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The primary objective of this study is to develop and assess computational methods for op-
timizing the geometry of specific building structures modeled through parametric description.
The focus is on steel bar structures, including trusses and beams, subjected to varying load
conditions with fixed and uncertain parameters. The decision variables in the single- or multi-
criteria non-linear optimization problem correspond to selected geometric features of these
structures. The proposed methodology revolves around dividing the entire construction into
distinct structural patterns. This allows for addressing separate local optimization problems
with a reduced number of decision variables, followed by a global optimization considering
the interactions between these patterns. This approach is versatile, serving both the design
of objects meeting required architectural and structural conditions and constraints, and the
optimization of all or specific parameters, incorporating diverse economic (e.g., material usage)
and engineering criteria (e.g., limit states).
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1. Introduction

1.1. Motivation

In the design process of steel structures, engineers often grapple with the
intricate geometry comprising diverse structural elements that collectively form
pertinent systems such as trusses, bracings, and floor beams, among others.
These structures present various options in terms of topology, cross-section
types, dimensions, and other geometry parameters. Moreover, there is a crit-
ical need to establish the structure’s geometry at the conceptual design stage,

1)The article was presented at 5th Polish Congress of Mechanics & 25th International Con-
ference on Computer Methods in Mechanics, September 7, 2023, Gliwice.
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ensuring it constitutes the optimal solution in subsequent phases. This impera-
tive is particularly pronounced in large-scale projects, where arbitrary geometry
parameters at the conceptual stage could result in significant additional material
costs.

The aforementioned engineering challenge can be framed as a multi-para-
metric and multi-criteria optimization problem. Even for a single structure,
multiple geometric decision variables can be identified, including cross-section
parameters, height, width, or the number of elements. Various structural cri-
teria, such as bearing capacity or admissible deflection, can also be formu-
lated. Consequently, the global optimization problem may involve a multitude
of parameters and criteria. Managing a large number of global parameters and
optimization criteria can lead to a complex and resource-intensive problem.
However, the availability of effective numerical algorithms for global multi-
parametric multi-criteria optimization is limited. Additionally, ensuring control
over the optimal solution for each specific structural element can be challeng-
ing within the context of global optimization. Considering these aspects, there
is a compelling need to develop a flexible approach aimed at providing struc-
tural topological optimization for complex structural systems at all stages of
design.

1.2. State-of-the-art

In the realm of structural optimization, contemporary scientific research has
yielded numerous approaches, as outlined by Rozvany [1, 2]. A classification pro-
posed by Rozvany includes Layout Optimization (LO), Generalized Shape Op-
timization (GSO), and a combined approach (LO + GSO) for composite struc-
tures. LO involves the analysis of grid-like bar structures with parallel optimiza-
tion, while GSO is primarily associated with plain stress problems. Sigmund [3]
provided a comprehensive review of various optimization approaches.

Generalized shape optimization is commonly considered, employing diverse
methods such as the co-rotational method [4], subdivision and simplification [5],
adjoined methods with non-linearity [6], reduced-order modeling [7], extended
multi-scale finite element methods with hierarchy [8], and local and global buck-
ling analyses [9]. Additionally, reliability estimation methods are incorporated
[10–12]. Bayesian optimization [13] has been proposed as a non-gradient ap-
proach with a probabilistic model.

While generalized shape optimization methods find applications in various
engineering fields, they are less effective for structural systems in buildings due
to the different designing approach. Building structures are typically designed by
analyzing individual members rather than treating the structure as a material
continuum.
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For the optimization of bar structures, a multi-dimensional and single-objec-
tive optimization problem arises with constraints and decision variables of mixed
numerical types (Boolean, integer, real). Various approaches have been formu-
lated, relying on stochastic methods (genetic algorithms [14] or other biologically
inspired algorithms [15]) and deterministic solutions. Deterministic approaches
include non-gradient methods such as joint penalty and material selection [16],
gradient-free proportional optimization [17], and buckling constraints for spa-
tial trusses [18]. Gradient methods, such as non-smooth steepest descent algo-
rithms [19], have also been explored.

Less conventional techniques have been reported, such as the application of
the so-called political optimizer [20], optimization with discrete variables [21, 22],
and Eurocode-compliant optimization [23]. Multi-objective optimization prob-
lems may be addressed using simplified or full approaches, with criteria con-
sidered separately (e.g., bars exchange method [24] for topology and geometry
optimization) or in an averaged manner [25]. The construction of a Pareto front
is an alternative, albeit computationally demanding [26, 27].

While these approaches effectively tackle individual problems with global pa-
rameters, they often lack the granularity needed to achieve sufficient control over
the optimal solution for each specific element in structural systems of buildings.
A generalized approach applicable to various structural systems is essential for
buildings design. Otherwise, formulating a global optimization problem for the
entire structure may be time-consuming and less effective.

Commercial software based on parametric design includes Grasshopper 3D,
CATIA, Dynamo, SolveSpace, and ParaCloud. Optimization packages are of-
fered by software such as Altair (OptiStruct, SolidThinking Inspire), Ansys (Me-
chanical Topology Optimization), Autodesk (Inventor Shape Generator, Within),
Dassault (Solidworks Simulation Topology Optimization), Siemens (Optistruct
using VTS), and Dlubal RFEM. These packages, however, predominantly rely
on GSO.

1.3. Proposed solution approach

We propose a solution approach that embraces the innovative concept of
structural patterns. This concept rests on the premise that the structure can
be decomposed into several typical patterns (sets of elements) with a reduced
number of decision variables. Consequently, a set of smaller optimization prob-
lems is addressed reliably, replacing the analysis performed at the global level.
Subsequently, selected design parameters corresponding to these patterns un-
dergo numerical optimization. Each pattern may necessitate its optimization
algorithm, deterministic or stochastic, chosen based on factors such as expected
solution accuracy, computational time, the ability to calculate the gradient of
the objective function, and the number of objective function values.
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The type of algorithm and its control parameters are determined through
a series of benchmark tests. Particularly for the most promising gradient de-
terministic approaches, such as conjugate gradients and the Newton method,
we introduce several novel ideas to enhance their operational quality. Firstly,
finite difference schemes are applied to compute the gradient and Hessian of
the objective function, with values obtained from a simple finite element model
for bar structures. Additionally, a step size corresponding to the search direc-
tion is evaluated at each iteration step using a simple iterative method based
on the dichotomous division of the search interval. This approach mitigates
the serious drawbacks of gradient methods with the highest convergence rates,
such as the Newton method, eliminating the risk of solution divergence and
sensitivity to the selection of an initial guess solution. Consequently, selected
deterministic methods can be competitive with time-consuming and computa-
tionally demanding stochastic approaches. This allows for the effective analysis
of problems requiring the determination of a family of optimal solutions, either
separately or through parallel techniques, such as the determination of conver-
gence maps (for benchmark tests) or reliability analysis (for real engineering
problems). Ultimately, the interaction between patterns is managed with con-
trol over each optimized pattern during computations. All results presented for
executed examples were obtained using our proprietary software, developed pri-
marily in MATLAB and complemented by selected toolboxes dedicated to finite
element modeling and genetic algorithms.

The paper is organized as follows: Sec. 2 presents the general formulation of
the multidimensional and multi-objective optimization problem. In Sec. 3, we
outline the general principles of applied computational approaches, with a par-
ticular focus on the novel elements introduced into the optimization algorithms
of deterministic types. The paper is enriched with results from typical bench-
mark tests and selected engineering optimization problems (Sec. 4) for structures
described parametrically, including bending beams, vertical trusses, and combi-
nations of truss and beam patterns. Load schemes with both fixed and uncertain
parameters (location, magnitude) are taken into account. The paper concludes
briefly, highlighting directions for future work.

