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In this paper, we study thermal instability in a horizontal layer of Rivlin-Ericksen elastico-
viscous nanofluid in porous medium. Brinkman model is used as a porous medium and Rivlin-
Ericksen fluid model is used to describe the rheological behavior of nanofluid. In the earlier
model (Chand and Rana [18]), we constrained both temperature and nanoparticle volume
fractions at the boundaries of Rivlin-Ericksen nanofluid layer. In this paper, we assume that the
value of temperature can be constrained on the boundaries, while the nanoparticle flux is zero
on the boundaries. The considered boundary condition neutralizes the possibility of oscillatory
convection due to the absence of two opposing forces, and only stationary convection occurs,
in which Rivlin-Ericksen elastico-viscous nanofluid behaves like an ordinary nanofluid. The
effects of Lewis number, medium porosity, modified diffusivity ratio, Darcy-Brinkman number
and concentration Rayleigh number in stationary convection are discussed analytically and
numerically. The results of this study are in good agreement with the results published earlier
[11–21].
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Notations

a – wave number,

DB – diffusion coefficient [m2/s],

DT – thermophoretic diffusion coefficient,

D̃a – Darcy-Brinkman number,

F – kinametic viscoelasticity parameter,

g – acceleration due to gravity [m/s2],

k – medium permeability,

km – thermal conductivity [W/(m · K)],

kB – Boltzmann constant [J/K],

Le – Lewis number,

n – growth rate of disturbances [s−1],

NA – modified diffusivity ratio,

NB – modified particle density increment,

p – pressure [Pa],

p′ – pressure,

Pr – Prandtl number,

q – Darcy velocity vector [m/s],

Ra – thermal Rayleigh number,

Rac – critical Rayleigh number,

Ram – density Rayleigh number,

Ran – concentration Rayleigh number,

t – time [s],

t′ – time,

T – temperature [K],

T ′ – temperature,

Va – Vadasz number,

n – dimensional frequency,

u, v, w – velocity components,

(x, y, z) – space coordinates [m],

(x′, y′, z′) – space coordinates.

Greek symbols
α – thermal expansion coefficient [1/K],

µ – viscosity [kg/(m · s)],

µ′ – kinematic viscoelasticity [kg/(m · s)],

ε – porosity,

ρ – density of nanofluid [kg/m3],

(ρc)m – heat capacity in porous medium,

(ρc)p – heat capacity of nanoparticles,

ϕ – volume fraction of nanoparticles,

ρp – density of nanoparticles [kg/m3],

ρf – density of base fluid [kg/m3],
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κ – thermal diffusivity [m2/s],

σ – thermal capacity ratio.

Superscripts
′ – non-dimensional variables.

Subscripts
p – particle,

f – fluid,

0 – lower boundary,

1 – upper boundary,

b – basic state,

H – horizontal plane.

1. Introduction

Thermal instability problems have attracted considerable interest during the
last few decades because of their importance in various applications such as
geophysics, soil sciences, ground water hydrology, astrophysics, food processing,
oceanography, limnology, engineering, etc. Many researchers have investigated
thermal instability problems by studying different types of fluids. A detailed
account of the thermal instability of a Newtonian fluid under varying assump-
tions of hydrodynamics and hydromagnetics was given by Chandrasekhar [1].
Bhatia and Steiner [2] studied the thermal instability of a Maxwellian vis-
coelastic fluid in the presence of magnetic field, while the thermal instability in
a viscoelastic fluid in hydromagnetics was considered by Sharma [3].
In all of the above studies, the considered medium was non-porous. The

investigation in porous media began with the simple Darcy model and was
gradually extended to Darcy-Brinkman model. A good overview of instability
problems in a porous medium was given by Ingham and Pop [4] as well as
Nield and Bejan [5]. There are many elastico-viscous fluids that cannot be
characterized by Maxwell’s constitutive relations or Oldroyd’s constitutive re-
lations. One type of such fluids is Rivlin-Ericksen elastico-viscous fluid, which
finds applications in chemical technology and petroleum industry. Rivlin and
Ericksen [6] proposed a theoretical model for such an elastico-viscous fluid.
Rana and Sharma [7] and Rana and Thakur [8] studied the onset of con-
vection in a Rivlin-Ericksen fluid heated from below and saturating a Brinkman
porous medium.
In recent years, considerable interest has been given to the study of nanoflu-

