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Part one of the paper presents the derived equations for calculations of the initial wall
thickness g0 of tubes to be bent for elbows, and a proper bending angle αb. The expressions for
calculating g0 were presented for a suitable measure of the big actual radius Ri in the bending
zone for an exact (general) solution and for three formal simplifications of the 1st, 2nd, and 3rd
order. In any case, a value of g0 depends on the radius and angle of bending, external diameter
of the tube, and permissible elbow thickness according to the European-Polish Standards and
recommendations of the European-Polish Technical Inspection Office, on the coordinates of the
point where the thickness g1all was determined, and the coefficient of the bending zone range k
(defined during tests). In this paper, the external or internal diameter of the tube subjected
to bending is applied as a parameter.

Key words: bending tubes, three simplifications, strains, initial wall thickness, discontinuous
strain fields.

1. Introduction

During the tube bending process, variation of the wall thickness gi can be
observed in all zones of active bending and bent zones. The thickness is min-
imum at the top points of the elongated layers of the elbow and it is almost
equal to the initial thickness g0 at the beginning and end of the bending zone
[1–13]. In paper [1] it was mentioned (in the range of elastic deformations) that
wall thickness changing and ovality changing are of the same order. The wall
thickness is usually maximum at the internal points of the compressed layers.
The elbows must satisfy the conditions and criteria connected with the strength,
designing, working safety and life, requirements of suitable standards and rules
of technical inspection, so the initial thickness of a tube for bending should be
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chosen in a proper way. The elbow life should be comparable or even greater
than the life of straight intervals of pipelines [14–16], because production costs
for elbows are higher. Thus, the minimum thickness of the elbow at the top
point should not be lower than the wall thickness of the pipeline straight in-
terval.
If one wants to determine the required initial thickness of the pipe, one

has to “invert” the expressions obtained in [5, 8–10] and calculate the initial
thickness instead of the wall thickness in the bending zone. In this paper the
author concentrated mainly on the analysis of elongated layers in the bending
and bent zones because in those zones we observe reduction of the wall thickness,
and damages, cracks, and other unfavourable processes usually take place there.
Thus, the problem is the following: the minimum acceptable wall thickness,
satisfying the strength criteria and requirements of technical inspection, as well
as European-Polish standards, is given, and the initial thickness is the searched
variable. According to the author’s knowledge, empirical methods of selection of
the tube initial thickness were used in the past for the given bending parameters,
tube dimensions, and the material of the tube.
At present, two methods and approaches to the problem are known, namely:
• The calculated minimum wall thickness in the elbow g1min is also the
thickness for straight intervals and all the pipeline. It is not right from
the economical point of view, because working conditions of the elbows
are more difficult than those for the straight intervals, and damages of the
pipelines will occur more often in the elbows [14, 15, 17–19] than in the
straight intervals;

• The other method consists of separate calculations for straight elements
and elbows of the pipeline. After calculations of the elbow strength and
determination of the acceptable minimum thickness at the most dangerous
points, the initial thickness of the tube is determined. Since the calculated
thickness of the straight intervals is smaller than the calculated thickness
of the elbow, it is also smaller than the initial thickness of the tube for the
elbows. When external diameters of the elbows and the straight intervals
are the same, at the joining point a change of the cross section will occur
(external orifice). When external diameters are equal, there is no change
of the cross section, on the contrary to the “external orifice” [8].
During a real bending process, after bending at the edges of the bending

zone, the wall thickness is smaller in the elongated layers, and greater in the
compressed layers as compared with the initial thickness of the tube [1, 2, 6,
8, 10, 11]. It is of a great importance when the straight intervals of elbows
are too short. Then the joints of elbows with straight intervals are asymmetric
(asymmetric contractions, asymmetric orifices form).
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In this paper, the external or internal diameter of the tube subjected to
bending is applied as a parameter because in Poland and other countries most
tube manufacturers give the same basic dimensions: external diameter, wall
thickness, and length (dext × g0 × l). In practice, there are some specific cases of
elbows made of the tubes where internal diameter, thickness, and length of the
tube (dint × g0 × l) are dimensional parameters. This problem can occur during
production of elbows of the same internal diameters, such as straight intervals,
because it allows to make connections between them with no internal orifices.
It also improves accuracy of mutual fitting of dimensions (internal diameter of
the tube and external diameter of the mandrel of the bending machine) and
reduces the number of mandrels or application of mandrels of variable geometry
(variable diameter) that generate higher expenses.
For example, the expression for calculation of deformations included in UE

Directive [13], contains dependence on dext not on dint.