2. Problem formulation

The vector of decision variables (design parameters)

(2.1) d =
[

b z r
]

may contain subvectors consisting of variables of various numerical types, in-
cluding:
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– b =
[
b1 b2 ... bnb

]
∈
{

0 1
}nb – vector of Boolean variables (e.g.,

existence or non-existence of selected bars or supports),
– z =

[
z1 z2 ... znz

]
∈ Znz – vector of integer variables (e.g., number of

bars, hinges or supports),
– r =

[
r1 r2 ... rnr

]
∈ Rnr – vector of rational/real variables (e.g., bar

length, span, cross-section dimensions).
The total number of decision variables is denoted as nd = nb + nz + nr. After-
wards, a multidimensional and multi-valued objective function may be formu-
lated as:

(2.2) F (d) =
[
F1 (d) F2 (d) ... Fnf (d)

]
∈ Rnf .

Its components correspond to appropriate optimization criteria. Among them
one may distinguish the following ones, namely

– maximum displacement/deflection Fi (d) = max
(ξ)
|v (d, ξ)|,

– capacity (e.g., maximum bending moment) Fi (d) = max
(ξ)
|M (d, ξ)|,

– selected/average reaction force Fi (d) = |R (d)|,
– critical force Fi (d) = P−1

crit (d),
– frequency of eigen vibrations Fi (d) = ω−1 (d),
– total volume of bars Fi (d) = A (d) ρ,
– minimum number of plastic hinges,

and others. In the given examples, Fi denotes a selected component of the vec-
tor objective function F (d) as defined in Eq. (2.2). Here, i ranges from 1 to nf ,
where nf represents the number of objective functions, and ξ ∈ R represents the
scalar physical coordinate corresponding to the local coordinate system attached
to a particular bar. In the general case, determining both the maximum displace-
ment and bending moment (among other generalized cross-sectional forces) re-
quires solving an additional local optimization problem for a single decision vari-
able ξ with a fixed vector of decision variables d. Simplified approaches may in-
volve examining their values at specified points of a structure, such as midpoints
of spans, hinges, and supports. In addition to local criteria, which are adopted
in this research, global criteria may also be considered [28]. For instance, global
functional of potential (or complementary) energy can be defined as the work of
external forces on the displacements caused by subjected loads instead of local
minimization problems mentioned above. Although the final optimal solution is
obtained in the global sense and therefore may be different from the one obtained
by means of local criteria, the solution of additional optimization problem may
be omitted for each d in favor of the integration procedure performed on the
entire structure. However, such an approach is not considered in this research.
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Typically, the vector d is determined within the admissible domain Ωadm.
In cases where no other constraints are formulated, Ωadm is defined by admissible
intervals for each component of the decision variable vector, namely:

(2.3) Ωadm =
{(

bi ∈ {0 1} zj ∈
[
zminj zmaxj

]
rk ∈

[
rmink rmaxk

] )}
,

where

(2.4) i = 1, 2, ..., nb, j = 1, 2, ..., nz, k = 1, 2, ..., nr.

Furthermore, additional neq equality and nineq inequality constraints may be
formulated as well, thus reshaping Ωadm, for instance related to the geometric
constraints of the optimized structure:

(2.5) Req (d) = 0, Rineq (d) < 0,

where Req and Rineq are neq × 1 and nineq × 1 vectors, respectively. In the
case where the parametric description is applied to structure modeling, the
conditions Req and Rineq relate relevant components of the decision vector d
through explicit algebraic relations of linear or quadratic forms. These conditions
originate from design limitations (e.g., the total volume of steel or total bar
length) and are therefore fully differentiable and convex (in the linear case)
with respect to the optimization conditions. These constraints do not stem from
functional restrictions; thus, global and local limitations (e.g., stability or plastic
condition) must be assessed through the components of the objective function
itself. Moreover, equality conditions of considered type may be introduced to
the objective function using simple elimination methods (for the linear case)
or Lagrange multipliers (for the quadratic case). On the other hand, inequality
conditions may require special treatment, such as the application of the feasible
direction method. However, such conditions are not considered in the current
research.

2.1. Single-objective optimization

In the simplest case, one deals with only one optimization criterion, hence the
multidimensional objective function is the function of one real decision variable
at least (nd ≥ nr ≥ 1), whereas it constitutes a single-valued function (nf = 1).
Therefore, the optimization problem may be considered as the determination
of the minimum of the objective function (2.2) with respect to the vector of
decision variables:

(2.6) min
(d)

F (d) for d ∈ Ωadm.
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Consequently, its optimal solution may be defined as follows:

(2.7) d(opt) = arg min
(d)

F (d) for d(opt) ∈ Ωadm.

In order to guarantee the existence of the optimal solution, the appropriate
Kuhn-Tucker conditions [29] must be satisfied. In the case of a non-constrained
optimization problem, these conditions have a simplified form and can be sepa-
rated into necessary

(2.8) ∇dF (d) = 0, ∇dF (d) =

{
∂F

∂dl
, l = 1, 2, ..., nd

}
and sufficient conditions

(2.9) yTH (d) y > 0, ∀y ∈ Rnd 6= 0,

where

(2.10) H (d) = ∇d ⊗∇dF (d) .

Therefore, the gradient (vector of first-order derivatives of the objective func-
tion) and Hessian (matrix of second-order derivatives of the objective function)
have to be computed. It may be noticed that the positive definiteness of the
Hessian (2.9) provides the convexity of the objective function, required for most
of the deterministic methods, discussed in the following section.

2.2. Multi-objective optimization

In the general case, when dealing with multi-criteria optimization (nf > 1),
the criteria mentioned above, which are valid for nf = 1, cannot be directly
extended and reformulated. In such scenarios, it is infeasible to identify a solu-
tion where all objective functions attain their minimum values simultaneously.
This challenge arises because the objective functions represent criteria that are
inherently incompatible with each other. In other words, minimizing one func-
tion might lead to an increase in the others. In such cases, we characterize the
dominance of one criterion over the others, which can be expressed symbolically
as follows:

(2.11) dj � dk ⇐⇒ ∃l∈[1 nf ] Fl (dj) ≤ Fl (dk),

namely the solution dj dominates over the solution dk if and only if Fl (dj)
is not greater than Fl (dk). Hence, a division of potential solutions from the
space of feasible solutions (i.e., those for which the vector objective function
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yields finite values) into dominated and non-dominated solutions is introduced.
A solution is considered non-dominated when it is not possible to find a superior
solution with respect to at least one criterion without compromising others. The
non-dominated subset of the entire feasible decision space is termed the Pareto-
optimal set. The boundary, defined by the set of all points mapped from the
Pareto optimal set, is termed the Pareto optimal front of efficient solutions.
The primary objective is to identify a set of diverse solutions as closely posi-
tioned to the Pareto-optimal front as possible. Therefore, the selection of a single
optimal solution d(opt) in multi-criteria optimization is ambiguous and typically
results from the adoption of additional assumptions in an approximate manner
[26, 27, 30, 31].

The simplest, albeit primitive, approach involves solving nf separate single-
objective problems and obtaining a weighted average solution:

(2.12) min
(d)

Fl (d) → d
(opt)
l , l = 1, 2, ..., nf → d(opt) ≈

nf∑
l=1

ωld
(opt)
l ,

nf∑
l=1

ωl = 1.