ids. They have become innovative materials used in thermal engineering as well
as in automotive industries, energy saving, nuclear reactors, etc. Furthermore,
nanoparticle suspensions are being developed to be used in medical applica-
tions including cancer therapy. The porous media heat transfer problems have
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several engineering applications such as geothermal energy recovery, crude oil
extraction, ground water pollution, thermal energy storage, etc. Choi [9] was
the first one who described the term ‘nanofluid’. Convection of nanofluids was
studied by Buongiorno in [10] and Buongiorno’s model has attracted great
interest in the recent years. He insisted that the anomalous heat transfer occurs
due to particle migration in fluids, and assumed seven slip mechanisms such
as inertia, Brownian diffusion, thermophoresis, diffusiophoresis, Magnus forces,
fluid drainage and gravity. Furthermore, he maintained that out of these seven,
only Brownian diffusion and thermophoresis are important slip mechanisms in
a nanofluid. Buongiorno’s model was later studied by Tzou [11, 12], Nield and
Kuznetsov [13], Alloui et al. [14], Sheu [15], Chand and Rana [16] and
Chand et al. [17] in their papers on thermal instability in a porous medium
layer saturated by a nanofluid. Chand and Rana [18] studied thermal instabil-
ity of Rivlin-Ericksen elastico-viscous nanofluid saturated by a porous medium
assuming that nanoparticle flux can be controlled on the boundaries in the same
manner as the temperature can be controlled. However, Nield and Kuznetsov
[19] found that it may be difficult to control the nanoparticle volume fraction on
the boundaries. Therefore, they developed a more realistic boundary condition
by assuming that there is no flux at the plate and the nanoparticle flux value
adjusts accordingly. Chand et al. [20] studied the revised model of thermal insta-
bility in a Rivlin-Ericksen elastico-viscous nanofluid in a porous medium while
thermal convection in a rotating nanofluid layer saturating a Darcy-Brinkman
porous medium was studied by Rana and Chand [21].
Our aim in this paper is to study the thermal instability of a horizontal

layer of Rivlin-Ericksen elastico-viscous nanofluid in a Darcy-Brinkman porous
medium with more realistic boundary conditions.

2. Mathematical formulations

In Fig. 1, we consider an infinite horizontal layer of Rivlin-Ericksen elastico-
viscous nanofluid heated from below of thickness d bounded by planes z = 0
and z = d. Each boundary wall is assumed to be impermeable and perfectly
thermally conducting. Fluid layer is acted upon by gravity force g(0, 0,−g).
The temperature T of nano particles at z = is T0 and T1 at z = d, (T0 > T1).
The reference temperature is T1.
Let q(u, v, w), p, ϕ, ρp, ρf , µ, µ′ and α respectively denote the Darcy velocity

vector, hydrostatic pressure, the volume fraction of the nanoparticles, density of
nanoparticles, density of the base fluid, viscosity, kinematic viscoelasticity, and
α is the coefficient of thermal expansion. Then, the equations of conservation
of mass and momentum for Rivlin-Ericksen elastico-viscous nanofluid in porous
medium (Buongiorno [10], Nield and Kuznetsov [13], Sheu [15], Chand



THERMAL INSTABILITY OF A RIVLIN-ERICKSEN NANOFLUID. . . 275

Fig. 1. Physical configuration of the problem.

and Rana [18], Nield and Kuznetsov [19], Chand et al. [20], and Rana and
Chand [21]), after employing Oberbeck-Boussinesq approximation, are

(2.1) ∇ · q = 0,

(2.2)
ρ

ε

dq

dt
= −∇p+ (ϕρp + (1− ϕ) {ρf (1− α (T − T0))}) g

+ µ̃∇2
q− 1

k1

(
µ+ µ′

∂

∂t

)
q,

where d
dt =

∂
∂t +

1
ε (q · ∇) stands for convection derivative.

