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Université de Lorraine • Poznan University of Technology

ONLINE FIRST May 27, 2025

Prediction of Soil Liquefaction Using Machine Learning
Approaches

Md. Mahabub RAHMAN1) , Md. Belal HOSSAIN1) , Abu SAYED2)∗

1) Department of Civil Engineering
Hajee Mohammad Danesh Science and Technology University

Dinajpur, Bangladesh; e-mails: mmr.civil@hstu.ac.bd; mbh.civil@hstu.ac.bd
2) Department of Civil Engineering, Pundra University of Science and Technology

Gokul, Bangladesh
∗Corresponding Author e-mail: sayed55443138@gmail.com

In the geotechnical engineering field, the assessment of liquefaction potential is a critical as-
pect of site evaluation. This work focuses on the application of support vector machines (SVM)
to improve the accuracy of liquefaction potential evaluation. Input data were collected from
the authors’ previous study and include parameters such as groundwater table (GWT), depth,
fineness content, peak ground acceleration (PGA), corrected SPT-N value, total stress, and
effective overburden stress. Radial basis function (RBF), linear, polynomial, and sigmoid are
the four SVM kernel functions that are examined in this study to model liquefaction-related
data using three approaches: grid search cross-validation, k-fold cross-validation, and fuzzy
c-clustering means (FCM). Several performance metrics, including accuracy, precision, recall,
and the area under the receiver operating characteristics (ROC) curve (AUC), among oth-
ers, are used to evaluate the developed machine learning (ML) models. The linear and poly-
nomial functions, for the grid search cross-validation approach, show higher performance with
an accuracy of 94.64%, recall of 95.55%, F1-score of 96.63, and AUC of 0.99 on the testing
data. For the k-fold partitioning approach, the RBF yields higher performance metrics com-
pared to the other three functions, with an accuracy of 92.73%, precision of 100%, F1-score of
95.0%, and AUC of 0.98. In the FCM technique, the linear and polynomial kernels again yield
greater accuracy, precision, F1-score, and specificity, while, the AUC values of the sigmoid and
RBF kernels are higher. The current analysis recommends the RBF over other mathematical
functions based on the k-fold partitioning technique after evaluating all performance matrices.
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1. Introduction

In the design phase of civil engineering construction, assessing the potential
for soil liquefaction due to earthquakes is a critical concern [1]. This is because
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ground failure may occur when an earthquake causes the soil layer underneath
the buildings to liquefy. Eventually, this results in severe structural damage or
even collapse. Liquefaction is the term for the solid-to-liquid transition in granu-
lar materials that can be triggered by an increase in pore water pressure [2]. Sev-
eral conditions can lead to soil liquefaction hazards: (1) loose and non-cohesive
soil particles; (2) soil particle sizes ranging from small grains of sand to granu-
lar silt; (3) sufficient ground shaking from an earthquake; and (4) a saturated
soil state [3]. In the early development of soil mechanics, Terzaghi and Peck
(1948) identified the soil liquefaction phenomenon to explain the loss of strength
in saturated, loose, granular soil deposits [4]. Several studies have examined liq-
uefaction and the resulting ground failures resulting from seismic activity, in-
cluding the 1964 Alaskan and Niigata earthquakes, which led to the collapse of
foundations, bridges, and slopes. Significant damage to structures and infrastruc-
ture has been inflicted by historical earthquakes in Bangladesh and Northeast
India, including the Great Indian Earthquake of 1897, the Bengal Earthquake
of 1885, and the Srimangal Earthquake of 1918 [5]. Due to the presence of ac-
tive faults and tectonic plate boundaries, this region is highly susceptible to
earthquakes with magnitudes ranging from moderate to high [6]. In developing
countries, such seismic events can result in high death tolls and extensive dam-
age to industrial zones, ports, and construction infrastructure. Soil liquefaction
is one of the primary contributors to this increased vulnerability [7].
Liquefaction caused by earthquakes has been reported and assessed in nu-

