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The paper is reporting a new experimental technique to study the dynamic behaviour of
composite materials subjected to bending direct impact. It is based on the Hopkinson bar
system allowing to observe material behaviour at very high impact velocities. The material
used to perform the tests is a woven glass-fibre-reinforced Polyamide 6.

Key words: impact velocity, dynamic bending, composite, shock, Hopkinson bar.

1. Introduction

The interest in bending tests results from the simplicity of specimen geome-
try and their popularity in industry. The composite material properties given by
quasi-static bending tests are most popular. However, the bending load of a spec-
imen and the result analysis is not simple. It remains very complex and yet many
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authors use this test as an easy and reliable tool. This happens generally due
to the low cost of this method. As far as dynamic bending tests are concerned,
they are used for toughness measurements [1]. Usual bending tests with a shock
impact at the notched specimens are performed on the Charpy apparatus [2, 3].
A load-time curve registered during the test using gauges installed on a pro-
jectile or on supports, reveals many important oscillations. These oscillations
make it quite difficult to interpret the results. In fact, the obtained signal is
a complex combination of the specimen response, the inertial loading of speci-
men acceleration, the direction of tension and compression waves in both, the
specimen and the projectile. As a matter of fact, the projectile is subjected
to elastic waves propagation which make the results difficult to exploit. If the
material is fragile, the specimen rupture may appear during first oscillations,
even at a inertial peak, so it is easy to guess areliable result analysis is hardly
possible. In general, dynamic bending cannot provide a reliable information on
a rupture from force measurements. Bending waves are relatively slow and spec-
imen vibrations generate a lot of perturbations. The use of Hopkinson bar [4]
helps to eliminate some of those problems and to obtain a better quality of the
results.
A 3-point bending test on the Hopkinson bar has several advantages. It

is relatively simple and not expensive to determine the applied load as well
as the deflection of the specimen. However, when used in a classical manner,
restrictions are imposed on the projectile type and the test time, because no
waves superposition may occur at the level where gauges are installed.
In order to answer these questions and also other ones that will be discussed

further, we propose a new experimental technique based on the Hopkinson bar
system in order to measure displacements in the middle of the specimen and to
obtain high impact velocities. In this study, we will examine the behaviour of
the woven glass-fibre-reinforced Polyamide 6 submitted to dynamic bending.

2. Experimental techniques and measurements

The technique that has been developed during this study is based on the
principle of the 3-point bending on the Hopkinson bar.
In order to evaluate the resistance to the dynamic rupture of materials with

energy stored in the specimen, many authors [5, 6] have used the Hopkinson
bars for the 3-point bending tests (Fig. 1).
This calculation requires that the applied load as well as the displacement at

mid-span of the specimen are known. The rupture shall occur before the wave
performs back-and-forth in the projectile and also before incident and reflection
waves are superposed. We will not be able to separate these waves by using
the classical method. In the presented study, the support deformation is not
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Fig. 1. Bending test using the Hopkinson bar system, without output bar.

taken into account. In return, two output bars have been added to cover this
inconvenience.
The most frequent arrangement for the Hopkinson 3-point bending test con-

sists of two output bars [7–13] which enables to determine reactions at the
support level (Fig. 2). The loading is applied through the input bar. It should
be noted that certain authors [7, 8] do not exploit a simple advantage that
a displacement of the specimen can easily be calculated.

Fig. 2. Bending test using the Hopkinson bar system with two output bars.

A special conic shaped projectile (Fig. 3) is proposed in order to avoid prob-
lems with perturbations caused by the impedance variations during the indirect
impact. It means the input bar is suppressed and the projectile enters into direct
contact with the specimen (Fig. 4). The measurements of the displacement dur-
ing the time are made with an optical extensometer type Zimmer which follows

Fig. 3. Geometry of the projectile and device to fix the specimen.
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Fig. 4. Modified configuration for dynamic 3 points bending test.

