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The aim of this study is to propose an experimental approach supported by an analytical
analysis for polymer materials under dynamic loading. The experimental technique of Hop-
kinson split pressure bar is used which allows for high impact velocities. The specimens are
subjected to the three-point bending and the efficiency of the experimental technique is proved.
During quasi-static and dynamic bending tests, the rupture mode is described and the evo-
lution of the energy and the ultimate stresses as a function of the initial impact velocity is
discussed. In addition, the critical impact velocity estimated above an important change in the
rupture mode is observed.
In order to better describe the physical phenomena encountered during the three-point

bending impact, the analysis is supported by a rheological model based on a mass-spring
system.
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1. Introduction

Thermoplastic composites such as the woven glass-fibre-reinforced Polyami-
de 6 (PA6) are breakthrough materials in different industrial sectors due to their
mechanical properties. This type of material keeps its mechanical performances
because the matrix transfers the loading from one fibre to another and thus
a sufficient connection between fibres is retained. It is important to determine
the type of reinforcement for optimal resistance to traction, bending and impact.
For many years this material has been gaining a commercial success due to its
excellent thermal, electrical and mechanical properties coupled with remarkable
tribological performances. In many applications there are high requirements con-
cerning rigidity, dimensional stability and heat deflection temperature and PA6
satisfies them satisfactorily. It should be noted that the anisotropy of this mate-
rial is mainly due to fibre orientation and it may cause the element warping, how-
ever, the use of PA6 has received good reviews in several industrial applications.
The practical interest in using a bending test lies in the specimen geometry

which is relatively simple and well known in the industrial environment. In
general, a bending test cannot provide satisfactory information about a rupture
by measuring the forces. The waves induced by bending are relatively low and
specimen vibrations generate many perturbations. One solution is to use the
Hopkinson bar system [1] which allows to eliminate some of these problems,
especially in terms of obtaining a better quality of measurements.
Behaviour of the woven glass-fibre-reinforced Polyamide 6 under dynamic

loading is studied. A new technique is used [1] offering a big advantage of high
impact velocities up to 200 m/s which are by far higher compared to the ones
in Charpy tests [2, 3], which are limited to 5 m/s. A Hopkinson bar system [4]
has been chosen to eliminate certain problems encountered during dynamic tests
and to ensure the accuracy of measurement results. The proposed test config-
uration uses a Hopkinson set-up without an input bar (direct impact) allowing
to eliminate the loading time between the incident and transmitted wave.
The new configuration allows to measure not only the applied force, but also

the displacement of the loading point, using immediate measurements.
The results gathered from the study are compared to the results obtained

from the dynamic modelling of the mass-spring system under shock.

2. Composite specimen and test description

2.1. Composite specimen

Dynamic bending tests are performed using the woven glass-fibre-reinforced
Polyamide 6 (PA6) with a stacking sequence of 0◦/90◦. The tests have been
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realised with parallelepiped specimens without notches. External and internal
faces of the specimens are neither treated nor rectified in order not to induce
any additional surface defaults. The size of the specimen is presented in Fig. 1.
In order to reduce the effect of inertial forces on the measurements of the force
transmitted at high impact velocities, a specimen with high stiffness geometry
has been used, characterised by the ratio S/W equal to 4.5 where S is the
specimen span (distance between supports) and W is its height. The specimens
are loaded perpendicularly to the fibres.

Fig. 1. Specimen geometry and schematic description of the device used
for bending tests.

The material characteristics are the dynamic Young modulus, determined
by the statistic method [5], of the order of 10.098 GPa and the volume mass is
ρ = 1834 kg/m3.

2.2. Test description

The test assembly used in this study has been initially proposed by Mas-
saq et al. [1]. The dynamic bending is performed using a system of Hopkinson
bars. The direct impact is applied without an input bar, therefore the projec-
tile directly hits the specimen. The impact velocity is measured by the pho-
todiodes fixed at the end of the tube, Fig. 2. The assembly is composed of
one tube (Fig. 2) instead of two output bars as it was proposed by many au-
thors [14–20]. This improvement allows to minimise vibrations of Pochhammer-

Fig. 2. Configuration for dynamic bending test [1].
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Chree type which are registered during the impact. The radial inertia is by far
smaller in the tube than in the plain bar of the same external diameter [6–7].
In fact, the radial dispersions are shared by external and internal parts of the
tube.
The gauges are glued to the output tube in order to detect a signal of

the axial force transmitted through the specimen, which is done by measuring
the wave of the transmitted longitudinal deformation εT (t). The impact end of
the projectile has a bevelled form of the length Lb and the projectile length
is Lp. The geometrical characteristics of the machine configuration are given
in Table 1.

Table 1. Characteristics of the projectile and the tube.