merous parts of the world. Seed and Idriss [8] proposed one of the earliest
and most fundamental procedures for determining soil liquefaction potential.
Their semi-empirical technique estimates a site’s liquefaction resistance using
results from the in-situ standard penetration test (SPT). This semi-empirical
technique relies on the findings of the on-site standard penetration test (SPT) to
determine the site’s liquefaction susceptibility. To assess soil liquefaction in the
field, later techniques, based on shear wave velocity (Vs) and the cone penetra-
tion test (CPT), were presented in [9, 10]. Since 1971, liquefaction prediction has
used SPT, CPT, and Vs as the accepted methods. These techniques, however,
introduce a great deal of uncertainty since they use “limit states”, which are
determined based on engineering judgment, to distinguish between liquefaction
and non-liquefaction scenarios. Recent research has demonstrated that ML tech-
niques can be used to build the “limit state” in a more logical manner. Unlike
traditional approaches (e.g., empirical, experimental), ML-based algorithms for
prediction have advanced rapidly in recent decades, providing a new way to
address geotechnical issues due to their high nonlinear fitting capabilities. In-
deed, ML algorithms have been widely employed in geotechnical engineering to
forecast soil shear strength [11], soil consolidation coefficient [12], piling capac-
ity [13], and slope stability [14].
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Additionally, algorithms based on ML have been used to forecast soil lique-
faction. For instance, Najjar and Ali [15] used CPT data in a ML framework
to examine soil liquefaction. Their artificial neural network (ANN) models devel-
oped using input parameters such as water content, plasticity index, and liquid
limit, demonstrated a reliable and conventional prediction rate for evaluating
liquefaction potential. Kurup and Garg [16] used artificial neural networks,
considered unconventional at the time, which proved to be trustworthy tools for
assessing liquefaction potential. In other studies, seismic liquefaction susceptibil-
ity was effectively assessed using support vector machines (SVM) and relevance
vector machines (RVM) [17, 18]. Hanna et al. [19] developed a neural network
model, an alternative to general regression model, to establish relationships be-
tween 12 soil characteristics and seismic data, enabling reliable prediction of
liquefaction occurrence. Rahman et al. [20] also employed ANN, which is very
useful for handling large datasets. Their ANN model achieved accuracy lev-
els comparable to earlier studies that employed a large number of parameters.
Kohestani et al. [21] described a random forest (RF) technique to assess the
probability of earthquake-induced soil liquefaction. Their findings showed that
the RF models outperformed both ANN and SVM models in terms of accuracy.
In a separate study, the performance of the stochastic gradient boosting (SGB)
approach was examined using both SPT and CPT data [22]. The SPT test
data set was found to have the highest classification accuracy. Multi-objective
feature selection (MOFS) methods were employed by Das et al. [23] to predict
liquefaction susceptibility using shear wave velocity (Vs), CPT, and SPT data.
It was discovered that the CPT-based models outperformed those based on SPT
and Vs in terms of efficiency. Four ML algorithms – K2, Hill Climbing, Tree
Augmented Naive, and Tabu Search – were employed by Ahmad et al. [24] to
evaluate the soil liquefaction based on CPT data. The most critical parameters
for prediction accuracy were found to be vertical effective stress and cone tip
resistance. Hu [25] developed two different Bayesian network (BN) models using
dynamic penetration test (DPT) and shear wave velocity test data. These two
models were validated against other existing models, and demonstrated better
predictive performance. Finally, several international studies have examined the
viability of ML methods for seismic liquefaction evaluation using SPT and CPT
data. These studies emphasize the significance of selecting relevant input fac-
tors, using large datasets, and addressing the shortcomings of both traditional
and current ML-based models [26–30].
This article’s aim is to examine the feasibility of four different mathematical

functions of support vectors (RBF, linear, polynomial, and sigmoid) using three
approaches: grid search cross-validation, FCM, and k-fold cross-validation. Seven
input parameters were selected from the authors’ previous research, which as-
sessed soil liquefaction utilizing empirical approaches based on SPT data [31, 32].
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To examine the capabilities of the proposed model in estimating liquefaction po-
tential, several statistical performance parameters were examined. In order to
assess the proposed model’s predictive power for soil liquefaction vulnerability,
several statistical factors were examined.

2. Materials and methods

2.1. Study area and dataset

The dataset used in this study was obtained from a previous study that
assessed seismic soil liquefaction using field data from SPTs. The entire city
of Dinajpur, Bangladesh, was covered by the borehole log data used in the
previous study. Four different patterns were identified in the surface geology
of the study area. The old gravelly sand and the Barind clay residue extend
across the district’s northern section. To the north of the district lies a young,
gravelly sand desert. The majority of the southeast and south of the area is
covered by Barind clay residue, along with alluvial silt and young gravelly sand.
A significant portion of the study area was found to be at risk of liquefaction due
to the presence of cohesionless soil at shallow depths. Figure 1 shows the dataset,
which contains 199 instances classified as liquefiable and 78 instances classified
as non-liquefiable [31, 32].

