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This paper is devoted to the study of a homogeneous clamped beam with a monosymmet-
ric cross section under uniformly distributed load or three-point bending. A nonlinear shear
deformation theory of a plane beam cross section based on the classical shear stress formula
known as the Zhuravsky shear stress is developed. The values of shear coefficients and maxi-
mum deflections of exemplary beams are analytically determined. Moreover, numerical FEM
computations for these beams are carried out. The results of the research from both methods
are shown in figures, specified in tables, and compared. The percentage relative differences be-
tween the analytical and numerical results prove that the proposed original shear deformation
theory accurately describes the shear deformation problem of a beam’s planar crosssection.
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1. Introduction

Newly designed structures must meet more rigorous criteria resulting from
increasingly stringent standards. Engineers are striving to create structures ca-
pable of withstanding static, dynamic and thermal loads with greater efficiency
while maintaining their strength and enabling weight reduction. The use of
modern materials, new ways of structure optimization and development of the
theories of solid bodies behavior are becoming essential to meet these require-
ments.

The shear effect occurring in beams, plates and shells is of significant impor-
tance in engineering structures. Wang et al. [1] presented the bending, buck-
ling and free vibrations problems of beams and plates, considering the shear
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effect theories formulated in past decades. Kurrer [2] described the history
of structures theory with the detailed list of their authors. The fundamental
theories of beam and plate deformation, according to Reddy [3], are based on
specific relationships between material properties and nonlinear deformations.
These theories include equilibrium equations used to analyze beam deforma-
tion and the principle of virtual work, essential in mathematical modeling used
in computer simulations and engineering, especially in the finite element method.
Gao and Shang [4], based on loads applied to the upper and lower surfaces of
the beam, demonstrated that the overall deformation of beams can be separated
into two independent parts: bending and elongation or compression. Without ar-
bitrary assumptions, an accurate theory regarding deep beams, considering these
two deformations, is explicitly developed based on the Boussinesq-Galerkin so-
lution and Lure’s method. Simultaneously, as a classical example, it is shown
that the solution based on this theory is an elastic solution and provides better
results than other beam theories.

Carrera et al. [5] discussed various beam theories such as the Euler-Ber-
noulli theory, Timoshenko theory, and theories involving stretching in the plane.
Variants of theories encompassing complete linear extension, Carrera’s unified
formulation and advanced beam theories based on parabolic, cubic, quartic,
and multidimensional assumptions were presented. The paper also focused on
potential applications of these theories in analyzing shells and beams made from
materials with gradient properties. Additionally, the Arlequin method for cre-
ating multi-model beam theories was discussed. Challamel [6] investigated
the buckling of higher-order beam-columns using advanced continuous mod-
els. The equivalence between enriched kinematics in traditional higher-order
beam theories and the non-local and gradient nature of constitutive laws was
demonstrated. This systematized typical beam theories, including the Euler-
Bernoulli beam theory, Timoshenko theory, and other higher-order theories.
A consistent methodology leading to sensible solutions for buckling-related prob-
lems was presented. It was shown that the Timoshenko theory and some other
higher-order theories can be understood as non-local or gradient variants of the
Euler-Bernoulli beam theory. Furthermore, the problem of higher-order beam-
column buckling from the perspective of Timoshenko’s gradient elasticity theory
was discussed, presenting various models with available solutions for repetitive
structures and beams with microstructures.

Thai and Vo [7] developed a non-local sinusoidal beam deformation theory
to study the bending, buckling, and vibrations of nanobeams. Their model con-
sidered both small-scale effects and shear deformations in nanobeams without
requiring additional corrective coefficients. Using non-local constitutive relation-
ships by Eringen, authors derived equations of motion and boundary conditions
from Hamilton’s principle. Analytical solutions for deflection, buckling load, and
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natural frequency of simply supported beams were presented and compared with
predictions from the non-local Timoshenko beam theory. The results unequiv-
ocally confirm the accuracy of this theory in predicting the bending, buckling,
and vibrations of short nanobeams where small-scale and shear deformations
are significant. In another work by Thai and Vo [8], different beam theories for
bending and free vibrations of beams with gradient material were investigated,
considering a higher degree of shear deformation. These developed theories elim-
inate the need for a correction factor for shear by considering the variability of
deformations on beam surfaces. The similarities of these theories to the Euler-
Bernoulli beam theory lie in their equations of motion, boundary conditions, and
stresses. The material of the gradient beam assumed a change in properties along
the beam according to a power-law distribution of volume fractions. Hamilton’s
principle was utilized to derive equations of motion and boundary conditions.
Analytical solutions obtained were verified by comparison with existing solu-
tions. Finally, the influence of the power-law index and shear deformation on
the bending and vibrations of gradient material beams was examined.