the movement of the specimen without contact. The extensometer reacts to the
axial displacement of small black and white target glued at the central part of
the tensile face of the specimen. The projectile velocity is measured by using
a system of three sources of light and photodiodes linked to two time counters.
The knowledge of the velocity at these two point enables to calculate an average
velocity of the projectile just before impact.
In order to minimize the Pochhammer-Chree type vibration, which is regis-

tered during the impact at the bar end [14], two output bars have been replaced
by a tube (Fig. 4). The radial inertia is by far smaller in the tube than in the
plain bar in the case of the same external geometry [15, 16]. The radial dispersion
is then split into external and internal ones.
The specimen is attached to the supporting devise produced of a thermally

treated steel. This supporting device can be easily installed and uninstalled
as it has a special thread (Fig. 3). The supporting device protects the tube,
so the latter will not require any treatment in case of damage. A schematic
demonstration of this assembly is shown in Fig. 4.
The gauges are glued on the output bar, therefore the signal of the trans-

mitted axial force applied to the specimen can be read from the wave of the
transmitted longitudinal deformation εT (t). The extremity of the projectile has
a bevelled form of the length Lb and the projectile length is Lp. The assembly
characteristics are given in Table 1. Figure 5 illustrates the Lagrange diagram
for the studied dynamic bending configuration using a short projectile.

Table 1. Characteristics of the projectile and the tube.

Projectile length of the projectile Lp = 100 mm

Length of the conic part of the projectile Lb = 30 mm

Projectile diameter D = 22 mm

Projectile mass m = 215 g

Tube length Lh = 4000 mm

Internal diameter of the tube Dint = 30 mm

External diameter of the tube Dext = 50 mm
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Fig. 5. Lagrange diagram for dynamic bending test.

As far as the modified version of the 3-point Hopkinson bending is concerned,
there are some important advantages of this configuration, mainly:

• impact velocities may reach up to 200 m/s, whereas the Charpy test is
limited to 5 m/s,

• the loading by impact eliminates the rise time between the incident wave
in the bar and the transmitted wave in the output tube,

• a reduction in the apparatus dimensions.
The axial force transmitted though the specimen to the supports can be

determined as a function of time of the transmitted longitudinal wave εT (t). It
is measured using two deformation gauges attached to the tube at two opposite
extremities in order to eliminate the impact of the tube bending. The support
reaction can be therefore given by:

(2.1) F (t) =
π

4

(
D2
ext −D2

int

)
· Etub · εT (t),

where Etub is the Young’s modulus of the tube, Dext and Dint are, respectively,
the external and internal diameters of the Hopkinson tube.
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The real displacement of the central point of the tensile face of the specimen
δs imposed by the projectile can be expressed by:

(2.2) δs(t) = δext(t)− δtub(t),

where δext and δtub represent, respectively, the displacement measured as ten-
sion by the optical extensometer and by the gauges placed at the Hopkinson
bar. An analysis of the elastic wave propagation allows to determine the tube
displacement as a function of the transmitted wave εT (t). The value of δtub can
be expressed as following:

(2.3) δtub(t) = c0

t∫

0

εT (ξ) dξ.

The combination of the Eqs. (2.2) and (2.3) gives a real displacement in the
middle of the specimen:

(2.4) δs(t) = δext(t)− c0

t∫

0

εT (ξ) dξ.

The graphical characteristics of the signals measured by the gauges and the
extensometers are presented in Fig. 6. They have been obtained during the

Fig. 6. Graphical presentation of displacement (2) and force (1).



NEW EXPERIMENTAL TECHNIQUE FOR DYNAMIC BENDING. . . 275

test with the impact loading of 17 m/s. It can be seen the signal registered by
the gauges attached to the transmitted bar has many oscillations. We can also
observe a loss of contact between the specimen and the supports during 85 µs
after impact. That means the specimen remains without any contact with the
supports during 36 µs (Fig. 6). It clearly demonstrates the complexity of this
phenomenon compared to a simple 3-point bending under quasi-static loading.
It is therefore very important to give the physical meaning for this behaviour.

3. Study in the woven glass-fibre-reinforced Polyamide 6
under dynamic bending

3.1. Material

The tested material is a composite reinforced by the glass fibre with a ma-
trix of Polyamide 6 (PA6). Our tests have been performed using parallelepiped
specimens without notches, cut from one plate of the glass-fibre-reinforced PA6
with identical characteristics in length, width and slenderness ratio. The speci-
men geometry is presented in Fig. 7 and it resembles the Charpy’s geometry as
its width S between two supports is equal to 40 mm [17]. In order to diminish
a negative effect of inertial forces on the transmitted force at high impact ve-
locities, we have adopted a configuration defined by the S/W ratio of the order
of 4.5. Both superior and inferior faces are not treated in order not to disturb
existing surface imperfections.