Fig. 1. Bar chart of liquefiable and non-liquefiable cases.

Seven influencing factors were selected as input parameters, including soil
layer depth (Z), total overburden stress (σav), effective stress (σ′

av), fines content
(F ), corrected SPT-N (N1(60cs)), GWT, and PGA. Table 1 shows the descriptive
statistics of the input dataset used for this study.

2.2. Nonlinear separable SVM

When the input space is mapped onto a high-dimensional space x → f (x),
a nonlinear separation hyperplane is created, where the data can be classified
linearly (Fig. 2). This mapping’s key characteristic is that the function has to
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Table 1. Descriptive statistical information of the input dataset.

Z N1(60cs) F < 0.0075 GWT σav σ′
av PGA

Mean 3.73987 11.2083 75.640072 2.5713 68.4324 45.2945 0.21827

Std. dev. 2.53335 6.06883 22.093035 0.72395 46.3925 22.5195 0.47312

Min 0.7621 2.2921 11 1.5 18.2427 1.1043 0.03

25% 1.82 7.6014 62 2.25 30.2796 27.8089 0.14

50% 3.81 10.1377 84 2.5 63.0831 40.5989 0.21

75% 5.33 13.9004 95 3 91.8521 54.3878 0.23

Max 10.67 70.1165 99 4.75 199.15 115.35 8

satisfy the requirement that it can be expressed as a kernel functionK(xi, xj) for
the dot product of the two functions, f(xi) · f(xj). Then, the decision function
becomes Eq. (2.1).

(2.1) f(x) =
∑

yiαiK(xi, xj) + b.

Fig. 2. Mapping from the data space X to the feature space F .

Diverse learning machines can be built using different kernel functions. Equa-
tions (2.2) and (2.3) are examples of commonly used kernel functions:

(2.2)


linear kernel: K(xi, xj) = [xi]

T[xj ],

polynomial kernel: K(xi, xj) =
(′Y [xi]

T[xj ] + r
)r

, ′Y > 0,

radial basis function (RBF): K(xi, xj) = exp (′Y ∥xi − xj∥ 2) , ′Y > 0,

and

(2.3) sigmoid kernel: K(xi, xj) = tan
(′Y [xi]

T[xj ] + r
)
.
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2.3. Methodology

The Scikit-Learn library, implemented in the Python programming language,
was used for ML models, and the corresponding codes were developed for per-
formance evaluation in this study. Figure 3 illustrates the complete workflow for
this study.

Fig. 3. Flow chart of the research methodology.

2.3.1. GridSearch cross-validation. Hyperparameter tuning is a procedure
that GridSearch cross-validation (GridSearchCV) uses to find the best values
for a particular model (Fig. 4). As was already said, a model’s performance

Fig. 4. Working procedure of GridSearchCV.
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is greatly influenced by the values of its hyperparameters. The best values for
hyperparameters cannot be determined in advance; therefore, it is recommended
to try every conceivable value before determining the ideal values. GridSearchCV
is usually used to automate the hyperparameter tuning process, as performing it
by hand could require a significant amount of time and resources.

2.3.2. The k-fold division approach. The k-fold partitioning approach’s data-
splitting procedure is shown in Fig. 5. The k-fold method uses random shuffling
to split the dataset into k folds. After k-fold splits the dataset, the first fold is
used as the testing dataset, and the subsequent k−1 folds are used to create the
training set. The model is trained with certain hyperparameters using the train-
ing data (k − 1 folds) and the testing data from a single fold. The performance
of the model is recorded. This process is repeated until all k-folds have been
tested. The complete dataset is divided into training and testing using fivefold
cross-validation.

2.3.3. FCM approach. Clustering is the process of grouping a dataset into
subsets. Observations that are similar to one another are represented by each
group, while items that are not comparable to one another are placed into dis-
tinct groups. In fuzzy clustering, an observation may belong to multiple clusters
based on its membership value. For each observation distributed across the clus-
ters, the total membership value is 1.0. Shi [33], Shahin et al. [34], and Das [35]
provide some background material on this methodology.

Fig. 5. Data splitting process in the k-fold cross-validation approach [36].

2.3.4. Performance evaluation. The confusion matrix is a commonly used
tool in binary classification problems [37]. Table 2 illustrates the four compo-
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Table 2. Components of the confusion matrix.