2. Basic geometrical descriptions and relationships

The notations applied in Fig. 1 and in the equations are:
dj – local “actual diameter” of the bent elbow, dj = 2rj (j = 1 for the elongated

layers, j = 2 for the compressed layers),
dext and dint – external and internal diameters of the tube subjected to bending,

respectively, such that dext > dint and also dext = 2rext, and rext = rint+g0,
and we assume that dint = const,

Fig. 1. Geometric and dimensional quantities occurring during tube bending.
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g0 – initial thickness of the tube subjected to bending,
gj – local actual thickness of the elbow in the bending and bent zones where

(j = 1 or j = 2),
g1min – minimum wall thickness in the elongated layer,
g2max – maximum wall thickness in the compressed layer,
k – technological-material coefficient determined from tests which defines the

range of the bending zone so that kαb = 180◦. Theoretically, k ∈ 〈1; ∞〉.
For practical purposes we can assume that k ∈ 〈1; 6〉, see Śloderbach
[6–9],

rj and r∗ – local small and locally small active actual radii of the bent elbow,
rext and rint – external and internal radii of the tube subjected to bending,
R and r̃ – bending radius (initial position of the neutral layer) and relative

bending radius, where r̃ = R/dext,
Rj – local “big active actual radius” of the elbow connected with the longitu-

dinal strain,
R0 – radius of the locally actual position of the neutral layer in the tube bending

process,
y0 – local and instantaneous displacement of the neutral axis in relation to the

initial state.

Greek letters

α – actual angle of the bending zone determined in the main bending plane
and in the parallel planes, α ∈

〈
0◦, αb

2

〉
; when αb = 0 (no bending), then

α = 0,
αb – bending angle of plastic deformations measured in the bending zone, αb ∈

〈0◦, 180◦〉, αpl – angle of the plateau zone,
α0 – angle of the elbow bend (angle of rotation of the template, drawing die of

the bending machine), and in practice α0 ∈ 〈0◦, 180◦〉.

In the bending zone there is the equality of the bending and bend angles,
so α0 = αb. When the plateau zone has been formed in the bending zone, then
α0 = αb+αpl, where β is the actual angle determined in the plane perpendicular
to the bending plane, β ∈ 〈0◦, 90◦〉, ϕi are the plastic logarithmic generalised
strains in the bending zone (logarithmic equivalent strain) derived in [8–10]
(i = 1, 2, 3) with the following form:

• ϕ1
∼= λj ln

2 (R − y0)± (dj cos βj ± 2 y0)
(
cos(kα)− cos

(
k
αb

2

))

2(R − y0)
is the longi-

tudinal strain (along the axis),
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• ϕ2
∼= ln

dj
dext
is the logarithmic circumferential strain in the plane perpendicu-

lar to the main plane of bending,
• ϕ3

∼= ln
gj
g0
is the logarithmic radial strain (along thickness), where j = 1, 2

(j = 1 and sign (+) for elongated layers, j = 2 and sign (−) for compressed
layers [5–11]).
Expressions on ϕi (i = 1, 2, 3) were derived using concepts of kinematically

admissible fields of plastic deformations, see e.g. [20–23]. In this paper on the
basis of experimental data and analytical calculations [2–8] we assume, that
y0 ∼= 0.
The values of elastic deformations are decimal parts of the per cent (a few

degrees of bending angle) and are neglected as very small in comparison with
the plastic deformations (the maximum theoretically value exceeds 50%), see
[2–6, 9–11].
Then ϕ1 = ϕp

1, ϕ2 = ϕp
2, ϕ3 = ϕp

3, ϕi = ϕp
i , where the superscript p means

plastic strains. λj are the coefficients of correction (modification) of the strain
distribution (especially important for description and analysis of the compressed
layers) in the bending zone, dependent on technological parameters of bending
(j = 1 for elongated and j = 2 for compressed layers).