Akgöz and Civalek [9] developed a new beam model considering mi-
crostructural effects and shear deformations based on a modified gradient strain
theory. This model accurately accounts for these effects without the need for
shear corrective coefficients. Hamilton’s principle was applied to deduce equa-
tions of motion and boundary conditions for freely supported microbeams. The
behavior of microbeams under static loads and free vibrations was analyzed.
Analytical solutions were obtained for point and uniformly distributed loading
deflections and the first three natural frequencies using Navier’s solution. Re-
sults were compared with other beam theories, both classical and non-classical.
Parametric studies showed that the effect of shear deformation becomes more
significant for lower slenderness ratios and higher modes of microbeams. Reddy
and El-Borgi [10] developed equations for both Euler-Bernoulli and Timo-
shenko beams, considering larger rotations than traditional von Kármán strains
and material length scales from Eringen’s non-local model. They employed the
principle of virtual displacements to deduce these equations, taking into ac-
count Eringen’s non-locality and modified nonlinear von Kármán strains. Sub-
sequently, they created finite element models, presenting numerical results for
various boundary conditions and demonstrating the influence of the non-local
parameter on beam deflections.

Pradhan and Chakraverty [11] investigated the free vibrations of func-
tionally graded (FG) beam materials with different boundary conditions. They
used higher-order shear deformation beam theories (SDBTs) to analyze the free
vibration response of FG beams. The material properties of FG beams were
modeled using a power-law function through the thickness, and test functions de-
scribing displacements were expressed algebraically. The Rayleigh-Ritz method
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was used to estimate frequencies, accommodating various boundary conditions.
Obtained frequencies were compared with literature data, and new results were
presented after verifying frequency convergence. It is worth mentioning that
higher-order shear deformation theory can be used to obtain very precise solu-
tions for beams and plates problems. This issue is discussed by Malikan and
Eremeyev [20]. The paper takes into account the disadvantage of the mate-
rial composition of thick beams made of functionally graded materials (FGM).
Beam model consists of a novel shear stress strain distribution shape function
in the transverse coordinate. Beam theory also takes into account the stretch-
ing effect to represent the indirect effect of thickness changes. Senjanović
et al. [12] presented a consistent theory of first-order shear deformation plates,
utilizing Hamilton’s principle. The governing equation for shear deformation is
a sixth-order partial differential equation in both the x and y axes. Additionally,
an advanced theory providing force equilibrium based on bending deformation
was presented as a fourth-order equation. Analytical solutions for specific cases
are presented, and natural frequencies are compared with those obtained using
Rayleigh-Ritz methods within Mindlin’s classical thick plate theory. The study
includes an evaluation of the reliability of these two first-order shear deformation
plate theories.

Özütok and Madenci [13] developed mixed finite element method (MFEM)
equations for composite laminated beams using functionals derived from the
Gâteaux differential (GD) approach. They proposed a higher-order shear de-
formation theory (HOBT) considering nonlinear distributions of shear stresses
throughout the thickness of the laminated beam. Field equations for such beams
were derived from the principle of virtual displacements. Subsequently, using
mathematical methods, they obtained functionals with boundary conditions em-
ploying the GD method. Based on this, the HOBT10 beam element with 10 de-
grees of freedom, encompassing displacements, rotations, higher-order bend-
ing moments, and shear forces, was developed. A comparison was made with
Euler-Bernoulli beam theory and first-order shear deformation theory to bet-
ter understand the results of static analysis of composite layered beams. The
efficiency of the element was verified by applying it to several test problems.
Faghidian [14] employed Reissner’s mixed variational principle to formulate
dynamic equilibrium conditions, considering nonlinear bending of beams with
actual shear stresses. A nonlinear nano-Reissner beam model was developed
based on Eringen’s non-local gradient elasticity theory. An analysis of nonlin-
ear deflections was conducted and compared to results from the size-dependent
Timoshenko’s beam theory. The differences between Timoshenko’s beam the-
ory and Reissner’s model were discussed in detail. It was demonstrated that
the Reissner beam model is not a first-order shear deformation theory, as it
considers the influence of actual shear and normal stresses. Furthermore, both
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linear and nonlinear deflections according to the Reissner beam theory were
consistently lower than those predicted by the Timoshenko theory for different
gradient elasticity theories.