It is worth noting that non-negative weights ωl ≥ 0 are entirely optional and can
be used to control the influence of specific criteria. Typically, this approach yields
dominated Pareto solutions and serves as a starting point for more sophisticated
methods. One of its important modifications is the ε-constrained method, in
which only one objective function is optimized while the others are constrained
within user-specified values and treated as additional inequality constraints:

(2.13) min
(d)

Fi (d) , Fl (d) ≤ εl → d(opt), i ∈ [1 nf ] , l = 1, 2, ..., nf , l 6= i.

This approach is applicable to both convex and non-convex problems. However,
the selection of ε values requires special care to ensure that they are within the
minimum or maximum values of the individual objective functions.

The most commonly applied approach is based on the weighted sum method,
wherein a set of objectives is scalarized into a single objective by adding each
objective pre-multiplied by user-supplied weights:

(2.14) F (d) =

nf∑
l=1

ωlFl (d) → min
(d)

F (d) → d(opt),

nf∑
l=1

ωl = 1.

Similarly as in Eq. (2.12), the non-negative weight (ωl ≥ 0) of each objective is
chosen in proportion to its relative importance. Moreover, it is also used to ded-
imensionalize individual components. Although simple, it is challenging to set
weights to obtain a Pareto-optimal solution in a desired region of the objec-
tive space. Furthermore, this method may fail to find certain Pareto-optimal
solutions in non-convex objective spaces.
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Eventually, in the weighted metric method, multiple objective functions are
combined using the weighted distance metric of any solution from the ideal
solution F(opt), namely:

(2.15) min
(d)

Lp (d) → d(opt), Lp (d) =

( nf∑
l=1

ωl

∣∣∣Fl (d)− F (opt)l

∣∣∣p)1/p

.

For simple cases (p = 1 and p = 2), this method yields the same solution as the
weighted sum method. Moreover, the weighted Tchebycheff metric (for p =∞)
guarantees the determination of all Pareto-optimal solutions with the ideal so-
lution F(opt). However, this method requires knowledge of the minimum and
maximum objective values as well as F(opt), which may be found by indepen-
dently optimizing each objective function as in (2.12). For small p, not all Pareto-
optimal solutions are obtained, and as p increases, the problem becomes non-
differentiable.

In addition to the aforementioned traditional approaches that require stan-
dard computational tools, there are several different multi-objective evolutionary
algorithms belonging to the wide group of genetic algorithms, which are briefly
discussed in the following chapter.

3. Computational approaches

The effective analysis of the optimization problem using analytical methods
is possible only for the simplest cases. This limitation arises because the analy-
tical form of the objective function is unknown, making it feasible to calculate
values point-wise only. Consequently, both the objective function values and its
derivatives need to be computed numerically, assuming differentiability. As a re-
sult, appropriate numerical frameworks are necessary at both the optimization
and construction levels of analysis. The determination of the deformation state
for the fixed set of variables d, transferred from the optimization level, is based
on the standard finite element method (FEM) in the displacement formulation.

3.1. Finite element model

Selected bar problems are analyzed in the first stage of the research, em-
ploying linear elasticity theory, namely Hooke’s law, small deformations, and
Euler-Bernoulli assumptions. Standard truss and enhanced beam finite elements
are illustrated in Fig. 1a and Fig. 1b, respectively.

For the 2D truss element with two degrees of freedom q1, q2, two linear La-
grange shape functions L(1)

1 , L(1)
2 are applied to interpolate the displacement
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Fig. 1. Finite elements applied for bar structures:
a) 2D truss element, b) enhanced beam element.

function u at the local coordinate system (ξ, u). In the case of the beam ele-
ment with four degrees of freedom q1, q2, q3, q4, standard Hermite interpolation
of the deflection field is used

(3.1) v (ξ) =

SAE generation + post-processing︷ ︸︸ ︷
4∑
i=1

qiH
(3)
i (ξ) +

post-processing︷ ︸︸ ︷
N

(5)
5 (ξ) ,

with cubic shape functions H(3)
1 , H(3)

2 , H(3)
3 , H(3)

4 . Moreover, the interpolation
formula (3.1) is a-posteriori enhanced by means of the additional component
with the fifth-order polynomial function N (5)

5 that corresponds to the particular
integral of the Bernoulli beam deflection equation for trapezoidal load. This
enhancement allows for the reproduction of the polynomial solution up to and
including the fifth order at every point of the considered structure. Therefore,
both discretization and approximation errors are zero (up to machine precision)
for static problems, regardless of the mesh density. On the other hand, the
accuracy of the solution for dynamic and buckling problems strongly depends
on the number of finite elements applied for each bar.

Computation of the local quantities at the element level is followed by their
transformation and aggregation into the global system of simultaneous algebraic
equations (SAE). These may include the stiffness matrix K as well as the load
vector P (for static and buckling problems), consistent mass matrix M (for
dynamic problems), as well as the matrix of initial stresses Kσ (for buckling
problems). In the simplest cases, the solution of SAE with global matrices and
vectors, accounting for boundary conditions (with the lower index bc), explicitly
yields the specified l-th component Fl of the objective function F, depending on
the problem type, namely:
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– static problem

(3.2)

K (d) Q = P (d)→

{
Q (d) = K−1

bc (d) Pbc (d)

R (d) = K (d) Q (d)−P (d)
→

→ se (d)→ Fl (d) =


max Q (d)

max R (d)

max se (d)
...

,

– eigen dynamic problem

(3.3)
(
K (d)− ω2M (d)

)
Q = 0→ Fl (d) =

1

ωmin (d)
,

– buckling problem with Kσ computed from statics

(3.4) (K (d) + λKσ (d)) Q = 0→ Fl (d) =
1

λmin (d)
,

where Q represents generalized displacements, R denotes reaction forces, se

stands for generalized forces at the element level, ω represents eigenfrequencies,
and λ signifies load configuration multipliers.

In more complex scenarios, such as beam bending problems under static
load, where the objective is to minimize the maximum values of deflection vmax

and/or generalized forces (bending moment Mmax and shear force Qmax), an
additional local optimization problem arises. In this case, the entire mesh of
elements (when searching for global maximal values) or specified elements only
(when examination is limited to parts of a structure) must be examined. It is
crucial to solve this problem without introducing additional approximation er-
rors. To achieve this, local interpolation (3.1) is applied and differentiated to
satisfy the necessary conditions for the existence of the optimum for each spec-
ified quantity, namely

(3.5) vmax →
dv
dξ

= 0, Mmax →
d3v

dξ3
= 0, Qmax →

d4v

dξ4
= 0, ξ ∈ [0 le].

Therefore, the local optimization problem involves determining the roots of rel-
evant polynomial equations (of fourth, second, and first orders, respectively)
derived from conditions (3.5) within the finite element with length le.