3. The basic relationships for calculating g0 depenging on dext

In this chapter, the external diameter of the tube subjected to bending dext
is applied during the calculations as a geometrical parameter, and only the top
points of the elongated layers (j = 1) of the elbow are considered, so α = β = 0◦

and λ1 = 1.

a) Generalised model of the strain field
Let us substitute equations for ϕ1, ϕ2, and ϕ3 (see Greek letters in Sec. 2)

with the condition of plastic incompressibility (ϕ1 + ϕ2 + ϕ3 = 0). After trans-
formations and the assumption that y0 ∼= 0 we obtain the following algebraic
equation of 2nd degree related to g0:

(3.1) a1g
2
0 + b1g0 + c1 = 0,

where

(3.2)

a1 = g1

[
1− cos

(
k
αb

2

)]
,

b1 = −
(
dext + 2g1

2

)[
R+ 2g1

(
1− cos

(
k
αb

2

))]
,

c1 = g1

(
dext + 2g1

2

)[
R+

(
dext + 2g1

2

)(
1− cos

(
k
αb

2

))]
,
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g0 ≡ g0ext are the indices (0 ext) mean: 0 is the initial thickness, ext is the
dependence on the external diameter, g1 is the required (calculation) thickness
of the elbow wall at the top point of the elongated layers.
Two roots are a solution of Eq. (3.1). Only one of them (positive) satisfies

real conditions of bending. The other root is negative. Thus,

(3.3) g0 ≡ g0ext =
−b1 +

√
∆

2a1
, ∆ = b21 − 4a1c1.

When kαb = 180◦ the maximum strains are reached at the top point (the
plateau zone forms), then g0 = g0max. Expressions (3.1) and (3.2) have the
following simple form:

(3.4) a1g
2
0 + b1g0 + c1 = 0,

where

(3.5)

a1 = g1,

b1 = −
(
dext + 2g1

2

)
[R+ 2g1],

c1 = g1

(
dext + 2g1

2

)[
R+

(
dext + 2g1

2

)]
.

b) Simplification of the 1st order
The suitable quantities for component strains and the expressions obtained

under the simplification of the 1st type were noted by the symbol (′). The sim-
plification of the 1st order concerns the form of the numerator of expression ϕ1

for elongated layers (j = 1), see (Greek letters, Sec. 2), 2(R− y0) + (d1 cosβ1 +
2 y0)

(
cos(kα) − cos

(
kαb

2

))
in the bending zone, where the diameter dj is for-

mally replaced by the diameter dext and ϕ′

2 = ϕ2, ϕ
′

3 = ϕ3, see [5, 8, 10].
Let us substitute the strain components for the simplification of the 1st order

expressed versus dext with the condition of plastic incompressibility (ϕ′

1 + ϕ′

2 +
ϕ′

3 = 0), after transformations and the assumption that y0 ∼= 0 we obtain the
following expression:

(3.6) g′0 ≡ g′0ext =
gi (dext + 2g1)

[
2R+ dext

(
1− cos

(
k
αb

2

))]

2
[
R (dext + 2g1) + dextg1

(
1− cos

(
k
αb

2

))] ,

where g′0ext – indices (0ext) and g1 like in subpoint a.
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When kαb = 180◦ the maximum strains are reached at the top point (forma-
tion of the plateau zone), and then g′0ext = g′0max. Equation (3.6) takes a simple
form

(3.7) g′0max ≡ g′0ext =
gi (dext + 2g1) (2R + dext)

2 [R (dext + 2g1) + dextg1]
.

c) Simplification of the 2nd order
In the simplification of the 2nd type it is assumed that the value of the

circumferential strain ϕ2 is negligibly low in relation to two other strain com-
ponents. From the available experimental data [2, 4, 6, 10] it results that those
strains can be almost five times smaller than the other strain components. Phys-
ically, it means the application of a certain “quasi-plane” strain state. In this
case, let as denote suitable quantities as (′′), then ϕ′′

1 = ϕ1, ϕ′′

2
∼= 0, and ϕ′′

3 = ϕ3.
Let us substitute the strain components for the simplification of the 2nd order

from related to dext with the condition of plastic incompressibility (ϕ′′

1 + ϕ′′

2+
ϕ′′

3 = 0), after transformations we obtain the following expression:

(3.8) g′′0 ≡ g′′0ext =
g1

[
2R+ (dext + 2g1)

(
1− cos

(
k
αb

2

))]

2(R + g1)
,

where g′′0ext indices (0ext) and g1 have the same meaning as at subpoints a, b.
When kαb = 180◦ the maximum strains are reached (the plateau zone occurs)

at the top point, then g′′0ext = g′′0max. The expression (3.8) takes a simple form

(3.9) g′′0max ≡ g′′0ext =
g1(2R + dext + 2g1)