Projectile length Lp = 100 mm

Length of the conic part of the projectile Lb = 30 mm

Projectile diameter D = 22 mm

Projectile mass m = 215 g

Tube length Lh = 4000 mm

Internal diameter of the tube Dint = 30 mm

External diameter of the tube Dext = 50 mm

The measurement of the specimen displacement is facilitated by the use of
the efficient optical extensometer (Zimmer type) which follows the specimen
movement without contact.
The equation to calculate the support reaction is expressed by

(2.1) F (t) =
π

4
(D2

ext −D2
int) · Etub · εT (t),

where Etub is Young’s modulus of the tube, and Dext and Dint are, respectively,
the external and internal diameters of the Hopkinson tube.
The real displacement of the central point of the tensile face of the specimen

δs is given by

(2.2) δs(t) = δext(t)− δtub(t),

where δext and δtub represent, respectively, the displacement measured by the
optical extensometer and the elastic displacement of the Hopkinson tube due to
impact.
The analysis of the elastic waves propagation in the bars or in the tubes

allows to determine the elastic tube displacement δtub as a function of the
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transmitted wave εT (t). Thus, the value of δtub is expressed by the following
equation:

(2.3) δtub(t) = C0

t∫

0

εT (ξ)dξ.

The combination of Eqs. (2.2) and (2.3) gives the real deflection at the central
point of the specimen:

(2.4) δs(t) = δext(t)−C0

t∫

0

εT (ξ)dξ.

The wave celerity C0 of the elastic wave propagating in the tube is defined by

(2.5) C0 =
√

Etub/ρtub

with ρtub being the volume mass density of the tube.
The fundamental dynamic law applied to the specimen subjected to the

three-point bending gives:

(2.6) FI − FT = ms · δ̈s,

where FI is the force applied at the impact point of the specimen,ms is the speci-
men mass, FT is the sum of support reactions given by Eq. (2.1), δs represents
the deflection measured at the specimen centre defined by Eq. (2.4).

3. Experimental results

3.1. Quasi-static tests

Figure 3 shows a set of force-displacement curves, obtained under quasi-static
conditions of loading, realised by different displacement rates. The first part of
all curves reveals an elastic linear behaviour, up to approximately 70% of the
total loading. Above this limit, we observe a decrease in rigidity. This transition
is a result of the specimen cracking, and – to be more precise – this is due to the
matrix micro-cracking (see Fig. 4). This microcracks, in the matrix, take place
at the tensile face of the specimen, in the area of the maximum stress which
confirms the rupture in pure tension (see Fig. 5a). Then the curve reaches its
maximum. The peak value corresponds to the rupture of the fibres located in the
proximity of the tensile face and therefore reflects the appearance of macroscopic
cracks. Once the maximum value is reached, the specimen loses all its rigidity
which tends to zero. The deflection increases and the process of extracting of
broken fibres takes place (see Fig. 5b).
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Fig. 3. Comparison of force-displacement curves for different
quasi-static displacement rates.

Fig. 4. Microcracks in the matrix close to the tensile face.
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Fig. 5. a) Quasi-static rupture after three-point bending test, b) rupture face
of the specimen loaded by quasi-static three-point bending.

3.2. Dynamic bending

The dynamic bending tests have been carried out with the specimens ob-
tained from the same plate and of the same geometry. Figure 6 shows a set of
curves representing the forces calculated at supports as a function of the dis-
placements measured at the central point of the specimen, the latter is calculated
by Eqs. (2.2) and (2.4). The curves are given for different impact velocities.
It is noticed that the loading phase is accompanied by certain oscillations of

variable amplitude, which are coming from the acceleration field.
The suppression of the force is related to the loss of contact between the sup-

port and the specimen. Therefore the rupture appears at “one-point bending”
where the only resistance attributed to the specimen at this moment is its iner-
tia [1]. It may be concluded that above the impact velocity of V4 = 38 m/s, the
vibrations become less important and the specimen is no longer losing contact
with the supports.
In order to identify more precisely all the phenomena observed during the

loading process over time, a dynamic analysis using a mass-spring model is
proposed.
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Fig. 6. Evolution of the transmitted force as a function of displacement
at different impact velocities.

4. Analysis of impact tests

Many authors tried to model the three-point dynamic bending using the
mass-spring model. The common problems were to estimate the stiffness values
and the rigidity of the contact surface. The principal characteristic of such model
is that no deformation localisation can be considered. Among the most impor-
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tant models presented in the literature, the one by Williams [8–10] is adopted
for the analysis. The principle is presented in Fig. 7.

Fig. 7. Mechanical model representing behaviour of the
impactor-specimen system during impact loading.