The development of shear deformation theories in beams and plates was
presented in the work by Challamel and Elishakoff [15]. Lin et al. [16] an-
alyzed vibrations and buckling of nanobeams, considering surface stress effects.
A material model was presented, where the core of the beam is a single-crystal
material with specific crystallographic directions, and the beams covered with
atomic layers having the same crystallographic directions on both surfaces. The
general third-order theory of higher-order shear deformation was used to de-
rive the total energy functional of the beam. By minimizing this functional
using the p-Ritz method, eigenvalue equations describing buckling and vibra-
tions of nanobeams were obtained, considering surface stress effects. The behav-
ior of beams was thoroughly analyzed, comparing them with first-order theories
and Reddy’s third-order theory, showing that both theories might inaccurately
capture the influence of surface stresses on nanobeam behavior. It was indicated
that surface stress effects on buckling and vibrations of nanobeams made from
single-crystal nickel exhibit a different trend compared to first-order theory or
Reddy’s third-order theory.

Magnucki et al. [17] tackled the topic of nanobeams, specifically analyzing
vibrations and buckling of nanobeams considering surface stress effects. A beam
model was presented, where the core takes the form of a single-crystal mate-
rial with defined crystallographic directions. The beams are coated with atomic
layers having identical crystallographic directions on both the upper and lower
surfaces. An advanced third-order theory of shear deformation was used to ob-
tain the total energy functional of the beam. By minimizing this functional
using the p-Ritz method, eigenvalue equations describing buckling and vibra-
tions of nanobeams, considering surface stress effects, were obtained. A detailed
analysis was conducted, comparing the buckling and vibrations with the results
obtained from first-order theory and Reddy’s third-order theory. It was found
that in certain cases, both first-order and Reddy’s third-order theories might in-
accurately describe the influence of surface stresses on nanobeam vibrations and
buckling. The effects of surface stresses on buckling and vibrations of nanobeams
made from single-crystal nickel, obtained using the advanced third-order theory,
showed a contrary trend compared to the results obtained from first-order the-
ory or Reddy’s third-order theory. A folded beam model subjected to force at
three points was developed analytically based on the assumption of a piecewise-
linear profile [18]. Similar to [24], homogeneous beams with two-sided symmetric
cross-sections, sandwich beams, and beams with variable mechanical proper-
ties in the depth direction are investigated. By considering the minimization of
energy principle, two differential equilibrium equations are obtained [19]. The
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system of equations is solved analytically, and shear coefficients and beam deflec-
tions are obtained. Additionally, stress patterns for selected cross-sections are de-
termined and compared with stresses determined using Zhuravsky’s formula [21].
Subsequently, a theory of cross-sectional shear deformation for flat beam is for-
mulated [22]. Similarly to work [23], the bending problem of these beams was
also numerically examined using the finite element method.

2. Analytical model of the homogeneous beam
with monosymmetric cross section

The homogeneous beam of length L with clamped ends is subjected to three-
point bending (Fig. 1). The beam is situated in the Cartesian coordinate xyz.

Fig. 1. Scheme of the homogeneous beam with clamped ends.

The beam cross section of depth h is shown in Fig. 2.

Fig. 2. Scheme of the monosymmetric cross section of the beam.

The symmetrical variation of the cross section width in the depth direction
is as follows:
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• for the upper part (−χ1 ≤ η ≤ 0):

(2.1)

b(1) (η) = b0b
(1)

(η) ,

b
(1)

(η) = 1 +
1

2
β11

[
1− cos

(
π
η

χ1

)]
,

• for the lower part (0 ≤ η ≤ χ2):

(2.2)

b(2) (η) = b0b
(2)

(η) ,

b
(2)

(η) = 1 +
1

2
β22

[
1− cos

(
π
η

χ2

)]
,

where η = y/h – the dimensionless coordinate, χ1 = h1/h, and χ2 = h2/h
– the dimensionless depths of the upper and lower parts, respectively,
β10 = b1/b0, β20 = b2/b0, β11 = β10 − 1, β22 = β20 − 1 – the dimensionless
coefficients of the width, moreover χ1 + χ2 = 1.