Subsequently, the objective function values F (d) are transferred back to the
optimization level.
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3.2. Finite difference schemes

Even for the simplest unconstrained single-objective optimization problems,
it may be necessary to evaluate both the gradient (2.8) for determining the
existence of the minimum and the Hessian (2.10) for examining the convexity
of the scalar objective function F with respect to the vector of decision vari-
ables d. Moreover, assuming that d consists of real variables only (nd = nr),
algorithms of deterministic methods of gradient type effectively utilize the gradi-
ent (or gradient and Hessian) at all iteration steps. In the general case, comput-
ing derivatives of the objective function F can be challenging, especially when,
for a fixed d, solving the additional local optimization problem (3.5) for a scalar
decision variable ξ is required. If the analytical formula of F with respect to
both d and ξ is unknown or difficult to obtain, its values can only be evaluated
point-wise for a fixed vector d of decision variables. For linear static problems,
the gradient and the Hessian of the objective function require direct differentia-
tion of the nodal FE solution obtained from Eq. (3.2). For instance, the gradient
of the general displacement vector Q may be computed as follows:

(3.6)
∂Q

∂d
=
∂K−1
bc

∂d
Pbc (d) + K−1

bc (d)
∂Pbc
∂d

,

the equation commonly appears in sensitivity analysis [32–34]. Although both
derivatives in Eq. (3.6) can be computed directly and analytically (e.g., in linear
bar models), this process can be computationally demanding (e.g., in the case of
nonlinear theory) and challenging to automate for both the objective function
and the analyzed problem of arbitrary types, particularly when FE toolboxes
are used in a black-box style. Therefore, an appropriate numerical approach may
be carried out instead of the direct application of formula (3.6). In contrast to
other commonly applied optimization methods in which either the gradient or
the Hessian of F is estimated at the optimization level based on two consecutive
solutions for d (quasi-gradient and quasi-Newton methods [35]), we propose the
computation of derivatives of F using central finite difference (FD) schemes [36],
namely:

(3.7) ∇dF ≈
F (d + ∆d)− F (d−∆d)

2∆d
=



F (d1 + ∆d1)− F (d1 −∆d1)

2∆d1

F (d2 + ∆d2)− F (d2 −∆d2)

2∆d2

...

F (dnd + ∆dnd)− F (dnd −∆dnd)

2∆dnd
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and

(3.8) H (d) = ∇d∇TdF ≈
∇dF (d + ∆d)−∇dF (d−∆d)

2∆d
,

where ∆d is the vector of solution increments, relatively small with respect to
admissible limits (Eq. (2.3)) for d. However, to avoid numerical instability, these
increments should not be smaller than 10−6. In this manner, the computation
of (3.7) requires 2nd objective function values, whereas one needs 1

2nd (nd + 1)
values for the computation of (3.8). Since the same values appear in both FD
formulas, the total number of required objective function values should not ex-
ceed n2

d. The accuracy of these formulas is relatively high and could be estimated
as O

(
h2
)
.

It is important to emphasize that this approach is anticipated to work effec-
tively when dealing with decision variables of real type exclusively. For decision
variables of integer and/or Boolean types, non-gradient optimization approaches
must be employed.

3.3. Deterministic methods

Back at the global level, the simplest deterministic methods construct the
chain of approximated solutions starting from the initial guess solution d0 to
the final optimal solution dopt, namely:

(3.9) dk+1 = dk + αkhk, k = 0, 1, 2, ...,

where dk and dk+1 denote two subsequent solution approximations, k is the
iteration number, αk is the step size, and hk denotes the search direction. A va-
riety of deterministic methods exist, differing in the manner the search direction
is calculated at each iteration step (global level). In the case of non-gradient
methods, the nd trial searches have to be performed separately with an addi-
tional one being the conjugated direction (Powell method, Nelder-Mead simplex
method). The steepest descent and conjugate gradients methods require compu-
tation of the objective function gradient ∇dF (dk), whereas the Newton method
additionally uses information concerning its Hessian ∇d∇d

TF (dk).
The solution convergence rate p of deterministic methods, defined as follows:

(3.10)
‖dk+1 − dopt‖
‖dk − dopt‖p

≤ C, C ∈
(

0 1
)
,

is rather small and varies from 1 to 2. Moreover, final solutions are very sensitive
to the selection of d0. However, the key issue is the appropriate selection of the
step size αk (with the exception of the simplex method). Generally, it should be
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determined as the optimal solution of the auxiliary one-dimensional directional
optimization problem (local level), namely

(3.11) αk = arg min
α
f (α) , f (α) = F (dk + αhk).

As this problem cannot be solved directly, two main approaches have been re-
ported in the literature [35, 37]. One possibility is to apply line search in which
the optimal αk is determined by a relevant sampling technique (starting from
α = 0 and moving forwards) and observing values of f . The second one as-
sumes the approximation of αk by means of closed-form formulas, composed
of solutions for d from previous iteration steps at the global level. However,
both approaches do not guarantee the determination of the globally optimal
solution of Eq. (3.11). Moreover, the wrong selection of αk may cause a solution
divergence (or convergence to a solution located outside the admissible domain).
Therefore, our proposal is based on the reliable selection of enclosing bounds
for α as well as the well-known bisection method in two alternative variants.
Consequently, solution divergence for both d and α may be avoided in favor of
slower convergence.

Firstly, interval bounds are selected by substituting the admissible domain
limits Eq. (2.3) into Eq. (3.9) and evaluating relevant norms, namely:

(3.12) αleft = ε > 0, αright = smin

[
‖dmin − dk‖
‖hk‖

‖dmax − dk‖
‖hk‖

]
,

where the scalar parameter s has to be selected in an iterative manner. In most
cases, one may start with s = 1 and perform subsequent decreases until the
admissible location of d is reached. Afterwards, the interval

[
αleft αright

]
is

divided into two equal parts by determining the middle point:

(3.13) αmiddle =
1

2
(αleft + αright).

Two variants are possible: non-gradient and gradient bisection methods. In the
case of the simpler, though more primitive, non-gradient bisection, one has:

(3.14) C = f (αleft) < f (αright).

Gradient bisection may be implemented as follows:

(3.15)

∇leftf = hk
df
dα

(αleft)=
hk

2∆α
(f (αleft+∆α)−f (αleft−∆α)),

∇middlef = hk
df
dα

(αmiddle)=
hk

2∆α
(f (αmiddle+∆α)−f (αmiddle−∆α)),

C = ∇leftf ∇Tmiddlef < 0,
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where a similar concept using central finite difference operators is incorporated,
as in the case of (3.7). A small yet finite increment ∆α > 10−6 may be selected
based on the admissible interval for α. Furthermore, in the case where the scalar
parameter C = 1, αright = αmiddle, or αleft = αmiddle. For each internal iteration
step, the number of required values of the objective function is equal to 1 (non-
gradient variant) or 2 (gradient variant). The only exception is the first step,
where these numbers should be doubled.

Break-off tests may include examination of the following indicators:

(3.16)
‖dk+1−dk‖
‖dk+1‖

< εd,
‖F
(
dk+1

)
−F

(
dk
)
‖

‖F (d0) ‖
< εf ,

‖∇dF
(
dk+1

)
‖

‖∇dF (d0) ‖
< εg,

namely, convergence rate, quality index and gradient residuum (for gradient
methods), respectively. In above formulas εd, εf , εg denote assumed admissi-
ble errors. Moreover, the number of iterations k < kmax should be controlled
as well. Algorithm efficiency may be defined as the number of required eval-
uations of objective function values (Nf ). The general flow chart of methods
of deterministic type applied to unconstrained optimization problem, assuming
the admissible domain Ωadm as defined in Eq. (2.3), is presented in Fig. 2 with
novel elements highlighted using blocks with bold red edges. In case the equality
and/or inequality constraints (Eq. (2.5)) are present, all developed algorithms
remain applicable, though they must be extended to incorporate modifications
ensuring that the search direction is not only effective in minimizing the objec-
tive function but feasible as well. For instance, the simplex approach may be
employed for this purpose.