Fig. 7. Geometry of the Charpy specimen loaded by the Hopkinson bar.

3.2. Analysis and discussion

Figures 8 and 9 represent the evolution of the transmitted force and of the
displacement as a function of time. It can be observed that the increasing phase
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Fig. 8. Evolution of the force measured as a function of time.

Fig. 9. Evolution of the measured displacement versus time.

of the force is relatively short, of the order of 20–35 µs. The loading phase
is accompanied by one or more oscillations of the variable amplitude. On the
other hand, the variation of displacement measured as function of time, using
a Zimmer sensor displacement without contact, is quasi linear. The displacement
evolution as a function of time stops just after the last peak of the force-time
curve, this point being translated as the rupture point of the specimen. In fact,
the velocity of the mid-point of the specimen is quasi-constant.
The first force peak reflects a start of the specimen solicitation. Its high

amplitude compared to other amplitudes can be simply explained by a high
value of the force generated by the inertia of the specimen at the beginning of
the velocity increase. Then, it can be stated the force not only comes to zero,
but it takes a negative value during a short period of time. This is explained
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by the loss of contact between the specimen and the supports. The contact is
re-established during the second loading. It can be deducted the projectile has
a slightly lower velocity than the central point of the specimen. The rupture
occurs principally in the form of “one point bending” where the only resistance
of the specimen is due to its inertia.
The importance of oscillations in the signal of the support reactions made

us analyze more attentively the behaviour of an isotropic bar in the vibration
mode and subjected to the 3-point bending. First, the vibration modes have
been evaluated analytically.

3.3. Study of the beam behaviour

During the first instants when the deformation wave arrives at the interface
projectile-specimen, the wave in the specimen do not still reach the supports
and the test remains equivalent to the test of “one point bending”. As a conse-
quence, it is proposed to adopt a semi-infinite beam to model the specimen. The
movement equation Y (z, t) of the beam in bending, for which only the effects
of the bending moment are considered, can be expressed by:

(3.1)
∂4Y

∂z4
+ 4α4 ∂

2Y

∂t2
= 0 where 4α2 =

ρS

EI
,

where E is the Young’s modulus of the material, ρ is the density; I and A are

respectively the quadratic moment I =
BW 3

12
and the specimen cross-section

A = BW ; Y (z, t) is the beam deformation. More information are reported in
Appendix.
The resolution of this equation is a proper pulsation of the n-mode of the

free frequency [18] (for details see Appendix):

(3.2) ωn = n2π2

√
EI

ρAS4
= n2π2

√
EI

m0S3
,

where S is the distance between the supports and m0 = ρAS corresponds to the
mass between the specimen supports.
The frequency is given by the following formula:

(3.3) yn(z) = y0 sin
(nπz
S

)
,

where y0 is a constant.
The deformed shape of the first five resonant frequencies is schematized in

Fig. 10. The corresponding values of pulsations for the glass-fibre-reinforced
Polyamide 6 specimen are reported in Table 2.
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Fig. 10. Shape of first five resonant frequencies of the beam in bending.

Table 2. Pulsations values and periods of first five resonant frequencies.

n 1 2 3 4 5

ωn (rd/s) 27.2 · 103 108.6 · 103 244.4 · 103 434.4 · 103 678.8 · 103

Tn (µs) 231 58 26 14.4 9.3

When a cantilever shape of the specimen is taken into account, i.e. we include
the parts of the specimen which extends beyond the supports, the value of
the proper pulsations is modified (Fig. 7). This correction corresponds to the
cantilever p = (L − S)/2S = 0.125. This value leads to the diminution of the
first mode pulsation to 22.345 rd/s. The ratio ωn/ωn

◦ corresponds to the value of
0.823, where ωn

◦ is linked to the n-th proper mode defined by the relation (3.2).
The oscillations period ω has been determined graphically from the oscilla-

tions observed at the force-time curves. The results grouped at Fig. 11 present
the mean pulsations values obtained at different impact velocities. It can be
noted this pulsation seems to vary linearly as a function of log(Vi). A linear
correlation leads to the following equation:

(3.4) ω = ω0 + β log(Vi/V0),

Vi is the impact velocity.
For V0 = 1 m/s, the pulsation at the low velocity is ω0 = 42323 rd/s; β is

the sensibility coefficient at the impact velocity of the pulsation, β = 50703.
We can observe a fast increase of the pulsations during the passage from low

to high impact velocities.