Based on the zeroing condition of the first moment of this beam cross section
about the neutral axis z, one obtains the dimensionless depth of the lower part:

(2.3) χ2 =

{
1 +

√
π2 − 4 + (π2 + 4)β20

π2 − 4 + (π2 + 4)β10

}−1

,

and consequently, the dimensionless depth of the upper part χ1 = 1− χ2.
The deformation of a plane cross section after bending of the beam is shown

in Fig. 3.
The longitudinal displacements, according to Fig. 3, are as follows:
• for the upper part (−χ1 ≤ η ≤ 0):

(2.4) u(1) (x, η) = −h
[
η

dv
dx
− f (1)

d (η)ψ (x)

]
,

• for the lower part (0 ≤ η ≤ χ2):

(2.5) u(2) (x, η) = −h
[
η

dv
dx
− f (2)

d (η)ψ (x)

]
,

where v(x) – the deflection of the beam, f (1)
d (η) and f (2)

d (η) – the dimen-
sionless deformation functions, ψ (x) = u (x)/h – the dimensionless dis-
placement function, and u1 (x) = f

(1)
d (−χ1)u (x), u2 (x) = f

(2)
d (χ2)u (x)

– the longitudinal displacements on the upper and lower surfaces of the
beam.
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Fig. 3. Scheme of the deformation of a plane cross section of the beam.

Therefore, the strains are in the form:
• for the upper part (−χ1 ≤ η ≤ 0):

(2.6)

ε(1)
x (x, η) = −h

[
η

d2v

dx2
− f (1)

d (η)
dψ
dx

]
,

γ(1)
xy (x, η) =

df (1)
d

dη
ψ (x) ,

• for the lower part (0 ≤ η ≤ χ2):

(2.7)

ε(2)
x (x, η) = −h

[
η

d2v

dx2
− f (2)

d (η)
dψ
dx

]
,

γ(2)
xy (x, η) =

df (2)
d

dη
ψ (x) .
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Thus, the normal and shear stresses according to Hooke’s law are as follows:
• for the upper part (−χ1 ≤ η ≤ 0)

(2.8)

σ(1)
x (x, η) = −Eh

[
η

d2v

dx2
− f (1)

d (η)
dψ
dx

]
,

τ (1)
xy (x, η) =

E

2 (1 + ν)

df (1)
d

dη
ψ (x) ,

• for the lower part (0 ≤ η ≤ χ2)

(2.9)

σ(2)
x (x, η) = −Eh

[
η

d2v

dx2
− f (2)

d (η)
dψ
dx

]
,

τ (2)
xy (x, η) =

E

2 (1 + ν)

df (2)
d

dη
ψ (x) ,

where E – Young’s modulus, ν – Poisson’s ratio.
The classical shear stress formula called the Zhuravsky shear stress is in the

form:

(2.10) τ (Cl)
xy (x, y) =

Sz (y)

b (y)

T (x)

Jz
,

where T (x) – the shear force, and Jz – the second moment of the cross section
about the neutral axis defined as:

(2.11) Jz =

ˆ

A

y2 dA = b0h
3Jz,

where the dimensionless second moment is expressed as:

(2.12) Jz =

0ˆ

−χ1

η2b
(1)

(η) dη +

χ2ˆ

0

η2b
(2)

(η) dη.

The first moment Sz(y) of the cross-sectional area part about the neutral axis
is as follows:

• for the upper part (−χ1 ≤ η ≤ 0):
the first moment of this shaded area is as follows:

(2.13) S(1)
z (η) = −b0h2S

(1)
z (η) ,

where the dimensionless first moment is defined as:

(2.14) S
(1)
z (η) =

−ηˆ

−χ1

η1b
(1)

(η1) dη1.
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Figure 4 illustrates the selected area of the beam cross section for the upper
part.

Fig. 4. The selected area of the beam cross section.

Then, after integration, with consideration of the expression (2.1)2 for di-
mensionless width, one obtains

(2.15) S
(1)
z (η) =

1

4π2

[
2Φ

(1)
11 (η)− Φ

(1)
12 (η)

]
,

where

Φ
(1)
11 (η) = χ1 (β10 − 1)

[
χ1 cos

(
π
η

χ1

)
+ πη sin

(
π
η

χ1

)]
,

Φ
(1)
12 (η) = β10

[
π2η2 −

(
π2 + 2

)
χ2

1

]
+ π2η2 −

(
π2 − 2

)
χ2

1.