Predicted label

Negative Positive

Actual label
Negative TN FP

Positive FN TP

nents of a confusion matrix: true positive (TP), false positive (FP), true negative
(TN), and false negative (FN).
Based on the confusion matrix, the following performance measures can be

calculated:
(i) accuracy

(2.4) ACC =
TP+ TN

TP + TN+ FP+ FN
,

(ii) precision (P), recall (R) and F1-score (F1). The F1-score is used to evaluate
a classification model’s prediction accuracy by combining the precision and
recall. Here is how these measurements are computed:

(2.5)



P =
TP

TP + FP
,

R =
TP

TP + FN
,

F1 =
2.P.R

P+ R
,

(iii) Cohen’s kappa (K). It takes into account the chance of an unintentional
agreement [38]. The definition of Cohen’s kappa is as follows:

(2.6) K =
P0 − Pe

1− Pe
,

where Pe is the probability expected by chance and P0 is the complete
agreement probability, which is equal to the accuracy.

(iv) Matthew’s correlation coefficient (MCC). This is a statistical metric used
to assess how well binary classification models perform, especially in cases
involving unbalanced datasets. It considers false positives, false negatives,
true positives, and true negatives.

(v) Area under the curve (AUC) and receiver operating characteristic (ROC).
These two are frequently employed in binary classification to assess clas-
sification accuracy [39]. The ROC curve is generated by plotting the true
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positive rate (TPR) on the vertical axis against the false positive rate
(FPR) on the horizontal axis across various threshold settings. The top-
left corner represents the “ideal” location, where FPR = 0 and TPR = 1.
Consequently, a larger AUC indicates better classification accuracy. Ta-
ble 3 shows the hyperparameters used for each mathematical function.

Table 3. Hyperparameters used for each mathematical function.

Approach
Hyperparameters

RBF Linear Polynomial Sigmoid

GridSearch C = 1000,
gamma = 0.01

C = 100,
gamma = 0.01

C = 1000,
coef0 = 1.0,
degree = 2,
gamma = 0.01

C = 100,
coef0 = 0.1,
degree = 2,
gamma = 0.01

k-fold C = 1000,
gamma = scale

C = 1000,
gamma = 0.01

C = 1000,
coef0 = 1.0,
degree = 2,
gamma = 0.01

C = 100,
coef0 = 0.1,
degree = 5,
gamma = 0.01

FCM C = 1000,
gamma = scale

C = 1000,
gamma = 0.01

C = 1000,
coef0 = 1.0,
degree = 2,
gamma = 0.01

C = 100,
coef0 = 0.1,
degree = 5,

gamma = 0.0001

To develop specific models, the dataset was trained with five fold cross-
validation for GridSearchCV and the k-fold approach. The number of clusters
for FCM approach was set to 5. The average value of the cross-validation results
was calculated and then sorted based on different parameters using the Grid-
Search technique. Next, these optimized results were used for further model
tuning in both k-fold and FCM approaches.

3. Results and discussion

This investigation developed three models, each based on different approaches,
to meet the research objectives. Table 3 provides the value ranges for the param-
eters used and the total number of experiments for each algorithm. The models
were developed using the best parameters obtained through cross-validation in
the case of the GridSearch technique. However, in the case of the k-fold and
FCM methods, the best parameters were selected based on the trial-and-error
method, based on the resulting accuracy in predicting the target variable. The
best combinations obtained for each mathematical function, including RBF,
linear, polynomial, and sigmoid, are given in Table 3. These best parameter
combinations, as specified in Table 3, were then applied to the entire dataset
and incorporated into the study’s outputs. Some hyperparameter combinations
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produced identical results, and one of these combinations is presented in sum-
mary. The models were developed using the best parameters obtained through
cross-validation as well as the mentioned parameters for the k-fold and FCM
approaches.
As stated before, the hyperparameters for this study were tuned using the

GridSearchCV technique (Model I), and then the k-fold cross-validation tech-
nique was used for the train-test split to develop Model II. Finally, the fuzzy
clustering approach was used to find the best model for predicting soil liquefac-
tion in this study. The number of support vectors is important because it reveals
information about the SVM model’s complexity and its capacity to generalize to
new, untested data. Generally, a simpler decision boundary with fewer support
vectors may be more reliable and less prone to overfitting. Conversely, a higher
number of support vectors may indicate a more complex decision boundary, po-
tentially leading to overfitting the training data. Figure 6 shows the number of
support vectors for each approach with each mathematical function.