3.4. Genetic algorithms

Deterministic optimization approaches may effectively work with decision
variables of real type only (nd = nr). In case nb > 0 (Boolean type) or nz > 0
(integer type) a modified approach has to be applied. On the other hand, ev-
ery deterministic method yields the same solution for the same set of input
parameters, with accuracy to the equipment used and computational precision.
A different concept is presented by genetic algorithms that belong to the group of
biologically inspired optimization methods (along with evolutionary algorithms
and artificial neural networks [38, 39]). They resemble the functioning of the
human immune system in which strong genes (individuals with a low objective
function value) are strengthened and weak genes (with a high objective func-
tion value) are eliminated. Therefore an entire family of solutions undergoes
strongly random processes. Unlike in the case of deterministic methods, every
single genetic operation may lead to slightly different results.
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Each component of decision variables vector d is coded as a chain of mb

bits whose number corresponds to the required numerical precision. One ge-
netic population consists of m members each of which is a vector composed of
nd binary components. The initial population may be selected randomly or may
correspond to the solution obtained from another approach. Nevertheless, popu-
lation members are frequently modified by means of standard genetic operators,
namely selection of roulette type (the only operator that requires values of the
objective function), crossover (with probability pc) and mutation (with proba-
bility pm). In case the equality and/or inequality constraints (2.5) are present,
both crossover and mutation operations would need to be adjusted to ensure
that each newly generated solution is within the admissible domain before be-
ing included in the current population. In most cases, the maximum number
of generations mg is assumed, whereas the brake-off test may involve the ad-
missible participation εa of members minimizing the objective function (with
accuracy εf ). The best member (with respect to the objective function value)
found throughout all genetic generations is considered as the stochastic estima-
tion of the optimal solution. Alternatively, it may be treated as an entry to the
deterministic approach (as the initial solution). The general flow chart of genetic
algorithms, taking into account their combinations with FEM and deterministic
approaches, is presented in Fig. 3.

Fig. 3. Genetic algorithms – general flow chart.
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3.5. Implementation of patterns

The proposed approach is rooted in the idea of dividing a selected build-
ing structure into characteristic patterns, which consist of sets of elements. The
study considers several types of patterns that allow for interaction, including hor-
izontal trusses, vertical trusses, and beam grids. These patterns are utilized to
compose the structure subjected to optimization. Leveraging the FEM, various
optimization techniques, and additional algorithms for interaction, the method-
ology decomposes the structure into distinct patterns.

Central to this approach is the preliminary sequential algorithm (Fig. 4),
which facilitates the optimization of each pattern individually and the trans-
fer of information to subsequent patterns. This information encompasses the
loads and geometry of the structure, such as the coordinates of nodes. Addi-
tionally, the algorithm aggregates objective function values from each pattern
after optimization, which are subsequently employed in global objective func-
tions. Computational examples illustrating this concept are presented in the
following section.

Fig. 4. General flowchart of sequential optimization for the pattern concept.

4. Numerical examples

Variety of benchmark tests with known analytical optimal solution, as well as
simple engineering problems of statics, dynamics and linearized stability, have
been executed. Each time, a combination of FEM with selected optimization
methods was considered incorporating a few novel aspects introduced in this
paper. Special emphasis has been laid upon the combination of FEM with FD
schemes. Numerical experiments were conducted to assess solution accuracy,
the effectiveness of the method (number of objective function values) required,
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computational time, as well as algorithm simplicity. The representative results
are presented in this section, starting from the simplest tests that could be
solved analytically and ending with engineering problems with uncertain load
parameters.

4.1. Preliminary results of single-objective optimization

The modified algorithms of selected deterministic methods are preliminarily
examined using the benchmark test with the objective function given by the an-
alytical formula. Among the many possible functions, the Rosenbrock function:

(4.1) F (d) = 100
(
d2 − d2

1

)2
+ (1− d1)2

is chosen for this evaluation [40]. This function, commonly used in optimiza-
tion problems, presents challenges due to its narrow, curved valley. The goal
is to assess the performance and effectiveness of the modified algorithms in
handling this particular benchmark test. The admissible interval is assumed as
d ∈ [−2 2]× [−1 3]. A single minimum of F exists, namely at dopt = [1 1],
where F = 0. For the sake of comparison, the reference solution is determined
by the brute search method with a grid of 101× 101 middle points.

Afterwards, five different approaches are examined, namely: the Powell con-
jugate directions method, steepest descent method, conjugate gradient method,
Newton method as well as genetic algorithms. First, we perform calculations
for one fixed starting point / initial population. For deterministic methods, we
assume the initial guess solution as d0 = [−1.5 0] with εd = 10−6 (only the
convergence rate from Eq. (3.16) is examined) and kmax = 103, nd = 2. For
genetic algorithms, the following data is set: mb = 20, m = 50, mg = 200,
pc = 0.7, pm = 0.2, εa = 0.2. The final solutions as well as the averaged conver-
gence rates defined in Eq. (3.10) and obtained for all deterministic approaches
are compared in Table 1 for two variants. In the first variant, all derivatives of
F and f functions are calculated in an analytical manner, whereas in the second

Table 1. Comparison of solution convergence rates of deterministic approaches with analytical
and numerical derivatives of the Rosenbrock function.

Method
Analytical derivatives Numerical derivatives

Final solution Convergence
rate

Final solution Convergence
rate

Powell conjugate directions [1.111 1.056] 0.472 [1.111 1.056] 0.472

Steepest descent method [0.896 0.802] 0.878 [0.896 0.802] 0.836

Conjugate gradients method [1.000 1.000] 0.959 [1.001 1.001] 0.821

Newton method [1.000 1.000] 2.001 [1.000 1.000] 1.530
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one, only FDM schemes (Eqs. (3.7), (3.8) and (3.15)) are applied. Additionally,
efficiency of all approaches (brute force search, deterministic methods, genetic
algorithms) represented by the number of objective function values computed
Nf (blue bars) as well as gradients (red bars) and Hessian matrix (green bar) is
compared in Fig. 5.

a) b)

Fig. 5. Comparison of methods’ efficiency for the Rosenbrock function and a) analytical deriva-
tives, b) numerical derivatives.

It may be observed that convergence rates of gradient methods are fully com-
parable when analytical derivatives are replaced by numerical schemes, whereas
the number of computed objective function values (Fig. 5b) is similar to the
number of gradient components (Fig. 5a). Clearly superior results are obtained
for the Newton method with FD schemes, taking both aspects into account. An
interesting fact is that Nf for the Newton method (numerical variant) is similar
to the one required for genetic algorithms.

Afterwards, more comprehensive tests are performed, namely the generation
of convergence graphs for each method. For this purpose, we examine multi-
ple initial guess solutions taken from a regular mesh of 20× 20 points (marked
as black crosses, see top graphs in Fig. 6a–d and Fig. 7a–c). For each initial
solution, the relevant solution algorithm is applied, yielding the approximated
optimal solution. In the case of deterministic methods, the relevant iterative pro-
cess is initialized. In the case of genetic algorithms, the entire initial population
consists of the same consecutive solution taken from the solution mesh. A diver-
gent/improper solution is assigned (red field in the bottom maps in Fig. 6e–h
and Fig. 7d–f) when the maximum number of iterations is exhausted or the
difference between the final solution and the analytical one is greater than 10%
(in mean norm). Otherwise, we deal with a convergent process (green field in
the above-mentioned maps). The convergence rate is evaluated as the number of
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a) b)

c) d)

g) h)

e) f)

Fig. 6. Comparison of convergence maps for the Rosenbrock function for (a–e) Powell con-
jugate directions method, (b–f) steepest descent method, (c–g) conjugate gradients method,

(d–h) genetic algorithms.
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green fields related to the number of all fields (percentage values are displayed
in the bottom graphs’ titles of Fig. 6e–h and Fig. 7d–f).