The dimensionless first moment, for η = 0, is as follows:

(2.16) S
(1)
z (0) = S

(1)
z0 =

χ2
1

4π2

[
π2 − 4 +

(
π2 + 4

)
β10

]
;

• for the lower part (0 ≤ η ≤ χ2):
the first moment of this shaded area is as follows:

(2.17) S(2)
z (η) =

S(1)
z0 −

ηˆ

0

η1b
(2)

(η1) dη1

b0h2.

Then, after integration, with consideration of the expression (2.2)2 for dimen-
sionless width, one obtains:

(2.18) S
(2)
z (η) =

1

4π2

[
χ2

1Φ
(1)
0 + 2χ2 (β20 − 1) Φ

(2)
11 (η)− Φ

(2)
12 (η)

]
,
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where
Φ

(1)
0 = π2 − 4 +

(
π2 + 4

)
β10,

Φ
(2)
11 (η) = χ2 cos

(
π
η

χ2

)
+ πη sin

(
π
η

χ2

)
,

Φ
(2)
12 (η) = π2 (β20 + 1) η2 + 2 (β20 − 1)χ2

2.

Figure 5 depicts the selected area of the beam for this case.

Fig. 5. The selected area of the beam cross section.

It is easy to notice that this first moment, for η = χ2, is equal to zero, i.e.,
S

(2)
z (χ2) = 0.

Equating shear stresses (2.8)2 and (2.9)2 to the classical shear stress (2.10)
with consideration of the expressions (2.1), (2.13), (2.2), and (2.17), after simple
transformation, the unknown dimensionless deformation functions for the upper
and lower parts are obtained in the following form:

• for the upper part (−χ1 ≤ η ≤ 0):

(2.19) f
(1)
d (η) =

ˆ
S

(1)
z (η)

b
(1)

(η)
dη,

• for the lower part (0 ≤ η ≤ χ2):

(2.20) f
(2)
d (η) =

ˆ
S

(2)
z (η)

b
(2)

(η)
dη.
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The longitudinal displacements on the upper and lower surfaces of this beam
(Fig. 3) are as follows:

(2.21)
u1 (x)/h = f

(1)
d (−χ1) · ψ (x) ,

u2 (x)/h = f
(2)
d (χ2) · ψ (x) .

3. Analytical formulation and solution
of the beam bending problem

The elastic strain energy of this homogeneous beam is as follows:

(3.1) Ues = Eb0h

L/2ˆ

0


0ˆ

−χ1

Φ(1)
εγ (x, η) b

(1)
(η) dη +

χ2ˆ

0

Φ(2)
εγ (x, η) b

(2)
(η) dη

dx,

where
Φ(1)
εγ (x, η) =

[
ε(1)
x (x, η)

]2
+

1

2 (1 + ν)

[
γ(1)
xy (x, η)

]2
,

Φ(2)
εγ (x, η) =

[
ε(2)
x (x, η)

]2
+

1

2 (1 + ν)

[
γ(2)
xy (x, η)

]2
.

Consequently, the above expression (3.1), with consideration of the expressions
(2.6) and (2.7) for strains, after integration, is in the form:

(3.2) Ues = Eb0h
3

L/2ˆ

0

{
Cvv

(
d2v

dx2

)2

− 2Cvψ
d2v

dx2

dψ
dx

+Cψψ

(
dψ
dx

)2

+
Cψ

2 (1 + ν)

ψ2 (x)

h2

}
dx,

where

Cvv =

0ˆ

−χ1

η2b
(1)

(η) dη +

χ2ˆ

0

η2b
(2)

(η) dη,

Cvψ =

0ˆ

−χ1

ηf
(1)
d (η) b

(1)
(η) dη +

χ2ˆ

0

ηf
(2)
d (η) b

(2)
(η) dη,

Cψψ =

0ˆ

−χ1

[
f

(1)
d (η)

]2
b
(1)

(η) dη +

χ2ˆ

0

[
f

(2)
d (η)

]2
b
(2)

(η) dη,
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Cψ =

0ˆ

−χ1

(
df (1)

d

dη

)2

b
(1)

(η) dη +

χ2ˆ

0

(
df (2)

d

dη

)2

b
(2)

(η) dη

are the dimensionless coefficients.
The work of the load is given by:

(3.3)

W = 2

L/2ˆ

0

T (x)
dv
dx

dx,

δW = −2

L/2ˆ

0

dT
dx

δv dx.