The equation of energy in a nanofluid is

(2.3) (ρc)m
∂T

∂t
+ (ρc)f q · ∇T = km∇2T

+ ε (ρc)p

(
DB∇ϕ · ∇T +

DT

T1
∇T · ∇T

)
,

where (ρc)m is effective heat capacity of the fluid, (ρc)p is heat capacity of
nanoparticles and km is the effective thermal conductivity of the porous medium.
The equation of conservation of mass for nanoparticles is

(2.4)
∂ϕ

∂t
+

1

ε
q · ∇ϕ = DB∇2ϕ+

DT

T1
∇2T,

whereDB is the Brownian diffusion coefficient given by Einstein-Stokes equation,
and DT is the thermophoretic diffusion coefficient of nanoparticles.
Assuming that the temperature is constant and the thermophoretic nanopar-

ticle flux is zero at the boundaries (Nield and Kuznetsov [19]), the boundary
conditions are
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w = 0,
∂w

∂z
= 0, T = T0, DB

∂ϕ

∂z
+

DT

T1

∂T

∂z
= 0 at z = 0,(2.5)

w = 0, T = T1,
∂w

∂z
= 0, DB

∂ϕ

∂z
+

DT

T1

∂T

∂z
= 0 at z = d.(2.6)

Equations (2.1)–(2.6) in a non-dimensional form (after dropping the dashes (′)
for simplicity) can be written as

(2.7) ∇ · q = 0,

(2.8)
1

Va

∂q

∂t
= −∇p+ D̃a∇2

q−
(
1 + F

∂

∂t

)
q− Ram +RaT − Ranϕêz ,

(2.9)
1

σ

∂ϕ

∂t
+

1

ε
w =

1

Le
∇2ϕ+

NA

Le
∇2T,

(2.10)
∂T

∂t
+ q · ∇T = ∇2T +

NB

Le
∇ϕ · ∇T +

NANB

Le
∇T · ∇T,

w = 0,
∂w

∂z
= 0, T = 1,

∂ϕ

∂z
+NA

∂T

∂z
= 0 at z = 0,(2.11)

w = 0,
∂w

∂z
= 0, T = 0,

∂ϕ

∂z
+NA

∂T

∂z
= 0 at z = 1,(2.12)

where we have introduced non-dimensional variables as

(x′, y′, z′) =
(x, y, z

d

)
, (u′, v′, w′) =

(u, v, w
κ

)
d, t′ =

tκ

σd2
,

p′ =
k1p

ρκ2
d2, ϕ′ =

(ϕ− ϕ0)

ϕ0
, T ′ =

(T − T1)

(T0 − T1)
,

and the non-dimensional parameters denote, respectively, thermal diffusivity κ,
thermal capacity ratio σ, Prandtl number Pr, Darcy number Da, Brinkman-
Darcy number D̃a, Vadasz number Va, Lewis number Le, kinematic viscoelastic
parameter F , Rayleigh number Ra, density Rayleigh number Ram, concentration
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Rayleigh number Ran, modified diffusivity ratio NA, NB, and they are defined
as follows:

κ =
k

ρc
, σ =

(ρcp)m
(ρcp)f

,

Pr =
µ

ρκ
, Da =

k

d2
,

D̃a =
µ̃k

µd2
, Va =

εPr

Da
,

Le =
κ

DB
, F =

µ′κ

µσd2
,

Ra =
ρgαd (T0 − T1)

µκ
, Ram =

ρpϕ0 + ρ (1− ϕ0) gd

µκ
,

Ran =
(ρp − ρ)ϕ0gd

µκ
, NA =

DT (T0 − T1)

DBT1ϕ0
,

NB =
(ρc)p ϕ0

(ρc)f
.

The basic state is assumed to be quiescent and is given by u = v = w = 0,
p = p(z), T = Tb(z), ϕ = ϕb(z).
Equations (2.8)–(2.10) reduce to

(2.13) 0 = −dpb
dz

− Ram +RaTb +Ranϕb,

d2Tb

dz2
+

NB

Le

dϕb

dz

dTb

dz
+

NANB

Le

(
dTb

dz2

)2

= 0,(2.14)

d2ϕb

dz2
+NA

d2Tb

dz2
= 0.(2.15)

Using boundary conditions in (2.11) and (2.12), Eq. (2.15) gives

(2.16)
dϕb

dz
+NA

dTb

dz
= 0.