Fig. 6. Number of support vectors.

It is clear from the figure that the different kernels and techniques result
in varying numbers of support vectors. When considering the RBF, polyno-
mial, and sigmoid kernels, fewer support vectors are typically found for linear
kernels. In both the k-fold and FCM techniques, the sigmoid kernel has a com-
paratively larger number of support vectors. In all approaches, the RBF kernel
shows a moderate number of support vectors. A lower count of support vectors
may indicate a more straightforward model that is more likely to generalize well
to new data. A higher count could suggest a more sophisticated model, which
is prone to overfitting. A confusion matrix is a statistical tool used to evaluate
the performance of classification algorithms, particularly useful for binary clas-
sification problems with only two possible classes, such as the one in this study.
The confusion matrices for Model I, Model II, and Model III are represented in
Figs. 7–10, Figs. 11–14, and Figs. 15–18, respectively.
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a) b)

Fig. 7. Confusion matrix for GridSearchCV (Model I) with RBF mathematical function:
a) training and b) testing.

a) b)

Fig. 8. Confusion matrix for GridSearchCV (Model I) with linear mathematical function:
a) training and b) testing.

a) b)

Fig. 9. Confusion matrix for GridSearchCV (Model I) with polynomial mathematical function:
a) training and b) testing.

a) b)

Fig. 10. Confusion matrix for GridSearchCV (Model I) with sigmoid mathematical function:
a) training and b) testing.
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a) b)

Fig. 11. Confusion matrix for the k-fold partitioning approach (Model II)
with RBF mathematical function: a) training and b) testing.

a) b)

Fig. 12. Confusion matrix for the k-fold partitioning approach (Model II)
with linear mathematical function: a) training and b) testing.

a) b)

Fig. 13. Confusion matrix for the k-fold partitioning approach (Model II)
with polynomial mathematical function: a) training and b) testing.

a) b)

Fig. 14. Confusion matrix for the k-fold partitioning approach (Model II)
with sigmoid mathematical function: a) training and b) testing.
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a) b)

Fig. 15. Confusion matrix for the FCM clustering approach (Model III)
with RBF mathematical function: a) training and b) testing.

a) b)

Fig. 16. Confusion matrix for the FCM clustering approach (Model III)
with linear mathematical function: a) training and b) testing.

a) b)

Fig. 17. Confusion matrix for the FCM clustering approach (Model III)
with polynomial mathematical function: a) training and b) testing.

a) b)

Fig. 18. Confusion matrix for the FCM clustering approach (Model III)
with sigmoid mathematical function: a) training and b) testing.
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The confusion matrix for Model I is presented for four mathematical func-
tions. Among them, the linear and polynomial functions give the best accuracy.
Both models correctly predicted 53 out of 56 instances in the testing data-set
(Figs. 8 and 9). However, the other two mathematical functions correctly pre-
dicted 51 occurrences. For Model II, Fig. 11 shows that the RBF mathematical
function provides more accurate results than the other three. For the testing
data, the RBF function correctly predicted 51 out of 55 instances. However,
the polynomial, linear, and sigmoid functions correctly predicted 45, 46, and 48
occurrences, respectively. Lastly, the best accuracy for Model III is provided
by the linear and polynomial functions, just like in Model I. Both mathemati-
cal functions accurately predicted 52 out of 56 instances, as shown in Figs. 16
and 17. Nonetheless, the sigmoid function and RBF accurately predicted 49 and
51 instances, respectively. The performance metrics for the four mathematical
functions of the three models are compiled in Table 4. These outcomes are the
results of the model’s subsequent attempts on the 20% test set, which was ran-
domly chosen using the cross-validation procedure, with GridSearchCV yielding
the best results.
Table 4 shows that Model I achieves its highest accuracy for the linear and