One may notice that the Powell method is mostly convergent (Fig. 6a, e),
though solutions are located inside the valley. On the other hand, the steepest de-
scent method (Fig. 6b, f) produces more accurate solutions, though the solution
convergence is very slow. Both conjugate gradients (Fig. 6c, g) and genetic algo-
rithms (Fig. 6d, h) approaches have the highest convergence rates, though several
solutions are improper. Eventually, convergence maps of the Newton method
with FD schemes (Fig. 7a, d) are compared with quasi-Newton approaches
with the most commonly applied formulas [35], namely Davidon-Fletcher-Powell
(DFP) formula (Fig. 7b, e) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) for-
mula (Fig. 7c, f). In the case of both quasi-Newton approaches, many solutions
are locked within the valley (similarly to the non-gradient Powell method),
whereas nearly all starting points produce proper final solutions for the New-
ton method with FD schemes, being the variant proposed and applied in this
research.

4.2. Preliminary results of multi-objective optimization

In this simple example, the goal is to present Pareto solutions along with the
Pareto front for the most typical bar problems, including static, dynamic, and
buckling scenarios. Furthermore, the characteristics of three variants of optimal
solutions are discussed. A horizontal bar under a tensile uniform load with in-
tensity q0 = 102 kN/m and a compressive concentrated force P applied at the
free end is considered. The bar material is characterized by the Young modulus
E = 106 kPa and mass density ρ = 8 kg/m3. Its cross-sectional area is A = 0.1 h,
where h is the cross-sectional height. The vector of decision variables consists of
two (nd = 2) parameters d = [h L], where h ∈ [0.01 0.1] m and L ∈ [0.5 5] m.
Moreover, we deal with two (nf = 2) optimization criteria F(d) = [F1(d) F2(d)],
the second one of which corresponds to the total mass F2(d) = bhLρ of the struc-
ture, whereas the first one F1(d) depends on the problem type. Therefore, F1

corresponds either to the maximum horizontal displacement (for P = −103 kN)
for a static problem or to the inverse of the minimum natural frequency (for
P = 0 and q0 = 0) for an eigen dynamic problem (longitudinal vibrations) or
to the inverse of the minimum critical force multiplier (for P = λ) for buckling
analysis. The FE mesh consists of 10 elements of equal length.

Results obtained by means of a brute force search for a very densely di-
vided admissible domain for decision variables, in aforementioned three various
multi-objective optimization problems are presented in Fig. 8b–d, respectively.
In each case, the entire Pareto-optimal set, being the result of a mapping between
Ωadm = [0.01 0.1] m × [0.5 5] m and F (Ωadm), is presented in a normalized
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(F1, F2) coordinate system. The efficient solutions located on Pareto-optimal
front are indicated as well as its rough approximation by means of a convex hull.
Finally, optimal solutions for h and L obtained from selected formulas including
Eq. (2.12) (for unitary weights), Eq. (2.14) (for weights equal to the inverse
of the largest value of the objective function, namely ωl = (maxd Fl(d))−1),
and Eq. (2.15) (for unitary weights and p = 2) are displayed in the graphs’
labels and marked. It may be observed that formulas (2.14) and (2.15) produce
the same results in the form of non-dominated solutions located on the Pareto-
optimal front, whereas the simplified formula (2.12) yields a dominated solution
located inside the Pareto-optimal set.

4.3. Beam optimization

The objective of this example is to demonstrate the basic implementation of
methods for a simple task involving the optimization of a beam with one or two
decision variables. Brute force deflection and moment diagrams with one deci-
sion variable showcase how the location of maximum absolute values of moments
and deflections, as well as the shape of deflection, change based on the support
location. This example serves as a foundational demonstration of the optimiza-
tion process and its impact on structural behavior. Two bending beam problems
are considered: a beam under uniform load with intensity q = 10 kN/m (Fig. 9a)
and a beam under trapezoidal load with intensity varying from ql = 10 kN/m to
qr = 40 kN/m (Fig. 9b). In both load cases, a concentrated force P = 10 kN is
applied at the right end. For the first case, only one decision variable is consid-
ered, which is the distance dr between the left and right supports, with the left
support fixed. For the second case, the vector of decision variables consists of
two parameters, namely d = [dl dr], where dl ∈ [0 4.9] m and dr ∈ [5.0 10] m.
Three optimization criteria are taken into account and formulated as follows:
maximum deflection for the entire beam F1 (d) = max

(ξ)
|v (d, ξ) |, maximum mo-

ment for the whole beam F2 (d) = max
(ξ)
|M (d, ξ) |, and difference between sup-

port reactions F3 (d) = |Rl (d)−Rr (d) |.

Fig. 9. Optimization problem of beams: one decision variable (a) and two decision variables (b).
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Results for a one-dimensional (nd = 1) optimization problem obtained by
means of a brute force search with a Pareto front for two criteria are presented
in Fig. 10. Results for a two-dimensional (nd = 2) optimization problem obtained
by means of a brute force are presented in Fig. 11a–c. Results for various starting
points for selected criteria and various methods are presented in Fig. 12a–c.

Fig. 10. Results of the beam optimization problem with one decision variable.

a) b)

e)d)

c)

e)d) f)

Fig. 11. Graphs of the objective functions for selected criteria:
a) maximum deflections, b) maximum moments, c) difference between support reactions.
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a) b)

c)

Fig. 12. Comparison of results for various starting points for deflection criterion:
a) steepest descent method, b) Nelder-Mead simplex, c) genetic algorithms.

4.4. Truss optimization

The objective of this example is to apply the proposed pattern approach
to basic truss structures characterized by typical engineering parameters such
as cross-sections and truss widths. Testing singular truss patterns is vital be-
fore integrating them with other patterns. This step ensures that individual
patterns function correctly and lays the groundwork for their integration into
more complex structural configurations involving multiple patterns. Two types
of trusses are considered: a vertical truss subjected to concentrated vertical
Fz = −250 kN and horizontal Fx = 50 kN forces (Fig. 13a), as well as a hori-
zontal truss under trapezoidal load with intensity varying from ql = 30 kN/m
to qr = 10 kN/m (Fig. 13b). Two decision variables are taken into account,
hence d = [d1 d2]. For the vertical truss, the width of the truss d1 ∈ [1 4.5] m
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a) b)

Fig. 13. Optimization problem of trusses.

a) b)

c)

Fig. 14. Graphs of objective functions for the vertical truss with selected criteria: a) horizontal
displacement of the control node, b) displacement limitation H/400, c) displacement limitation

H/400 + steel usage (weighted).
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and the area of the cross-section of chords d2 ∈ [0.1 0.4] m2. For the horizontal
truss, the height of the truss d1 ∈ [0.5 3] m and the area of the cross-section
of chords d2 ∈ [0.1 0.7] m2. Three optimization criteria are considered and
formulated as follows: displacement in the control node (horizontal displace-
ment for vertical truss F1 (d) = h (d) and vertical displacement for horizontal
truss F1 (d) = v (d)), displacement limitation as the difference between displace-
ment in the control node and admissible displacement F2 (d) = |h (d) − hadm|,
F2 (d) = |v (d) − vadm|, vadm = L/250, hadm = H/400 (where L is the span of
the horizontal truss and H is the height of the vertical truss), and steel usage
as the total volume of bars F3 (d) = A (d) l (d) ρ.