NEW EXPERIMENTAL TECHNIQUE FOR DYNAMIC BENDING. . . 279

Fig. 11. Influence of the impact velocity on pulsation.

We will now take successively into consideration the effects of bending mo-
ment, shear force, rotational inertia and cantilever shape. Table 3 collects all
results of the theoretical calculations using the method of Rayleigh [18, 19] (see
Appendix 2 for details) which is based on the principle of the energy conser-
vation. The correction of the specimen mass and of the stiffness are presented
under the form of the ratios me/m0 and K/K0, where K represents the rigidity
of the specimen, m0 = ρ.A.S corresponds to the mass between the specimen’s
supports, me = 17/35 m0 corresponds to the equivalent mass of the specimen
calculated by G. Williams [20], K0 = 48EI/S3 corresponds to the specimen
stiffness.

Table 3. Theoretical determination of the first resonant frequencies.

Conditions K/K0
K

[106 N/m]
me/m0

me

[g]
m1 +me

[kg]
ω
[rd/s]

Bending moment 1.000 2.4 0.486 3.210 0.218200 3316

Moment+cantilever 0.883 2.12 0.521 3.440 0.218440 3122

Moment+ shearing 0.917 2.2 0.471 3.113 0.218113 3175

Moment+ shearing+ rotational inertia 0.917 2.2 0.554 3.656 0.218656 3174

In order to reduce experimentally the amplitude and pulsations values, we
have performed the spring-back tests for the fibre-glass-reinforced PA6 specimen.
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Figure 12 shows the evolution of the force as a function of displacement for this
type of test. The return to the initial position explains a restitution of a part
of the energy of the specimen which is stored in the projectile which springs
back at the final velocity Vf . The force component which represents the first
frequency can be described as following:

(3.5) F (t) = A1/ω1 sin(ω1t),

where A1 represents the amplitude of this mode.

Fig. 12. Spring-back test for fibre-glass-reinforced PA6 specimen, initial impact velocity
of Vi = 7.4 m/s.

We have a similar relation for the displacement:

(3.6) x(t) = B1/ω1 sin(ω1t).

As a consequence, the values of the amplitudes and pulsations have been de-
termined numerically using the method of least squares. The values of these
parameters are reported in Table 4.

Table 4. Calculation of the amplitude and pulsation for the spring-back
test of the fibre-glass-reinforced PA6 specimen.

Impact velocity [m/s] F [N] x [mm]

7.4
A1 = 2.9 107 ± 5.3 105 B1 = 4630.1 ± 27

ω1 = 4479.3 ± 28 rd/s ω1 = 4178.2 ± 8.83 rd/s



NEW EXPERIMENTAL TECHNIQUE FOR DYNAMIC BENDING. . . 281

The mean pulsation values are: 4479.3 ± 27.63 rd/s for the force and
4178.2 ± 8.83 rd/s for the displacement. These values represent relative differ-
ences of 26% and 20%, respectively, compared to the pulsations given by the
method of Rayleigh. This dispersion can be explained by the presence of the
second mode oscillations (high impact velocities) which are originated from the
acceleration field.

3.4. Influence of the acceleration field

It is important to analyze the impact of the acceleration field in the specimen
under dynamic loading. In order to do so, the specimen will be modelled as the
3-point bending configuration by the mass-spring system (Fig. 13).

Fig. 13. Schema used for inertia correction.

The sum of the support reactions measured at the level of the output bar
is 2R = FT , whereas FI is the force applied at the impact point at the speci-
men. Therefore, the fundamental law of the dynamic described for the specimen
receives the following form:

(3.7) FI(t)− FT (t) = meδ̈s(t),

where me is a reduced mass of the specimen defined here above and δs(t) repre-
sents a deflection measured at the centre of the specimen defined by the Eq. (2.4).
The initial conditions of δ(τ) = δ(t) = 0, at t = 0.
When no acceleration is present such as in the quasi-static mode, FI is equal

to FT . However, under dynamic conditions, we shall introduce the factor of
dynamic correction γ, defined by the following formula:

(3.8) γ(t) =
FT (t)

FI(t)
.
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The factor of dynamic correction will also be given by:

(3.9) γ(t) =
FI(t)−meδ̈s(t)

FI(t)

or:

(3.10) γ(t) =
FT (t)

FT (t) +meδ̈s(t)
.

