate: x = 0 and x = L,
into a series of regions.

Kinematic and dynamic conditions across the trajectories, completed by
boundary conditions and a stress-strain relation (the Prandtl-Reuss model),
determine the values of the parameters of the rod dynamics: stress – σ, strain
– ε, and particle velocity – υ in separate regions, which can be found in [13–15]
and are presented below:
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• Region 0: 0 ≤ x ≤ L, 0 ≤ t ≤ ((L− x)/a0),

(3.1) υ0 (x, t) ≡ V0, σ0 (x, t) ≡ 0, ε0 (x, t) ≡ 0.

• Region I: 0 ≤ x ≤ xs, (L− x)/a0 ≤ t ≤ (L+ x)/a0,

xs ≤ x ≤ L, (L− x)/a0 ≤ t ≤ (L− x)/a1,

xs =
a0 − a1
a0 + a1

L,

(3.2)
υ1 (x, t) ≡ V0 + a0εs, σ1 (x, t) ≡ σs, ε1 (x, t) ≡ εs,

εs < 0, σs = E0εs < 0.

• Region II: xs ≤ x ≤ L, (L− x)/a1 ≤ t ≤ (L+ x)/a0,

(3.3)
υ2 (x, t) ≡ 0, σ2 (x, t) ≡ [(a1/a0)− 1]σs − ρa1V0,

ε2 (x, t) ≡ [(a0/a1)− 1] εs − (V0/a1) .

• Region III: 0 ≤ x ≤ xs, (L+ x)/a0 ≤ t ≤ ts, ts = 2L
a0+a1

,

(3.4) υ3 (x, t) ≡ V0 + 2a0εs, σ3 (x, t) ≡ 0, ε3 (x, t) ≡ 0, εs < 0.

According to the Prandtl-Reuss model for loading process:

(3.5)
σ = E0ε – for elastic strain,

σ = σs + E1 (ε− εs) – for plastic strain,

(3.6) E0 = ρa20, E1 = ρa21,

where symbols: σ, ε, σs, εs, E0, E1, a0, a1, υ and ρ denote: engineering stress,
total engineering strain, yield stress, engineering strain at yield stress, Young’s
modulus, linear plastic strain hardening modulus, velocity of propagation of the
elastic wave front in Lagrangian coordinate, analogous velocity of propagation
of the plastic wave front, and particle velocity and density of the rod material,
respectively. A subscript in σ, ε and υ, in formulae (3.1)–(3.4) denotes the
number of the region in which they are.

4. Derivation of the formula for determining
dynamic yield stress

The formula for determining dynamic yield stress is based on the momentary
energy balance of the rod portions which are created by the trajectories of the
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wave fronts. This balance ought to be performed at the suitable instant during
the striking process. To simplify the description of the following considerations,
this instant has been selected in such a way that all the trajectories of the wave
fronts have a common point of the meeting (see Fig. 4 – point S). This condition
is fulfilled by the following instant:

(4.1) ts =
2L

a0 + a1
.

In this case, in order to perform the momentary energy balance the energies in
the rod portions contained in region II and region III at the instant ts ought to
be determined. Let h2 denote the length of the plastically deformed part of the
rod contained in region II at the moment ts, which is defined by the formula:

(4.2) h2 = L−XS(xs, ts),

where XS (xs, ts) denotes the Eulerian coordinate of point S at moment ts.
From the values of the particle velocities υ0 and υ1 and the relationships

determining boundaries of region 0 and region I it follows that

(4.3) xs = L− a1ts =
a0 − a1
a0 + a1

L,

(4.4) Xs = xs +
L− xs
a0

V0 + 2
xs
a0
υ1 =

(
1− V0

a0
+ 2

V0
a0

+ 2εs

)
xs +

V0
a0
L

≈ a0 − a1 + 2V0
a0 + a1

L, 2εs � 1.

From Eq. (4.2) and (4.4):

(4.5) h2 =
2(a1 − V0)
a0 + a1

L.

In turn the length of the rod portion contained in region III at moment ts is
determined by formula:

(4.6) h3 = L− (h2 +Xk),

where Xk is displacement of the free rod end at instant ts, i.e.

(4.7)
Xk =

V0
a0
L+

υ3
a0
xs = 2

(
V0

a0 + a1
+
a0 − a1
a0 + a1

εs

)
L ≈ 2V0

a0 + a1
L,

(a0 − a1) εs � V0.
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Expressions (4.5), (4.6) and (4.7) result in:

(4.8) h3 =
a0 − a1
a0 + a1

L = xs.

The balance of energy of the rod portions contained in region II and region III
and initial kinetic energy of the whole rod at instant ts can be written as

(4.9) h2Φ+
1

2
h3ρυ

2
3 =

1

2
LρV 2

0 .