Based on the principle of stationary total potential energy δ(Ues −W ) = 0,
the system of two differential equations of equilibrium for this homogeneous
beam is obtained in the form:

Cvv
d4v

dx4
− Cvψ

d3ψ

dx3
= − 1

Eb0h3

dT
dx

,(3.4)

Cvψ
d3v

dx3
− Cψψ

d2ψ

dx2
+

Cψ
2 (1 + ν)

ψ (x)

h2
= 0.(3.5)

Equation (3.4) is equivalent to the equation:

(3.6) Cvv
d2v

dx2
− Cvψ

dψ
dx

= −Mb (x)

Eb0h3
,

where Mb(x) – the bending moment.
Equations (3.5) and (3.6), after transformation, are reduced to one equation:

(3.7)
d2ψ

dx2
− α2ψ (x)

h2
= −

Cvψ
CvvCψψ − C2

vψ

T (x)

Eb0h3
,

where

α =

√
1

2 (1 + ν)

CvvCψ
CvvCψψ − C2

vψ

is a dimensionless coefficient.
Equation (3.7) in the dimensionless coordinate ξ = x/L is as follows:

(3.8)
d2ψ

dξ2
− (αλ)2 ψ (ξ) = −

Cvψ
CvvCψψ − C2

vψ

λ2 T (ξ)

Eb0h
,

where λ = L/h – the relative length of the beam.
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The scheme of the reactions force R = F/2 and bending moment M0 in the
clamped end of the beam are shown in Fig. 6.

Fig. 6. Scheme of the reactions in clamped end of the beam.

Therefore, the bending moment and shear force, in the dimensionless coor-
dinate ξ (0 ≤ ξ ≤ 1/2), are in the form:

(3.9) Mb (ξ) =

(
−M0 +

1

2
ξ

)
FL, and T (ξ) =

1

2
FL,

where M0 = M0/FL – the dimensionless reaction moment.
The solution of Eq. (3.8), considering the shear force T (ξ) = FL/2, is in the

form:

(3.10) ψ (ξ) =

[
C1 sinh (αλξ) + C2 cosh (αλξ) + (1 + ν)

Cvψ
CvvCψ

]
F

Eb0h
,

where C1, C2 – integration constants.
These constants, based on the conditions ψ(0) = 0 – clamped end, and

ψ(1/2) = 0 – middle of the beam, are as follows:

C1 = (1 + ν)
cosh (αλ/2)− 1

sinh (αλ/2)

Cvψ
CvvCψ

,

C2 = − (1 + ν)
Cvψ
CvvCψ

.

Consequently, the dimensionless displacement – the shear effect function – is given
in the following form:

(3.11) ψ (ξ) = ψ (ξ)
F

Eb0h
,
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where
• in the first interval 0 ≤ ξ ≤ 1/2

(3.12) ψ (ξ) = ψ1 (ξ)

= (1 + ν)

{
1− sinh (αλξ) + sinh [(1/2− ξ)αλ]

sinh (αλ/2)

}
Cvψ
CvvCψ

,

• in the second interval 1/2 ≤ ξ ≤ 1, with the condition ψ(1) = 0

(3.13) ψ (ξ) = ψ2 (ξ)

= (1 + ν)

{
1− sinh [(1− ξ)αλ] + sinh [(ξ − 1/2)αλ]

sinh (αλ/2)

}
Cvψ
CvvCψ

.

The shear stress (2.8)2 in the upper part (−χ1 ≤ η ≤ 0), with consideration
of the expressions (3.11), (3.12) and (2.19) is of the form:

(3.14) τ (1)
xy (ξ, η) = τ (1)

xy (ξ, η)
F

b0h
,

where the dimensionless shear stress is:

(3.15) τ (1)
xy (ξ, η) =

S
(1)
z (η)

b
(1)

(η)

{
1

2
− sinh (αλξ) + sinh [(1/2− ξ)αλ]

2 sinh (αλ/2)

}
Cvψ
CvvCψ

.