The system specimen-contact force is modelled by a spring of ke stiffness,
a corrected mass me and finally by another contact spring of kc stiffness. The
corrected mass me is assumed equal to 17/35 of the real specimen mass (Wil-
liams [8]).
The equation of movement is then as follows:

(4.1) meẍ+ (kc + ke)x = kcV0t.

If the initial conditions are x(0) = ẋ(0) = 0, the specimen displacement is
given by

(4.2) x =
α

α+ 1

V0

ω
(ωt− sin(ωt)),

where V0 is the projectile velocity, α = kc
ke
and ω2 = kc+ke

me
are the eigen pul-

sations of the system, which depend on the specimen dimensions B, W , S (see
Fig. 1) and on the material density ρ.
The contact force is therefore obtained by the following:

(4.3) Pc = kc(V0t− x) =
α

α+ 1
ke

V0

ω
(ωt+ α sin(ωt)).

The force applied to the spring ke is

(4.4) Pe = kex =
α

α+ 1
ke

V0

ω
(ωt− sin(ωt)).

Equation (4.2) reproduces very well the oscillating behaviour of the specimen,
the form of the displacement curve is the same as shown with experimental
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results (Fig. 6). This encourages to use the Williams model for higher impact
velocities.
The model allows to identify the rigidity during the shock tests. We will

not calculate the contact rigidity of the projectile-specimen system from the
contact law (Hertz theory), because the cylinder-plan contact is one of the most
complex. However, a parametrical study may be a simple tool to estimate this
rigidity from the force-time curves calculated at the point of impact. Once we
know the rigidity and the specimen mass, we are able to estimate the value of
the contact rigidity of the projectile-specimen system.
There are many formulas to calculate a value of Ce (inverse to the stiffness).

For the homogenous isotropic material in the elastic range, this value for the
specimens without notches can be deducted from the mid- displacement of the
beam subjected to the three-point bending (Kobayashi [11]):

(4.5) CeEB =
S3

4W 3

(
1 + 2.85

(
W

S

)2

− 0.84

(
W

S

)3
)
,

where E, B,W and S are, respectively, the Young modulus, the specimen width,
the specimen thickness and the distance between supports (Fig. 1).
By using Eqs. (2.1), (2.4) and (2.6), we are able to calculate the force applied

at the impact point of the specimen:

(4.6) FI(t) = msδ̈ext(t)−msC0εT (t) +
(π
4

(
D2

ext −D2
int

)
EtubεT(t)

)
.

Figure 8 represents a comparison of the force evolution as a function of time,
both estimated from the model and calculated from Eq. (4.6). Two impact
velocities are used for this comparison.

Fig. 8. Comparison between Williams model and equation; force is calculated at the impact
point, the impact velocities are V3 = 25 m/s and V5 = 49 m/s.
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The results obtained from the mass-spring model are presented in Table 2.

Table 2. Estimation of the test parameters from Williams model.

Impact velocity [m/s] α ke [106 N/m] ω [103 rad/s] kc [107 N/m]

V3 = 25 6 4.06 76.47 2.40

V5 = 49 7.5 4.06 77.56 3.04

Figure 8 clearly shows that the model reflects the phenomenon of the contact
loss. In addition, the shapes of the force-time curves obtained from the model
and from the tests are similar. On the other hand, the slopes of the force-time
curves as well as the amplitudes are different. As far as the loading time is
considered, both analytical and experimental results are very coherent.
Once we analyse the damaging process of the specimen, the model is less

performing at high impact velocities. This behaviour can be explained by the
modification of the contact rigidity (Table 2) during the rupture propagation
[12]. This parameter plays a key role during the impact and it influences the
inertial force.
In order to study the role of the acceleration field in the dynamic regime,

we have introduced a correction factor γ which represents the effect of the ac-
celeration field on the force applied at the central point of the specimen. If no
acceleration effects are observed as it is under quasi-static loading, FI is equal
to FT (Eq. (2.6)). However, in dynamics this factor is defined by the following
relation:

(4.7) γ =
FT

FI
.

If equations (2.6), (4.2) and (4.3) are used, we can obtain the dynamic correc-
tion factor γ from the Williams model. Thus, we finally obtain the following
expression:

(4.8) γ(α, ξ) = 1−

(
(α + 1) sin ξ

ξ + (α sin ξ)

)

with ξ = ωt.
Figures 9 and 10 represent the evolution of the dynamic correction factor γ

as a function of time and for different values of α. The value γ = 1 corresponds
to the quasi-static loading. The conclusion is that the dynamic effects are dom-
inant when the specimen-projectile contact is too rigid. It should be noted that
the Williams model neglects the rigidity of the specimen support system.
The curves presented in Fig. 10 clearly demonstrate the capacity of the

Williams model to reproduce a phenomenon of the contact loss between the
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Fig. 9. Dynamic correction factor γ based on theWilliams model
for different values of α.