Results for a two-dimensional (nd = 2) optimization problem obtained by
means of a brute force are presented in Fig. 14a–c and Fig. 15a–c for vertical and
horizontal trusses, respectively. Additionally, results obtained for various start-
ing points as well as selected criteria and methods are presented in Fig. 16a–c.

a) b)

c)

Fig. 15. Graphs of objective functions for horizontal truss with selected criteria: a) vertical
displacement of the control node, b) displacement limitation L/250, c) displacement limitation

L/250 + steel usage (weighted).
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a) b)

c)

Fig. 16. Comparison of results for various starting points for a displacement limitation criterion
H/400: a) steepest descent method, b) Nelder-Mead simplex, c) genetic algorithm.

4.5. Beam grid optimization

A beam grid is a pattern designed to optimize secondary beams or purlins
in a plane. The optimization process for the pattern consists of two stages:

1) Pre-processing, where the algorithm adjusts beam spacing in accordance
with the shape of the loading to ensure an equal value of loading for each
beam (Fig. 17).

2) Optimization based on selected criteria.
At the first stage, the algorithm provides proportional coefficients for beam
spacing in each zone to ensure equal load distribution. These coefficients relate
to a single parameter for the beam spacing (averaged beam spacing for the
entire pattern) which is then subjected to optimization. The task is aimed at
optimization with two decision variables d = [d1 d2], namely the cross-section
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Fig. 17. Optimization problem of a beam grid.

a) b)

c)

Fig. 18. Graphs of objective functions for beam grids with selected criteria: a) beams deflection,
b) deflection limitation criterion L/250, c) deflection limitation criterion L/250 + steel usage

(weighted).
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height d1 ∈ [200 1000] mm and the averaged beam spacing d2 ∈ [3 8] m. Cross-
sections properties are calculated based on the cross-section height d1 and profile
geometry from the selected catalogue (HEA profiles) with approximation of table
values. Table values were approximated for the purpose of implementation of
the gradient optimization methods. Three optimization criteria are considered:
beams deflection F1 (d) = v (d), deflection limitation as the difference between
calculated beam deflection and admissible deflection F2 (d) = |v (d) − vadm|,
vadm = L/250 (where L is the span of the beams), and steel usage as the
total volume of beams F3 (d) = A (d) lρ. Values of deflections are obtained
analytically. For benchmark purposes, a trapezoidal load with intensity varying
from ql = 30 kN/m to qr = 10 kN/m is taken into account.

Results for a two-dimensional optimization problem obtained by means of
brute force are presented in Fig. 18a–c. Additionally, results for selected starting
points, criteria and methods are presented in Fig. 19a–c. The particular stepped
a) b)

c)

Fig. 19. Comparison of results for various starting points for a mixed criterion (deflection limi-
tation L/250 and steel usage): a) steepest descent method, b) Nelder-Mead simplex, c) genetic

algorithms.
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shape of the objective function is related to the beam spacing parameter. During
optimization, the beam spacings (real numbers) are converted to the number of
purlins (integer value). For the purpose of optimization, local smoothing, built-in
in FD schemes is applied for gradient-based methods.

4.6. Combination of patterns

The concept of patterns involves the integration of individual patterns into
a complex structure (Fig. 20a). For preliminary research, a connection between
three basic patterns is considered: a beam grid, a horizontal truss, and two
vertical trusses. Sequential optimization, starting from roof purlins to vertical
trusses, is assumed following the general algorithm (Fig. 20b).

a) b)

Fig. 20. Preliminary concept of a combination of several patterns: a) general layout of the
structure, b) general flow chart of sequential optimization.

The key advantage of this approach is the ability to control global objective
function values, such as the total weight of the entire structure, for each spe-
cific pattern during optimization. The optimization process yields the objective
function values for each pattern and allows to take into account the contribution
of each pattern with formulation of the global objective function Ftot, namely

Ftot =
np∑
i=1

Fi, where np is the total number of patterns (here np = 4). This ana-

lysis is crucial for evaluating the total costs of steel prefabrication, which may
include factors beyond the total weight of steel, such as the number of elements
and joints. A larger number of elements and joints increases the complexity
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of production. For selected combination of four patterns, the global objective
function Ftot is a three-valued vector function whose components correspond
to optimization criteria related to the total weight of the entire structure, the
total number of elements and the total number of joints. This approach enables
a influence analysis of each pattern at the global scale, as depicted in Fig. 21.

Fig. 21. Summary of optimization results for a combination of patterns taking into
consideration: total weight of the structure, number of elements and number of joints.

In this specific example, it is observed that the beam grid pattern contributes
the least to the total weight of the structure. However, optimizing the beam
grid may lead to a larger number of joints in the horizontal truss. Consider-
ing that the beam grid pattern is directly connected to nodes of the horizontal
truss, this increases the number of braces and, consequently, the total weight
of the structure. This preliminary approach holds promise due to the numerous
possibilities for combining various structural patterns for different applications.
Indeed, allowing for modifications to the general algorithm provides greater flex-
ibility and control over patterns during optimization. By adjusting the sequence
of optimization steps or introducing additional parameters, researchers can ex-
plore various optimization strategies and potentially achieve different results.
This avenue of investigation opens up opportunities for further research and
experimentation in the field.

4.7. Structural reliability estimation

In all the previously discussed engineering examples, the parameters of the
subjected load were assigned fixed and unambiguous values. Consequently, one
optimal solution was obtained from the family of possible solutions using para-
metric description and the relevant optimization algorithm. However, a more
general and complex scenario may involve uncertainty inherent in selected load
parameters. If these parameters are modeled as probabilistic variables, we deal
with structural reliability, denoted as Rs. Structural reliability serves as a prob-
abilistic measure of structural safety [41]. It is defined as the probability of
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the complement of failure (or the probability of the occurrence of the inverse
event to the failure). Failure in this context happens when the total applied
load exceeds the total resistance of the structure, represented, for instance, by
exceeding its maximum admissible displacement, a scenario considered in this
research. The primary objective of this example is to evaluate the developed
optimization algorithm, which integrates the FEM with the Newton method
using Finite Difference schemes. This approach is applied to solve numerous
beam optimization problems under different load configurations in a fast and
accurate manner. Moreover, stochastic methods, commonly used in descriptive
statistics, are employed to determine the optimal location of supports to ensure
maximal structural reliability. Afterward, the final reliability of the determined
beam geometry is estimated.

Consider a bending problem with two decision variables as introduced in 4.3.
The steel beam structure with a total length of L = 5 m, cross-section di-
mensions of 0.1 m× 0.2 m, and Young’s modulus E = 210 GPa is subjected to
a uniform load with a fixed intensity q0 = 60 kN/m, as well as to a concentrated
force P0 located at x0. The structure pattern is modeled using a parametric
description such that variable locations of both supports dl ∈ [0, 2.23] m and
dr ∈ [2.53, 5] m generate the entire family of possible structures. The primary
objective is to determine optimal locations doptl and doptr of supports to ensure
the maximum possible reliability of the beam. Assuming that the probability of
load density and structure resistance are denoted as p(s) and r (s) respectively,
where s is the random variable corresponding to the uncertain load parameter,
reliability can be analytically determined if both p and r are normal (Gaussian)
distributions. However, in most cases, load and resistance are not normally dis-
tributed and explicitly formulated. Moreover, the admissible domain Ωadm of
safety load states is a priori unknown. Therefore, an appropriate numerical ap-
proach is required, usually by means of a Monte Carlo simulation and the stripes
method [42, 43].