Proceeding similarly to the upper part, the shear stress (2.9)2 in the lower part
(0 ≤ η ≤ χ2) is as follows:

(3.16) τ (2)
xy (ξ, η) = τ (2)

xy (ξ, η)
F

b0h
,

where the dimensionless shear stress is:

(3.17) τ (2)
xy (ξ, η) =

S
(2)
z (η)

b
(2)

(η)

{
1

2
− sinh (αλξ) + sinh [(1/2− ξ)αλ]

2 sinh (αλ/2)

}
Cvψ
CvvCψ

.

Equation (3.6) in the dimensionless coordinate ξ (0 ≤ ξ ≤ 1/2), with con-
sideration of the bending moment (3.9), is as follows:

(3.18) Cvv
d2v

dξ2
=

[
Cvψ

dψ
dξ
−
(
M0 −

1

2
ξ

)
λ2

]
F

Eb0h
,

where v (ξ) = v (ξ)/L – the relative deflection of the beam.
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This equation after integration is of the form:

(3.19) Cvv
dv
dξ

=

[
C3 + Cvψψ (ξ)−

(
M0ξ −

1

4
ξ2

)
λ2

]
F

Eb0h
.

Taking into account the conditions: dv/ dξ|0 = 0 and dv/ dξ|1/2 = 0, one
obtains the integration constant C3 = 0 and dimensionless reaction moment
M0 = 1/8.

Integrating this equation and taking into account of the boundary condition
v (0) = 0, one obtains the deflection line of the beam:

(3.20) v (ξ) =

[
(1 + ν) fψ (ξ)

C2
vψ

CvvCψ

1

λ2
+

1

8

(
1

2
ξ2 − 2

3
ξ3

)]
λ2

Cvv

F

Eb0h
,

where

fψ (ξ) = ξ − cosh (αλξ)− 1 + cosh (αλ/2)− cosh [(1/2− ξ)αλ]

αλ sinh (αλ/2)
,

the relative maximum deflection (3.20) of the beam is:

(3.21) vmax = v

(
1

2

)
=

_
vmax

F

Eb0h
,

where the maximum dimensionless deflection is

(3.22) _
vmax = (1 + Cse)

λ2

192Cvv
,

and the coefficient of shear effect is:

(3.23) Cse = (1 + ν)
96

λ2

[
1− 4

cosh (αλ/2)− 1

αλ sinh (αλ/2)

]
C2
vψ

CvvCψ
.

4. Example analytical studies

The exemplary analytical studies are carried out for bending homogeneous
beams with a relative length λ = 20 and Poisson’s ratio ν = 0.3, and with three
selected monosymmetric cross sections. The data is specified in Table 1.

Table 1. The values of dimensionless coefficients of widths and depths of selected cross sections.

Cross section β10 β20 χ1 χ2

CS-1 0.5 3.0 0.658191 0.341809

CS-2 1.0 3.0 0.607981 0.392019

CS-3 1.5 3.0 0.571578 0.428422
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The graph of dimensionless displacement functions (3.12) and (3.13) in two
intervals of the beam with cross section CS-1 is shown in Fig. 7.

Fig. 7. The graph of dimensionless displacement functions ψ1 (ξ) and ψ2 (ξ).

The graphs of these functions for the beam with cross sections CS-2 and
CS-3 are identical. The extreme values of these functions ψmax = ψ1 (1/4) and
ψmin = ψ2 (3/4) are specified in Table 2.

Table 2. The extreme values of dimensionless displacement functions
for selected cross sections.

Cross section ψmax ψmin

CS-1 14.20 −14.20

CS-2 10.21 −10.21

CS-3 8.35 −8.35

The dimensionless shear stress (3.15) of the upper part for ξ = 1/4 is as
follows:

(4.1) τ (1)
xy

(
1

4
, η

)
=
S

(1)
z (η)

b
(1)

(η)

{
1

2
− sinh (αλ/4)

sinh (αλ/2)

}
Cvψ
CvvCψ

,

and the dimensionless shear stress (3.17) of the lower part for ξ = 1/4 is as
follows:

(4.2) τ (2)
xy

(
1

4
, η

)
=
S

(2)
z (η)

b
(2)

(η)

{
1

2
− sinh (αλ/4)

sinh (αλ/2)

}
Cvψ
CvvCψ

,
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Thus, the maximum of these stresses, for η = 0, is:

(4.3) τmax = τ (1)
xy

(
1

4
, 0

)
= τ (2)

xy

(
1

4
, 0

)
= S

(1)
z0

{
1

2
− sinh (αλ/4)

sinh (αλ/2)

}
Cvψ
CvvCψ

.