The conversion period of the initial kinetic energy of the rod into energy com-
ponents of the rod portion contained in regions II and III lasts about a few µs.
Therefore in order to facilitate the solution of issue under consideration, this pro-
cess can be approximated as an adiabatic one and heat is therefore not included
in the relationship (4.9).

The elastic – plastic energy per unit of volume Φ, in accordance with the
Prandtl-Reuss model σ–ε (Fig. 3) for the loading process of the rod portion in
region II is defined by the formula:

(4.10) Φ =
σsε2

2
+
σ2 (ε2 − εs)

2
.

In order to simplify a description of the following transformations the dimen-
sionless quantities are introduced:

(4.11) P =
σs
E0

=
σs
ρa20

= εs, V =
V0
a0
, α =

a1
a0
.

After substitution of relationship (3.3) into expression (4.10) and conside-
ring (4.11):

(4.12) Φ =
E0

2

[
2 (1− α) ε2s + 2 (α− 1)V εs + V 2

]
.

The energy of the plastic deformation contained in segment h2 of the rod
amounts to:

(4.13) E2 =
1

2
E0AL

[
4 (α−V )(1−α)

(α+1)
ε2s −

4 (α−V )(1−α)

(α+1)
V εs + 2

(α−V )

α+1
V 2

]
.

In turn, kinetic energy of portion h3 of the rod is equal to:

(4.14) E3 =
1

2
h3Aρυ

2
3 =

1

2
E0AL

1− α
1 + α

(
4ε2s + 4V εs + V 2

)
.

With expressions (4.13) and (4.14), Eq. (4.9) may be re-written as

(4.15) P 2 + bP − c = 0,
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where

(4.16) b =
1− α+ V

1 + α− V
V, c =

V 3

2 (1− α)(1 + α− V )
.

From Eq. (4.15) and (4.16) it follows that

P =
1

2

−1− α+ V

1 + α− V
+

[(
1− α+ V

1 + α− V

)2

+
2V

(1− α)(1 + α− V )

]1/2V.

Accordingly, the dynamic yield stress is defined by an explicit algebraic for-
mula:

(4.17) |σsd| = |PE0|

=
1

2

−1−α+V

1+α−V
+

[(
1−α+V

1+α−V

)2

+
2V

(1−α)(1+α−V )

]1/2V E0.

A simple Taylor formula for σsd has the following form [1]:

(4.18) σsd =
L−X

2 (L− L1) ln (L/X)
ρV 2

0 ,

where L1 is an overall length of the rod after the Taylor DIE, and X denotes
the final length of the undeformed rod portion. This formula was derived by
means of the momentum balance across the plastic wave front for rigid – ideal
plastic material of the rod. For that reason, the formula (4.18) does not fulfil
a dynamic condition across this wave front.

A comparison of the results obtained by the above mentioned formulae (4.17)
and (4.18) is presented in the following section of the paper.

5. The results for the copper (Cu-ETP)

Homogeneously annealed (500◦C, 1 h) copper (Cu-ETP) rods of the initial
dimensions: length L0 = 0.048 m and diameter D0 = 0.012 m have been used
in the Taylor DIE. The mechanical parameters of the copper rods are: density
ρ = 8900 kg/m3, the engineering static yield strength R0.2 = 84 MPa, Young’s
modulus E0 = 130 GPa, the linear strain hardening modulus E1 = 1.1 GPa,
the speed of elastic wave propagation a0 = 3820 m/s, and the speed of plastic
wave propagation a1 = 350 m/s. A static load-compression curve for the cylin-
der made of the Cu-ETP copper with a 0.01 m diameter and 0.01 m thickness
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is depicted in Fig. 5, where ϕ is the true (logarithmic) strain, and ε is nominal
(engineering) strain; ε = 1− exp(−ϕ).

Fig. 5. A static load-compression curve for a cylinder made of copper (Cu-ETP)
with a 0.01 m diameter and 0.01 m thickness.

Figure 5 shows that the static curve of the nominal values of the stress-
strain within the scope |ε| < 0.4 can be approximated by means of a straight
line namely |σ|−σsd = 1100|ε| [MPa] (a dashed line in Fig. 5). An approximation
error does not exceed several percent.

Cylindrical samples were driven by a light gas gun (Fig. 6) to some moderate
values of the impact velocities (68 m/s ≤ V0 ≤ 214 m/s), after which they struck
perpendicularly on a flat rigid target. Pictures of the deformed rods after the
Taylor DIE are depicted in Fig. 7.

Fig. 6. Schematic of the Taylor DIE setup.
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Fig. 7. Specimens recovered after the Taylor DIE.