When we substitute this value into Eq. (2.14), we obtain

(2.17)
d2Tb

dz2
= 0.
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When we integrate Eq. (2.17) with respect to z and use boundary conditions
(2.11) and (2.12), we obtain

(2.18) Tb = 1− z.

When we integrate Eq. (2.16) with respect to z and use boundary conditions
(2.11) and (2.12), we obtain

(2.19) ϕb = ϕ0 +NAz.

These results are identical to the results obtained by Nield and Kuznetsov
in [19].
To study the stability of the system, we superimposed infinitesimal pertur-

bations on the basic state, which are as follows:

(2.20)
q(u, v, w) = q′(u, v, w), T = Tb + T ′,

ϕ = ϕb + ϕ′, p = pb + p′.

Using Eqs. (2.18), (2.19) and (2.20) in Eqs. (2.7)–(2.12) and after linearization
by neglecting the product of the prime quantities, we obtain (after dropping the
dashes (′) for simplicity) the following equations:

∇ · q = 0,(2.21)

1

Va

∂q

∂t
= −∇p+ D̃a∇2q −

(
1 +

∂

∂t
F

)
q+RaT − Ranϕ,(2.22)

1

σ

∂ϕ

∂t
+

1

ε
w =

1

Le
∇2ϕ+

NA

Le
∇2T,(2.23)

∂T

∂t
− w = ∇2T +

NB

Le

(
∂T

∂z
− ∂ϕ

∂z

)
− 2

NANB

Le

∂T

∂z
,(2.24)

(2.25) w = 0, T = 0,
∂w

∂z
= 0,

∂ϕ

∂z
+NA

∂T

∂z
= 0

at z = 0 and at z = 1.

The six unknowns u, v, w, p, T and ϕ can be reduced to three by combining
the operating Eq. (2.22) with ∇2ez, we therefore obtain
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(2.26)
1

Va

∂

∂t
∇2w − D̃a∇4w +

(
1 +

∂

∂t
F

)
∇2w = Ra∇2

HT − Ran∇2
Hϕ,

where ∇2
H is a two-dimensional Laplacian operator.

3. Normal mode analysis method

Analyzing the disturbances in the normal modes and assuming that the
perturbed quantities are as follows:

(3.1) [w, T, ϕ] = [W (z), Θ(z), Φ(z)] exp (ikxx+ ikyy + nt) ,

where kx, ky are wave numbers in x and y directions, and n is the growth rate
of disturbances.
Using Eq. (3.1), Eqs. (2.22)–(2.25) can be written as

(
1 + nF +

n

Va
−Da

(
D2 − a2

)) (
D2 − a2

)
W +Raa2Θ − Rana

2Φ = 0,(3.2)

W

ε
− NA

Le

(
D2 − a2

)
Θ −

(
1

Le

(
D2 − a2

)
− n

σ

)
Φ = 0,(3.3)

W +

(
D2 − a2 − n+

NA

Le
D − 2NANB

Le
D

)
Θ − NB

Le
DΦ = 0,(3.4)

(3.5) w = 0, T = 0, Θ = 0, DW = 0, Dϕ+NADΘ = 0

at z = 0 and at z = 1,

where D = d
dz and a

2 = k2x + k2y is a dimensionless resultant wave number.

We assume the solution to W , Θ and Φ is in the form

(3.6) W = W0 sinπz, Θ = Θ0 sinπz, Φ = Φ0 sinπz,

which satisfies the boundary conditions (3.5).
Substituting solution (3.6) into Eqs. (3.2)–(3.4), integrating each equation

from z = 0 to z = 1, and performing some integrations by parts, we obtain the
following matrix equation:




J
(
1 +

n

Va
+ nF + D̃aJ

)
−a2Ra a2Ran

1 −(J + n) 0

1

ε

NAJ

Le

J

Le
+

n

σ






W0

Θ0

Φ0


 =




0

0

0


,

where J = π2 + a2.
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The non-trivial solution of the above matrix requires that

(3.7) Ra =
1

a2

(
J(J + n)

(
1 + nF +

n

Va
+ D̃aJ

))
−

NAJ +
Le

ε
(J + n)

J +
nLe

σ

Ran.