The values of the shear coefficient Cse (3.23), the maximum dimensionless deflec-
tion _

vmax (3.22) and the maximum of the dimensionless shear stresses τmax (4.3)
for the beam with selected cross sections are specified in Table 3.

Table 3. The dimensionless values of the shear coefficient Cse,
the maximum deflection _

vmax and maximum shear stresses τmax

for selected cross sections.

Cross section Cse
_
vmax τmax

CS-1 0.0332187 23.511 0.767347

CS-2 0.0400257 17.023 0.726022

CS-3 0.0446008 13.984 0.709205

Three selected monosymmetric cross sections and graphs of the dimensionless
shear stresses (4.1) and (4.2) for ξ = 1/4 in these cross sections of the beam are
shown in Fig. 8.

Additionally, example analytical bending studies are carried out for the same
beams, but half as long, with relative lengths λ = 10. The results of these
calculations (values: ψmax, ψmin, τmax) are the same as for beams with relative
lengths λ = 20, while the values of the shear coefficient Cse and the maximum
deflection _

vmax are different. The calculation results for the additional case are
specified in the Table 4.

Table 4. The dimensionless values of the shear coefficient Cse

and the maximum deflection _
vmax for selected cross sections.

Cross section Cse
_
vmax

CS-1 0.129682 6.426

CS-2 0.156317 4.732

CS-3 0.174383 3.930

Thus, this nonlinear shear deformation theory can be used in modeling short
beams.

5. Numerical FEM bending study of the beam

In order to validate the analytical model, a numerical analysis was conducted
using the finite element method (FEM) in the ABAQUS 2022 environment.
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CS-1 τ
(1)
xy (1/4, η) ∧ τ (2)xy (1/4, η)

CS-2 τ
(1)
xy (1/4, η) ∧ τ (2)xy (1/4, η)

CS-3 τ
(1)
xy (1/4, η) ∧ τ (2)xy (1/4, η)

Fig. 8. The beam selected cross sections and graphs of the dimensionless shear stresses.
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Numerical models of individual cross sections, namely CS-1, CS-2, and CS-3,
with applied boundary conditions, are depicted in Fig. 9. The bending was
analyzed only in the xy-plane, according to analytical considerations. The dis-
cretization of the beam’s model was made with the use of quadratic brick element
C3D20R. The convergence of solutions and the size of the problem were con-
sidered t during preliminary simulations to determine the number of elements
along in the depth direction. The distribution of dimensionless shear stresses –
results from FEM – is presented in Fig. 10. The validation results of the pre-

Fig. 9. The numerical models of beams and applied boundary conditions.

Fig. 10. Distribution of the dimensionless shear stresses – FEM results.
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sented analytical model for individual cross sections are shown in Table 5. The
percentage relative differences of the analytical and numerical dimensionless de-
flection _

vmax range from 0.019% to 0.041%, respectively, and for dimensionless
shear stress τmax from 0.005% to 0.659%, respectively.

Table 5. Comparison of analytical and FEM results.

Cross section CS-1 CS-2 CS-3

_
vmax

Analytical 23.511 17.023 13.984

FEM 23.501 17.019 13.987

∆ [%] 0.041 0.021 0.019

τmax

Analytical 0.767347 0.726022 0.709205

FEM 0.772439 0.729466 0.709238

∆ [%] 0.659 0.472 0.005

6. Conclusions

In this paper, the problem of three-point bending of a homogeneous clamped
beam with a monosymmetric cross section was addressed. A nonlinear shear de-
formation theory of a plane beam cross section was developed upon which ana-
lytical and numerical studies were conducted. Based on the presented analyses,
the following conclusions are formulated:

• Analyzing the dimensionless maximum deflections and shear stresses
through a comparison of analytical and numerical results reveals a high
level of agreement. The maximum relative differences obtained for deflec-
tions are definitely below 1‰ and below 1% for shear stresses.

• The distributions of shear stresses were acquired directly on the basis of
the nonlinear shear deformation theory with consideration of Zhuravsky
shear stress. The planar cross section deformations align closely with the
numerical FEM results. This comparative analysis confirms the accuracy
of the model, highlighting its capability to account for shear effects that
classical beam theories usually neglect.

• The analytical model precisely describes the shear deformation problem
of a planar beam cross-section.
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