2(R+ g1)
.

d) Simplification of the 3rd order
This simplification is assumed to be a composition of simplifications of the

1st and 2nd orders. Physically, it also means the application of a certain “quasi
plane” state of strain. In the case of this simplification, suitable quantities are
denoted as (′′′). Thus, we have that ϕ′′′

1 = ϕ′

1, ϕ
′′′

2 = ϕ′′

2
∼= 0 and ϕ′′′

3 = ϕ3.
Let us substitute the strain components to the simplification of the 3rd order

related to dext with the condition of plastic incompressibility (ϕ′′′

1 +ϕ
′′′

2 +ϕ
′′′

3 = 0),
after the transformations and assumption that y0 ∼= 0 we obtain the following
expression:

(3.10) g′′′0 ≡ g′′′0ext =
g1

[
2R+ dext

(
1− cos(k

αb

2
)
)]

2R
,

here g′′′ext indices (0ext) and g1 have the same meaning as at subpoints a, b, c.
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When kαb = 180◦ the maximum strains are reached at the top point (the
plateau zone occurs). Then g′′′0ext = g′′′0max. The expression (3.10) takes the fol-
lowing simple form:

(3.11) g′′′0max ≡ g′′′0ext =
g1(2R+ dext)

2R
.

The expression (3.11) has already been published in the materials of the
Polish Technical Inspection Office and applied in the industrial practice, see
[24–26].
As it was mentioned above, in all the formulas in this chapter g1 means

a determined and acceptable thickness of the elbow wall at the top point of
the elbow which satisfies the criteria of strength and working safety as well as
conditions given by the European [13] and of other countries’ standards (or any
other existing and acceptable criteria and conditions).

Example 1. Let the bending radius be R = 80 mm, the external diameter
of the tube dext = 44.5 mm, and the required thickness of the elbow wall at the
top point of the elongated layers is g1 = 4.5 mm. Then, from Eqs. (3.3)–(3.5),
(3.7), (3.9), and (3.11) and calculations we obtain:

g0ext ∼= 5.45 mm, g′0ext
∼= 5.5 mm, g′′0ext

∼= 5.68 mm, g′′′0ext
∼= 5.75 mm.

3.1. Initial and boundary conditions in tube bending processes

The introduced expressions for generalised ϕ1, ϕ2, and ϕ3 (see Greek letters
in Sec. 2) and simplificated models ϕ′

i, ϕ
′′

i and ϕ
′′′

i , where i = 1, 2, 3, satisfy the
required initial and boundary conditions of the tube bending process:

a) when α =
(αb

2

)
= 0 – beginning of the bending process (no bending),

b) when α =
(αb

2

)
6= 0 – beginning and end of the bending zone,

c) when β = 90◦ – location of neutral surface, then it follows that ϕ1 = ϕ′

1 =
ϕ′′

1 = ϕ′′′

1 = 0, ϕ2 = ϕ′

2 = ϕ′′

2 = ϕ′′′

2 = 0, ϕ3 = ϕ′

3 = ϕ′′

3 = ϕ′′′

3 = 0,
d) when kαb = 180◦ – the maximum strains (formation of the plateau zone)
and α = β = 0◦ – top point of the the bending zone of the elongated
layers, then suitable initial thickness reaches the maximum values.

4. Basic relationships for calculations g0 versus dint

In this chapter, the internal diameter dint is used for calculations and, as
previously, only the top points of the elongated layers (j = 1) of the elbow are
taken into account. Thus, α = β = 0◦ and λ1 = 1.
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a) General scheme of the strain field
Let us substitute dj = dint + 2gj and dext = dint + 2g0 with the expressions

for ϕ1, ϕ2, ϕ3 (see Greek letters in Sec. 2) and next introduce them to the
condition of plastic incompressibility (ϕ1 +ϕ2 +ϕ3 = 0). After transformations
and assumption that y0 ∼= 0 and j = 1 we obtain the following algebraic equation
of the 2nd degree related to g0:

(4.1) a1g
2
0 + b1g0 + c1 = 0,

where

(4.2)

a1 = 4R,

b1 = 2Rdint,

c1 = −g1 (dint + 2g1)
[
2R + (dint + 2g1)

(
1− cos

(
k
αb

2

))]
.