This correction factor allows to illustrate the field of acceleration of the force
applied at the central point of the specimen. In case of our configuration, the
field of acceleration is deducted from the field of displacement measured at the
central point of the specimen. The example of this correction is presented in
Fig. 14 as a function of time. It can be observed the dynamic effects are more
important when the specimen is in one point bending (loss of contact between
the specimen and the supports). The correction factor itself increases at higher
impact velocities (Fig. 15). The value γ = 1 corresponds to the quasi-static
loading. Therefore any deviations reflect the influence of the field of acceleration
in the dynamic case.
The sum of the support reactions are calculated experimentally by the trans-

mitted force. If the inertial component is known, the applied force at the impact
point of the specimen is determined through the Eq. (3.11) without any need to
define the stiffness:

(3.11) FI = meδ̈ext(t) +
(π
4
(D2
ext −D2

int)Etub −meC0

)
ε̇T (t).

Fig. 14. Dynamic correction for the impact velocity of Vi = 25 m/s.
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Fig. 15. Dynamic correction for the impact velocity of Vi = 58 m/s.

Figure 16 presents the evolution in time of the applied force for different
impact velocities.

Fig. 16. Comparison of the force obtained on the impact point and close to the support
V2 = 18.27 m/s, V3 = 25 m/s, V4 = 38 m/s.
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Before the contact is lost between the specimen and the supports, a compar-
ison of two forces (FI > FT ) shows a good reproducibility of the model. On the
other hand, when the contact is re-established, we can see in Fig. 16 that the
amplitude of the force FI is slightly inferior than the amplitude of the force FT ,
because the adopted model does not take into consideration the delay which ex-
ists between the beginning of these two loads (FI and FT ). Moreover, this time
shift can be influenced by the dispersion of the bending waves at the specimen
boundaries as well as by the arrival of the first transversal wave at the rupture
point.
Figure 17 presents the evolution of shock time as a function of the impact

velocity. We can observe that the shock time diminishes with the impact velocity
because the rupture load is reached faster.

Fig. 17. Influence of impact velocity on the shock time.

4. Conclusion

In order to study the behaviour of the glass-fibre-reinforced Polyamid 6 in
dynamic conditions, we have elaborated a system to limit disturbances appearing
at low frequencies during the tests. This made us possible to better describe
oscillations amplitudes at the force-time curve. It should be noted that this
is not the case for the typical Charpy test during which important parasite
oscillations are measured due to hammer vibrations and not due to the force
applied at the specimen.
This new technique allows to measure in a fast way not only the force at

the supports, but also the displacement at the specimen centre at high impact
velocities.
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Appendix A. Flexural response of a semi-infinite beam

In case of a simply supported beam, loaded in the 3-point bending configura-
tion, free unamortized vibrations are governed by the following equation where
only a bending moment is taken into account:

(A.1) EI
∂4Y (z, t)

∂z4
+ ρA

∂2Y (z, t)

∂t2
= 0,

where E is the Young’s modulus of the material, ρ is its volume mass; I and A

are respectively the quadratic moment I =
BW 3

12
and the specimen cross-section

A = BW .
We assume Y (z, t) can be written in a separable form: Y (z, t) = y(z)f(t),

then we divide it by the term EI in order to receive:

(A.2)
yIV (z)

y(z)
+
ρA

EI

f ′′(t)

f(t)
= 0,

where yIV (z) and f ′′(t) represent respectively the forth derived of y(z) with
respect to z and the second derived of f(t) with respect to time. Again, we
divide by yIV (z)f(t) in order to separate the variables:

(A.3) yIV (z)f(t) +
ρA

EI
y(z)f ′′(t) = 0.

As the first term of the Eq. (A.3) is only a function of z and the second one
only depends on t, the equation cannot be satisfied for any value of z or t unless
both terms become the constant value C.

(A.4)
yIV (z)

y(z)
= −ρA

EI

f ′′(t)

f(t)
= C = k4.

We assume C = k4 and we obtain two classical differential equations:

yIV (z)− k4y(z) = 0,(A.5)

f ′′(t) + ω2f(t) = 0,(A.6)

where

(A.7) ω2 = k4
EI

ρA
.