4. The stationary convection

Due to the absence of two opposing buoyancy forces, the oscillatory convec-
tion does not exist, therefore only stationary convection occurs. For stationary
convection we use n = 0, and Eq. (3.7) reduces to

(4.1) (Ra)s =
D̃a

(
π2 + a2

)3
+

(
π2 + a2

)2

a2
− Ran

(
Le

ε
+NA

)
.

Equation (4.1) is identical to the equation obtained by Nield and Kuznetsov
[13], Sheu [15], Chand andRana [16, 18] andChand et al. [20]. From Eq. (4.1),
we notice that the kinematic viscoelasticity parameter F vanishes with n so the
Rivlin-Ericksen elastico-viscous nanofluid behaves like an ordinary nanofluid.
The critical cell size at the onset of instability is obtained from the condition

(
∂Ra

∂a

)

a=ac

= 0.

The corresponding critical Rayleigh number Rac for steady onset is

(4.2) (Rac)s =
27π2

4
− Ran

(
Le

ε
+NA

)
.

This is the same critical wave number as obtained by Chand and Rana [16]
and Chand et al. [20]. Consequently, the critical value for ac will be the same
as the well-known result for Bénard instability in the regular fluid.
In the absence of nanoparticles (Ran = Le = NA = 0) i.e., for ordinary fluid,

we have

(4.3) Rac =
27π2

4
.

This is the exactly the same result for Bénard instability in the regular fluid
as obtained by Chandrasekhar [1]. We observe that the parameter NB is not
involved in the above equations. This means that the average contribution of
the nanoparticle flux to the thermal energy equation is zero.
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5. Results and discussion

The critical thermal Rayleigh number for stationary convection was given in
Eq. (4.2). The stationary critical thermal Rayleigh number was found to be in-
dependent of elastico-viscous parameters and Rivlin-Ericksen nanofluid behaved
like an ordinary Newtonian fluid. For heavy nanoparticles, the value of Ran was
negative according to the definition of Ran. It was also noted that a negative
value of Ran indicates a bottom-heavy case, while a positive value indicates
a top-heavy case. In the following discussion, we have used the positive value of
Ran. Now, we will study the effects of Lewis number, medium porosity, modified
diffusivity ratio, Darcy-Brinkman number, and concentration Rayleigh number
on thermal instability of a Rivlin-Ericksen nanofluid in stationary convection by
examining the behavior of

∂(Ra)s
∂Le

,
∂(Ra)s
∂ε

,
∂(Ra)s
∂NA

,
∂(Ra)s

∂D̃a
,

∂(Ra)s
∂Ran

analytically and numerically.
From Eq. (4.1), we obtain

(5.1)
∂(Ra)s
∂Le

= −Ran
ε

,

which implies that Lewis number has a destabilizing influence on the station-
ary convection of the system for top-heavy arrangement, which is in an agree-
ment with the results obtained by Kuznetsov and Nield [13], Chand and

Fig. 2. Variation of Rayleigh number with wave number for different values
of Lewis number (ε = 0.4, Ran = 0.5, NA = 2, D̃a = 0.3); 1 – Le = 100,

2 – Le = 200, 3 – Le = 500.
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Rana [16], Chand et al. [20], andRana andChand [21]. In Fig. 2, the Rayleigh
number is plotted against dimensionless wave number for different values of
Lewis number. This shows that as Lewis number decreases, the Rayleigh num-
ber increases. Thus, Lewis number has a destabilizing effect on the stationary
convection, which is in good agreement with the result obtained analytically
from Eq. (5.1).
From Eq. (4.1), we obtain

(5.2)
∂(Ra)s
∂ε

=
RanLe

ε2
,

which implies that medium porosity has a stabilizing influence on the station-
ary convection of the system for top-heavy arrangement, which is in agreement
with the results derived by Kuznetsov and Nield [13], Chand and Rana [16],
Chand et al. [20], and Rana and Chand [21]. In Fig. 3, the Rayleigh number
is plotted against dimensionless wave number for different values of medium
porosity. This shows that as medium porosity increases, the Rayleigh number
also increases. Thus, medium porosity has a stabilizing effect on stationary con-
vection, which is in good agreement with the result obtained analytically from
Eq. (5.1).