After solving equation (4.1) we receive

(4.3) g0int =
−2Rdint + a∗

8R
,

where

a∗ =

√
(2Rdint)2 + 16R

[
2R+ (dint + 2g1)

(
1− cos

(
k
αb

2

))
(dint + 2g1)g1

]
,

g0int indices (0int) mean: 0 – initial thickness, int – dependence on the internal
diameter, g1 – required thickness of the elbow wall at the top point of the
elongated layers.
Two roots are a solution of Eq. (4.1). Only one of them (4.3) is positive and

satisfies real conditions of bending. The other root is negative.
When kαb = 180◦ the maximum strains are reached at the top point (for-

mation of the plateau zone), and g0int = g0max. The expressions (4.1) and (4.2)
have the following simple form:

(4.4) a1g
2
0 + b1g0 + c1 = 0,

where

(4.5)

a1 = 4R,

b1 = 2Rdint,

c1 = −g1 (dint + 2g1)[2R+ (dint + 2g1)].
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Thus

(4.6) g0int =
−2Rdint +

√
(2Rdint)2 + 16R[2R + (dint + 2g1)(dint + 2g1)g1]

8R
.

b) Simplification of the 1st order
Let in the numerator of expression ϕ1 (similar as in simplifications of the 1st

order, chapter 2) the diameter dj be formally replaced with the diameter dext
(where dext = dint + 2g0) and in the denominator of expressions ϕ2, diameter
dext be replaced with (dext = dint+2g0). Let us substitute the strain components
for this simplification expressed versus dint with the condition of plastic incom-
pressibility (ϕ′

1 + ϕ′

2 + ϕ′

3 = 0), we obtain as y0 ∼= 0 and j = 1 the following
expression:

(4.7) a1g
′

0
2 + b1g

′

0 + c1 = 0,

where

(4.8)

a1 = 4R,

b1 = 2
[
Rdint − g1(dint + 2g1)

(
1− cos

(
k
αb

2

))]
,

c1 = −g1 (dint + 2g1)(2R+ dint) .

Thus

(4.9) g′0int =
−b1 +

√
∆

2a1
, ∆ = b21 − 4a1c1,

where g′0 ≡ g′0int is the meaning of the indices (0int) and g1 is the same as at
subpoint a.
Two roots are a solution of Eq. (4.7), one of them is positive (4.9) and it

satisfies real conditions of bending. The other root is negative.
When kαb = 180◦ the maximum strains are reached at the top point (for-

mation of the plateau zone), then g′0int = g′0max. The expressions (4.7) and (4.8)
have the following simple form:

(4.10) a1g
′

0
2 + b1g

′

0 + c1 = 0,

where

(4.11)

a1 = 4R,

b1 = 2 [Rdint − g1(dint + 2g1)],

c1 = −g1 (dint + 2g1)(2R + dint) .
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After solving equation (4.10) we receive

(4.12) g′0int =
−2 [Rdint − g1(dint + 2g1)] + b∗

4R
,

where

b∗ =
√

4 [Rdint − g1(dint + 2g1)] + 4R(2R + dint)(dint + 2g1).

c) Simplification of the 2nd order
Let in the numerator of expression ϕ1 the diameter di be formally replaced

with dj = dint + 2gj . In the stretched layers j = 1, and then d1 = dint + 2g1.
Let us assume (similar as in the simplifications of the 2nd order, Sec. 3 point c)
that ϕ′′

2
∼= 0 and ϕ′′

3 = ϕ3.
Let us substitute the strain components for the simplification of the 2nd order

versus dint with the condition of plastic incompressibility (ϕ′′

1 + ϕ′′

2 + ϕ′′

3 = 0),
after transformations when y0 ∼= 0, we obtain the following expression:

(4.13) g′′0int =
g1

[
2R + (dint + 2g1)

(
1− cos

(
k
αb

2

))]

2R
,

where g′′0int are the meanings of the indices (0int) and g1 is the same as at
subpoints a, b.
When kαb = 180◦ the maximum strains are reached at the top point (for-

mation of the plateau zone), then g′′0int = g′′0max. The expression (4.13) has the
following simple form:

(4.14) g′′0max = g′′0int =
g1 [2R+ (dint + 2g1)]

2R
.

d) Simplification of the 3rd order
This simplification is assumed to be a composition of simplifications of the