Fig. 10. Evolution of the dynamic correction factor γ as a function of time (Williams model);
V0 = 1 m/s, ke = 4.055 106 N/m, ω = 80, 000 rad/s.
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specimen and supports. This happens for the value of α ≥ 5. The same figure also
confirms our experimental analysis by showing the importance of the dynamic
effects at the moment of the contact loss.
We can notice that the model is better adopted for impacts with moder-

ate velocities. In case of high impact velocities, the effects of inertia and the
mechanisms of the irreversible absorption become too important and thus too
perturbing.

5. Effect of the loading velocity

In order to better understand the influence of the impact velocity on the spec-
imen behaviour under the three-point bending test, we will analyse the changes
in energy and stresses as a function of the impact velocity. Figure 11 shows an
increase of the rupture stress as the impact velocity increases, up to a critical
value comprised between 20 and 25 m/s. Above these values, we observe a de-
crease of the ultimate stress. This phenomenon has already been reported for
composite materials with thermoplastic matrix by many authors [13]. It is at-
tributed to the disappearance of the transition point between fragile and ductile
rupture and, as a consequence, it leads to the decrease of the rupture stress
value.

Fig. 11. Influence of the impact velocity on the rupture stress.

Evolution of the maximum force measured at supports during the first os-
cillation is given in Fig. 12 as a function of the impact velocity. This confirms
a tendency of the material to change its rupture mode.
Figure 13 presents the change of the kinetic energy and deformation energy

values as a function of time. Determination of the kinetic energy takes into
account the inertia of the specimen rotation. The evolution of the deformation
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Fig. 12. Influence of the impact velocity on the rupture stress.

Fig. 13. Evolution of the kinetic and deformation energies
as a function of time.

energy produces a plateau for a short time interval comprised between 67 µs and
78 µs. Above these values, the contact of specimen-supports is re-established and
the rupture continues to appear only due to the inertia efforts (the specimen is
in the configuration “one-point bending”).
Figure 14 presents the evolution of the total energy as a function of time,

both are at quasi-static and dynamic ranges. It is observed that the total energy
slightly increases when quasi-static loading velocity becomes higher. However,
this total energy value becomes very sensible to the impact velocity once we
reach the values of the order of 10 m/s. At the same time, the rupture stresses
have a reverse tendency, i.e., they decrease (Fig. 11). This phenomenon can
be explained by faster decrease of the displacement because the rupture itself
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becomes more and more fragile, unless it reaches the point at which the phe-
nomenon is reversed and the rupture becomes more ductile.

Fig. 14. Influence of the loading velocity on the total energy.

The displacement augments faster than the stress decreases and, as a conse-
quence, the total absorbed energy also increases.
These results allow to propose an exponential form of the correlation between

the total energy and the loading velocity. The proposed equation is

(5.1) WT =

(
W0

2

)(
1 + exp

((
Vi

Vi0

)m))
,

whereW0 represents the total energy in quasi-static conditions, Vi0 is the critical
velocity corresponding to the transition between the state of the insensibility and
the sensibility to the loading velocity and m is the coefficient of the sensibility to
the loading velocity. This expression can describe the behaviour of the composite
PA6 subjected to the three-point bending with the following constant values:
W0 = 4.1 J, Vi0 = 16.8 m/s and m = 0.75.

6. Conclusions

During the analysis of woven glass-fibre-reinforced Polyamide 6 behaviour
subjected to dynamic bending, a methodological approach has been proposed
based on two techniques: the mass-spring modelling and the experimental tech-
nique consisting of measurements of the force and displacement in order to find
the contact rigidity. Impact velocities in a range between 18.27 m/s and 58.0 m/s
have been proposed.
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The use of the mass-spring model for moderate impact velocities remains an
interesting tool to determine the effective load acting on the specimen. However,
the identification of parameters at higher impact velocities is troublesome due
to the fragility of PA6.
The existence of a critical impact velocity has been observed. Once this criti-

cal value is reached, the failure stress decreases quickly. The opposite behaviour,
i.e., the increase of the rupture stress is observed while approaching the critical
impact velocity. This behaviour can be explained by the existence of the transi-
tion between brittle and ductile rupture. Above this critical loading, the rigidity
of PA6 starts to decrease. This overall behaviour reflects the apparition of first
microcracks in the matrix, due to the failure of the fibres close to the tensile
face of the specimen. This phenomenon characterises a rupture mode related to
pure tension.
The test results under dynamic loading confirm the increase of the total

energy absorbed compared to the quasi-static loading.
The current market imposes high standards of a proper characterization of

the material properties; therefore the experienced use of the Hopkinson bar set is
crucial. This is why, the methodology presented in this study has a big potential
in the study of materials for industrial applications, especially in automotive
industry.
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