If f0 and f
′

0 are defined as initials conditions at t = 0, the general solution of
the Eq. (A.6) is given in the following form:

(A.8) f(t) = f0 cosωt+
f ′0
ω

sinωt.
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While solving the first differential Eq. (A.5) in the form y(z) = erz, we show
that y(z) is a combination of trigonometric and hyperbolic functions:

(A.9) y(z) = A1 cos kz +A2 sin kz +A3 cosh kz +A4 sinh kz,

where the constant values Ai are determined by boundary conditions. At the
abscissa points z = 0 and z = S, the deformation and the moment are equal to
zero: y(0) = y(S) = 0 and EIy′′(0) = EIy”(S) = 0.
Finally, we obtain A1 = A3 = A4 = 0 and the only condition is:A2 sin kz = 0.

As A2 cannot be zero, we find that k =
nπ

S
or n is the natural number. By

replacing the expression of k in the Eq. (A.7), the pulsation of the proper mode
of the specimen can finally be expressed:

(A.10) ωn = n2π2

√
EI

ρAS4
= n2π2

√
EI

m0S3

m0 = ρAS corresponds to the mass between the specimen supports.

Appendix B. Method of Rayleigh

B.1. Bending moment only

ω2
1 =

48EI

S3

1(
m1 +

17
35m0

) ,

me =
17

35
m0.

B.2. Shearing effect

ω2
1 =

48EI

S3

1 + k′EG
(
W
S

)2

m1

[
1 + k′EG

(
W
S

)2]2
+ (µ2S)

[
17
35 +

4
5k

′E
G

(
W
S

)2
+ 1

3

(
k′EG

)2 (W
S

)4] ,

me =
17

35

(µ2S)
[
1 + 28

17k
′E
G

(
W
S

)2
+ 35

51

(
k′EG

)2 (W
S

)4]

[
1 + k′EG

(
W
S

)2]2 ,

K =
48EI

S3

1[
1 + k′EG

(
W
S

)2] .
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B.3. Effect of the inertial rotation

ω2
1 =

48EI
S3

(
1 + k′EG

(
W
S

)2)

[
m1

(
1 + k′EG

(
W
S

)2)2
+ a∗

] ,

me =
17

35
(µ2S)

b∗
[(
1 + k′EG

) (
W
S

)2]2 ,

K =
48EI

S3

1[
1 + k′EG

(
W
S

)2] ,

where

a∗ = (µ2S)

[
17

35
+

2

5

(
1 + 2k′

E

G

)(
W

S

)2

+
1

3

(
k′
E

G

)(
2 + k′

E

G

)(
W

S

)4

+
1

3

(
k′
E

G

)2(W
S

)6
]
,

b∗ =

[
1 +

14

17
k′
E

G

(
1 + 2k′

E

G

)(
W

S

)2

+
35

51

(
k′
E

G

)(
2 + k′

E

G

)(
W

S

)4

+
35

51

(
k′
E

G

)2(W
S

)6
]
.

B.4. Taking into account the cantilever of the specimen

ω2
1 =

48EI
S3

[
1 + 8p3 + k′EG (1 + 2p)

(
W
S

)2]

m1

[
1 + 8p3 + k′EG (1 + 2p)

(
W
S

)2]2
+ c∗

,

me =
17

35
(µ2S)

1+ 210
17 p

3− 336
17 p

5+ 160
17 p

7+ 70
17

[
C1

(
W
S

)2
+C2

(
W
S

)4
+C3

(
W
S

)6]

[
1+8p3+k′EG (1+2p)

(
W
S

)2]2 ,

K =
48EI

S3

1[
1 + 8p3 + k′EG (1 + 2p)

(
W
S

)2] ,
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where

c∗ = (µ2S)

{
17

35
+3p3− 48

5
p5+

32

7
p7+2

[
C1

(
W

S

)2

+C2

(
W

S

)4

+C3

(
W

S

)6
]}
,

and G is the Coulomb modulus and p is the value of cantilever.
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portement dynamique des matériaux, Thèse de l’ENPC et de l’Ecole Polytechnique, 1992.

15. Klepaczko J.R., An experimental technique for shear testing at high and very high strain
rates. The case of mild steel, Int. J. Impact. Engng., 15, 25, 1994.

16. Klepaczko J.R., Matysiak S.J., Analysis of longitudinal impact on semi-infinite circu-
lar bars and tubes, Appendix No. 2, The Final Technical Report Contract DAJA 45-90-
C-0052, Metz, October, 1992.

17. NFEN 10045-1, Essai de flexion par choc sur éprouvettes entaillées, Méthodes d’essais,
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