1st and 2nd orders. Thus, we have that ϕ′′′

1 = ϕ′

1, ϕ
′′′

2 = ϕ′′

2
∼= 0 and ϕ′′′

3 = ϕ3

related to dint.
Let us substitute the strain components to the simplification of the 3rd or-

der with the condition of plastic incompressibility (ϕ′′′

1 + ϕ′′′

2 + ϕ′′′

3 = 0), after
transformations and assumption that y0 ∼= 0 we obtain the following expres-
sion:

(4.15) g′′′0int =

[
2R+ dint

(
1− cos

(
k
αb

2

))]

2
[
R− g1

(
1− cos

(
k
αb

2

))] ,
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here g′′′0int are the meanings of the indices (0int) and g1 is the same as at sub-
points a, b.
When kαb = 180◦ the maximum strains are reached at the top point (for-

mation of the plateau zone), then g′′′0int = g′′′0max. The expression (4.15) has the
following simple form:

(4.16) g′′′0max = g′′′0int =
g1 [2R+ (dint + 2g1)]

2R
.

The expressions determined in Secs. 3 and 4 satisfy the required initial and
boundary conditions (see Subsec. 3.1) for the tube bending process.

Example 2. Let the bending radius be R = 80 mm, internal diameter dint =
35.5 mm, and the required thickness of the elbow wall at the top point of the
elongated layers g1 = 4.5 mm. Then, according to Eqs. (4.6), (4.12), (4.14),
and (4.16), and after transformations we obtain

g0int ∼= 5.50 mm, g′0int
∼= 5.55 mm, g′′0int

∼= 5.75 mm, g′′′0int
∼= 5.83 mm.

According to the above example and analysis of the calculation results ob-
tained from expressions (4.1)–(4.16) for the same parameters of bending, internal
diameter of the tube subjected to bending, and the required thickness, we can
derive the following inequalities:

(4.17)
g0(dint) < g′0(dint) < g′′0 (dint) < g′′′0 (dint)

or g0int < g′0int < g′′0int < g′′′0int.

5. Conclusions

1. In this paper the generalised and simplified relationships for logarithmic
measures of strains during bending thin- and thick-walled metallic tubes at
bending machines derived and placed in [8–10] were used. Expressions on
measures of components of strains ϕi: longitudinal (along the tube axis),
circumferential, and along thickness (radial) presented in papers [9–11]
were received using concepts of kinematically admissible fields of plastic
deformations, see e.g. [20–23]. The strains can be defined in the main bend-
ing plane and each parallel and perpendicular plane, i.e. at all points of the
bending zone. The derived relationships describing the measures of loga-
rithmic strains depend on the bending radius R, geometrical dimensions
of the tube, the bending angle αb, angular coordinates α and β, which de-
scribe the bending zone in the range of the bending angle kαb ∈ [0◦; 180◦],
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displacement of the neutral axis y0, and two technological-material coef-
ficients k and λi. The calculations included the value of the coefficient of
strain distribution in the elongated layers (λ1 = 1).

2. The simplified expressions for strains obtained in [5, 8, 10] determine
a higher initial thicknesses of the walls of tubes for bending. It means that
they are more safe from the point of view of strength, life, and working
safety of the elbows in a pipeline [8, 14–19].

3. However, those simplified analytical schemes of strain fields do not satisfy
the conditions of continuity of displacements and strains but are a formal
mathematical treatment facilitating calculations [5, 8, 10]. The simplified
methods of the 1st, 2nd, and 3rd orders determine very close results, sim-
ilar to those obtained by the method of a general strain scheme. In three
cases, the initial equations are algebraic equations of the 1st degree – cal-
culations can be easily done with the use of a calculator.

4. The introduced simplifications of the 1st, 2nd, and 3rd types are not only
formal mathematical operations making expressions and calculations sim-
pler [5, 8, 10]. They have a physical sense as well. In the case of simplifi-
cation of the 1st type, as the wall thickness becomes thinner, the neutral
layer of plastic bending proportionally displaces downwards (in the direc-
tion of the centre of rotation). In the considered case this displacement
is not big, and we can write that r1/R0 ≈ const and R0 = R0(αb). From
the tests and analytic calculations it also appears that the radius deter-
mining the position of the neutral layer is R0 ≈ R− (g0 − g1). In the case
of simplification of the 2nd type we can state that circumferential strains
are sometimes five times smaller than longitudinal and radial ones (along
the axes and thickness). Thus, they can be formally neglected (ϕ2 ≈ 0).
Simplification of the 3rd type is a composition of simplifications of the 1st
and 2nd type, [5, 8, 10].
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