Fig. 3. Variation of Rayleigh number with wave number for different values
of medium porosity (Le = 100, Ran = 0.5, NA = 2, D̃a = 0.3); 1 – ε = 0.6,

2 – ε = 0.4, 3 – ε = 0.2.

From Eq. (4.1), we obtain

(5.3)
∂(Ra)s
∂NA

= −Ran,
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which implies that modified diffusivity ratio has a destabilizing influence on the
stationary convection of the system for bottom-heavy arrangement, which is
in agreement with the results derived by Kuznetsov and Nield [13], Chand
and Rana [16], Chand et al. [20], and Rana and Chand [21]. In Fig. 4, the
Rayleigh number is plotted against dimensionless wave number for different
values of modified diffusivity ratio. This shows that as modified diffusivity ratio
increases, the Rayleigh number decreases. Thus, modified diffusivity ratio has
a destabilizing effect on stationary convection, which is in good agreement with
the result obtained analytically from Eq. (5.3).

Fig. 4. Variation of Rayleigh number with wave number for different values
of modified diffusivity ratio (Le = 100, Ran = 0.5, ε = 0.4, D̃a = 0.3);

1 – NA = 10, 2 – NA = 30, 3 – NA = 50.

From Eq. (4.1), we obtain

(5.4)
∂(Ra)s

∂D̃a
=

(
π2 + a2

)3

a2
,

which implies that Brinkman-Darcy number has a stabilizing influence on the
stationary convection of the system, which is in agreement with the results de-
rived by Kuznetsov and Nield [13], Chand and Rana [16], Chand et al. [20],
and Rana and Chand [21]. In Fig. 5, the Rayleigh number is plotted against di-
mensionless wave number for different values of Brinkman-Darcy number. This
shows that Rayleigh number increases with an increase of Darcy-Brinkman num-
ber. Thus, Darcy-Brinkman number has a stabilizing effect on stationary con-
vection, which is in good agreement with the result obtained analytically from
Eq. (5.4).
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Fig. 5. Variation of Rayleigh number with wave number for different values
of Darcy-Brinkman number (Le = 100, Ran = 0.5, ε = 0.4, NA = 2);

1 – D̃a = 0.9, 2 –D̃a = 0.6, 3 –D̃a = 0.3.

From Eq. (4.1), we obtain

(5.5)
∂(Ra)s
∂Ran

= −
(
Le

ε
+NA

)
,

which implies that concentration Rayleigh number has a destabilizing influ-
ence on the stationary convection of the system, which is in an agreement with
the results derived by Kuznetsov and Nield [13], Chand and Rana [16],
Chand et al. [20], and Rana and Chand [21]. In Fig. 6, the Rayleigh number

Fig. 6. Variation of Rayleigh number with wave number for different values
of concentration Rayleigh number (Le = 100, D̃a = 0.3, ε = 0.4, NA = 2);

1 – Ran = 0.5, 2 – Ran = 1, 3 – Ran = 1.5.



THERMAL INSTABILITY OF A RIVLIN-ERICKSEN NANOFLUID. . . 285

is plotted against dimensionless wave number for different values of concentra-
tion Rayleigh number. This shows that as concentration Rayleigh number in-
creases, the Rayleigh number decreases. Thus, concentration Rayleigh number
has a destabilizing effect on stationary convection, which is in good agreement
with the result obtained analytically from Eq. (5.5).

6. Conclusions

In this paper, thermal instability in a Rivlin-Ericksen nanofluid saturated
by a Darcy-Brinkman porous medium under more realistic boundary conditions
was studied by employing a model that incorporated the effects of Brownian
motion, thermophoresis and viscoelasticity. In the stationary convection, it was
found that the Rivlin-Ericksen elastico-viscous nanofluid behaves like an ordi-
nary nanofluid. Medium porosity and Darcy-Brinkman number have a stabiliz-
ing influence, while Lewis number, modified diffusivity ratio and concentration
Rayleigh number have a destabilizing influence on the stationary convection of
the system. The principal difference is that Ran involves different scaling (a typ-
ical nanofluid fraction instead of the difference between two fractions) and Ran
cannot be negative, so the oscillatory convection does not exist and only sta-
tionary convection occurs.
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