polynomial functions, with 94.64% for testing and 95.92% for RBF in the train-
ing dataset. The outcomes for the testing dataset are more significant in a clas-
sification model and are higher for the linear and polynomial functions. In com-
parison to the linear function, the polynomial function exhibits a better accuracy
score (95.02%) for the training data. Other performance measures for the test-
ing data, including accuracy (94.64), recall (95.55%), F1-score (96.63%), kappa
coefficient (83.59%), MCC (83.72%), and specificity (90.91%), are higher for the
linear and polynomial functions in Model I, as shown in Table 4. Similarly, when
the dataset is tested using the k-fold cross-validation approach, the best model,
based on the confusion matrix, is obtained for the RBF function, which correctly
predicted 51 out of 55 instances (Fig. 11). The other performance metrics in Ta-
ble 4 indicate that the best-developed model is the RBF function, with accuracy
(98.64%, 92.73%), precision (100%, 100%), recall (98.08%, 90.48%), F1-score
(99.03%, 95.0%), kappa coefficient (96.78%, 81.78%), MCC (96.83%, 83.18%),
and specificity (100%, 100%) for training and testing, respectively. Finally, in the
case of the FCM approach, the confusion matrix for the linear and polynomial
functions depicts the same results for both the testing (52 instances correctly
predicted out of 56) and training (205 instances accurately predicted out of 221)
data (Figs. 16 and 17). The summary in Table 4 for the FCM approach shows
that the linear and polynomial functions yield the same results, including ac-
curacy (92.76%, 92.85%), precision (95.51%, 93.02%), recall (94.3%, 97.56%),
F1-score (94.9%, 95.24%), kappa coefficient (92.41%, 80.94%), MCC (82.43%,
81.35%), and specificity (88.89%, 80.0%) for training and testing, respectively.
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This investigation also evaluates the ROC performance indicator, which plots
the true positive rate on the y-axis and the false positive rate on the x-axis. The
upper left corner of the plot represents the “ideal” location, where the true posi-
tive rate is 1 and the false positive rate is 0 [40]. In other words, the true positive
rate is the proportion of liquefied soils that the model correctly identified as liq-
uefied. On the other hand, the false positive rate refers to the proportion of
non-liquefied soils that the model incorrectly predicted as liquefied. Figures 19,
20, and 21 present the ROC curves along with the AUC values for Models I, II,
and III, respectively.

a) b)

Fig. 19. ROC curve with AUC value for GridSearchCV (Model I) for:
a) training and b) testing.

a) b)

Fig. 20. ROC curve with AUC value for k-fold (Model II) for: a) training and b) testing.

For the testing data, the linear (AUC = 0.99) and polynomial (AUC = 0.99)
functions yield the maximum AUC value for the GridSearch approach. The linear
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a) b)

Fig. 21. ROC curve with AUC value for FCM (Model III) for:
a) training and b) testing.

(AUC = 0.97) and polynomial (AUC = 0.97) are also acceptable, although the
maximum AUC for the training data is achieved with the RBF function (AUC
= 0.98). For the k-fold cross-validation, the RBF function achieves an AUC of
1.0 for training data and a higher AUC of 0.98 for testing data. In contrast,
for the FCM technique the RBF function has the greatest AUC compared to
linear and polynomial functions, with AUC = 0.89 for both training and testing
data, compared to linear and polynomial functions, which have AUC = 1.0 for
training and AUC = 0.97 for testing data.

4. Conclusions

This study employed a well-known ML technique called support vector clas-
sification, employing four mathematical functions to create three models for
predicting soil liquefaction. The developed models are capable of estimating the
likelihood of liquefaction in all possible scenarios. As previously stated, this
study evaluated the applicability of FCM, k-fold, and GridSearchCV techniques
in liquefaction prediction. The best-performing models for predicting soil liq-
uefaction were selected based on the confusion matrix, ROC performance indi-
cator, and seven other performance metrics. For Model I, the linear and poly-
nomial functions yield the highest accuracy (94.64%) for testing; however, the
RBF function yields the highest accuracy (98.64%) for training and 92.73% for
testing in the k-fold partitioning approach. As with Model I, the polynomial
and linear functions yield the best performance metrics for the FCM cluster-
ing approach, with accuracy of 92.76% for training and 92.85% for testing. The
confusion matrix and ROC performance indicator validate these results.
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Out of the models developed using three different methods and four differ-
ent mathematical functions, the RBF is the best model for the k-fold cross-
validation because its performance metrics (precision = 100%, recall = 90.48%,
F1-score = 95.0%, kappa coefficient = 81.78%, MCC = 83.18%, specificity =
100%, and AUC = 0.98 for testing) align most closely with ideal values. This
study provides a solid alternative for liquefaction prediction, yielding more ac-
curate findings than earlier research. Therefore, it can be said that this study
introduces the SVM as a different and viable approach for classification tasks.
The SVM has proven effective in evaluating liquefaction potential, incorporating
mathematical functions. This work demonstrates the validity of SVM in mod-
eling the complex relationships between seismic and soil parameters, as well as
liquefaction potential, using in situ measurements based on the SPT.
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