Calculations were performed on the basis of relationships (4.17) and (4.18)
using experimental data. The discrete values of these calculations for some se-
lected values of the velocity V0 are listed in Table 1 and shown as a graph in
Fig. 8.

Table 1. Experimental data and values of the dynamic yield stress
for annealed copper (Cu-ETP).

V0 [m/s] X [mm] L1 [mm] σsd [MPa]
Eq. (4.17)

σsd [MPa]
Taylor Eq. (4.18)

68 1.80 43.25 24 61

125 1.40 37.92 81 91

146 1.10 35.72 110 96

180 0.90 32.73 166 112

214 0.89 29.85 234 133

Fig. 8. Variation of the dynamic yield stress versus impact velocity
for annealed copper (Cu-ETP).
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Figure 8 presents large differences between the values of σsd calculated by
means of the formulae (4.17) and (4.18) which exceed 50%. Hawkyard et al.
[4, 5] and Kolsky and Douch [16] have obtained similar results when using
energy methods.

In addition, from Fig. 8 it follows that for selected value of V0 = V ∗0 ≈
135 m/s the difference between σsd (4.17) and σsd (4.18) is equal to zero. Subse-
quently with an increase of the magnitude |V0 − V ∗| the difference |σsd (4.17) −
σsd (4.18)| also increases in both directions and it exceeds 50%.

The quantities σsd (4.17) and σsd (4.18) for V0 = V ∗ represent different mag-
nitude. A σsd (4.17 V ∗0 ) signifies value of the dynamic yield stress in deformed
portion of the copper rod whose length is: h2

L(a−V ∗0 )
(a0+a1)

= 5 mm long. By contrast,
σsd (4.18 V ∗0 ) signifies a mean value of the dynamic yield stress of the deformed
copper sample L1(V0)−X(V ∗0 ) ≈ 37 mm long.

One ought to also take notice that for small impact velocity the dynamic
yield stress of annealed copper (Cu-ETP) is smaller than the static yield stress
(Fig. 8). This result can be surprising, because for majority of metals the dy-
namic yield stress is greater than the static one (σsd > σs). However some metals
behave in an opposite way [11, 17–19], i.e. σsd < σs; for example that is how the
annealed copper behaves at moderate magnitude of the impact velocity ([13],
p. 103, Table 5). The Taylor theory gives a simple result (Fig. 8), as might be
expected.

6. Conclusion

In accordance with the theory of Taylor DIE each and every successive frag-
ment of the deformed portion of the rod is suddenly stopped and struck by
an undeformed part of the rod whose length and velocity decrease during the
impact test. The velocity of the undeformed part of the rod decreases in a con-
tinuous way from V = V0 to V = 0 during the impact process. The Taylor
formula (4.18) contains the final values of the geometrical parameters of the
deformed rod after the impact test, namely, X and L1. Each deformed element
of the rod gives an increment to the values of these parameters during the Tay-
lor DIE. For this reason the Taylor formula (4.18) determines the mean value
of dynamic yield stress not for the given impact velocity V = V0, but for the
average velocity contained in the range 0 ≤ V ≤ V0. Taylor’s impact theory does
not define the value of this average velocity. Besides, the Taylor formula (4.18)
is based on a rate-independent rigid ideal-plastic material and does not allow
a large increase of the strain rate in the final stage of deforming of the rod during
the impact test (about 104 1/s). In addition, the formula (4.18) does not ful-
fil a dynamic condition across the plastic wave front. This is contradictory to
physics of shock waves.
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On the contrary formula (4.17) defines the value of the dynamic yield stress
of the rod material at given impact velocity, i.e. υ = V0 at the initial stage of
deforming of the rod. In period ts (equal to about over a dozen percent µs)
the strain-rate of the rod material has a quasistatic form (Fig. 2). This specific
distribution of strain rate along the axis of the deformed sample during the
initial stage of the Taylor DIE is used in the presented method. In this method,
behaviour of the material of the initial deformed portion of the rod is described
by means of an elastic-plastic model with linear strain hardening without an
influence of the strain rate on the dynamic parameters of the rod material.
Thus a simple algebraic formula for determining dynamic yield stress of metals
loaded by the Tylor DIE has been derived.

On the basis of the results presented in this paper one can confirm that
Taylor’s theory fails to provide reliable dynamic yield stress estimates, especially
for material sensitive to strain rate, such as annealed copper under the impact
loading.

The proposed method is based on the theory of weak shock waves [14] and the
variation of the internal energy and temperature in the striking rod is neglected.
For this reason thermal softening of the material and failure [20] of the rod were
not considered (see Fig. 7).
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