The entire area below the graph of p is divided into a large number K of
bars of equal base B and heights Hk = p ((k − 1)h+ 0.5h), k = 1, 2, ...,K. Sub-
sequently, a series of simulations are performed, each time selecting a random

number r ∈ (0, 1) and determining the smallest k0 for which B
k0∑
k=1

Hk ≥ r.

Afterwards, the mechanical problem is solved by the finite element (FE) frame-
work, assuming temporarily fixed load parameter(s) corresponding to s0 =
(1− k0)h+ 0.5h.

Two variants may be distinguished. In case supports locations dl and dr
are fixed (no geometry optimization), the safety condition is examined, namely
vmax < vadm = L/500 = 10 mm, where vmax is the maximum beam deflection,
and the admissible deflection vadm = L/500 corresponds to Eurocode sustain-
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ability condition for primary steel beams. The number of admissible states is
counted, while the final reliability may be estimated as follows:

(4.2) Rs =

ˆ

Ωadm

p(s) ds ≈ Nadm
Ntot

,

where Nadm is the number of admissible states and Ntot is the number of all
Monte Carlo simulations. Certainly, Monte Carlo estimation combined with the
strap method offers an approximate means of determining the admissible do-
main Ωadm. In practical computations, it is convenient to express Rs using the
reliability index β, which corresponds to the failure probability Rf = 1 − Rs.
When both the load and resistance follow normal distributions and are uncor-
related, the Cornell reliability index can be utilized. In a more general scenario,
the Hasofer-Lind reliability index is employed [44]. This index is defined as the
minimum distance between the limit state surface, which serves as the boundary
Γsf = Ωadm

⋂
Ωfail between the admissible Ωadm and failure Ωfail domains, and

the origin of the coordinate system of normalized random variables.
In the second variant, support locations dl and dr have to be optimally

determined for each randomly selected load parameter(s) using, for instance,
a fast and accurate Newton method with FD schemes proposed in this paper.
The statistical distribution of optimal support locations has to be determined
(e.g., using histograms). Eventually, the stochastic family of optimal support
locations is represented by means of center (mean, mode, median), dispersion,
or shape parameters yielding one set of d optl and d optr compromising all possible
load parameter distribution(s) and the variance of support locations. The final
structural reliability is determined using the methodology outlined for the first
variant. It suffers from the total error accumulating errors of the stripes meth-
od (ε ≤ 1/K), Monte Carlo approach (ε ≤ 1/

√
Ntot), and optimization method

(ε ≤ εd). Discretization and approximation errors are negligible.
First, we assume a fixed concentrated force magnitude P0 = 100 kN, whereas

the force location x0 is ascribed by the normal Gauss distribution with a mean
value µ = 2.5 m and a standard deviation σ = 0.63 m, as shown in Fig. 22a. The
number of stripes is set to K = 102, and the total number of Monte Carlo sim-
ulations is Ntot = 103. Results of reliability estimation and admissible domains
for three specified and typical support locations (without automatic optimiza-
tion) are shown in Fig. 23a (external locations dl = 0 and dr = 5 m), in Fig. 23b
(middle locations dl = 0.83 m and dr = 4.17 m), and in Fig. 23c (internal loca-
tions dl = 2.02 m and dr = 3.02 m). The fuzziness of reliability is significant as
it varies from 0% to 58% (with β = 0.19 only), each time yielding completely
different borders of the admissible interval (marked in green). Therefore, fully
justified geometry optimization is performed, and an approximate stochastic
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a) b)

c)

Fig. 22. Probability distributions for force location x0: a) Gauss distribution, b) Gumbel
distribution and force magnitude P0, c) Weibull distribution.

representation of the distribution of both support locations in the form of his-
tograms is presented in Fig. 23d,e. On this basis, mean values of d optl = 1.27 m
and d optr = 3.73 m are accepted as the optimal ones, and the final reliability
analysis is performed yielding results shown in Fig. 23f with successfully maxi-
mized Rs = 99.80% (with β = 2.76), and an admissible interval covering almost
the entire problem domain.

A similar study is conducted for two uncertain load parameters, namely
a force location x0 (Gumbel distribution with µ = 2.5 m and σ = 0.63 m –
Fig. 22b) and force magnitude (Weibull distribution with µ = 100 kN and σ =
25 kN – Fig. 22c). In contrast to normal distribution, which is typically used for
modeling an unknown mean value representing the entire population, Gumbel
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and Weibull distributions are usually applied for extreme and time-dependent
values, respectively. Final results of reliability analysis (for K = 102 and with an
increased Ntot = 104) are presented in Fig. 24 in the same fashion as previously.
2D bar graphs in Fig. 24a–c indicate a large dispersion of reliability (from 0% to
89%, yielding maximal β = 1.21 only) as well as sensitivity of the safety domain
(green regions) to selected support locations (same as above). In Fig. 24d,e,
stochastic optimization results of support locations are shown. Consequently, for
their mean values d optl = 1.29 m and d optr = 3.68 m, the optimized structural
reliability reaches Rs = 99.92% (β = 3.16) – see Fig. 24f. The entire process
requires 4 minutes of an Intel Core CPU with 1.8 GHz and 16 GB RAM, whereas
other optimization approaches, including brute force search, would need more
than 2 hours.

5. Conclusions

A numerical approach to geometry and size engineering optimization prob-
lems is presented. The main concept involves decomposing the complex steel bar
structure into several typical patterns, each with a reduced number of decision
variables. Such a move allows for effective and fast solution of local optimization
problems corresponding to those structural patterns (e.g., beam, horizontal and
vertical trusses) followed by the relevant interactions between them. We have
formulated the multi-dimensional and multi-criteria optimization problem and
we proposed three variants incorporating set of single-objective problems. The
single-objective optimization problem may be tackled by improved deterministic
approaches, especially those of gradient nature. In this case, determination of the
objective function gradient (and Hessian) is achieved by means of appropriate
finite difference schemes rather than standard techniques using consecutive so-
lution approximations. Furthermore, a consistent and divergence-free bisection
approach is employed to evaluate the step size for both non-gradient and gra-
dient methods. A particularly convenient approach appears to be a new version
of the Newton method that utilizes both finite element (FE) and finite differ-
ence (FD) frameworks. A variety of benchmark tests and engineering problems
were examined. Special emphasis was placed on issues where a large number of
small optimization problems have to be solved in a fast and accurate manner,
including mutual cooperation between patterns as well as problems involving
uncertain load parameters.

While the obtained results are promising, this research – the culmination
of a one-year implementation PhD – is still under development, and there is
much work yet to be done. The next step in our investigation involves exploring
combinations of a larger number of patterns, each with an increased number of
decision variables. Estimating structural reliability while simultaneously opti-
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mizing design parameters is another promising and intriguing avenue for future
research, particularly in cases where larger values of reliability indices are an-
ticipated (e.g., for ultimate limit states). Therefore, replacing the Monte Carlo
approach with a more sophisticated numerical framework will be necessary to
effectively handle probabilities with higher resolution. Furthermore, we plan
to consider more complex truss and frame problems with non-linearities of the
second (geometry stiffness) and the third (large deformations) orders as well as
thermo-mechanical coupling and the impact of exceptional loading conditions
on structures.
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17-1(Optimisation et Fiabilité): 1–10, 2017, doi: 10.21494/ISTE.OP.2017.0115.

Received December 28, 2023; accepted version April 12, 2024.
Online first May 16, 2024.

Copyright © 2024 The Author(s).
Published by IPPT PAN. This work is licensed under the Creative Commons Attribution License
CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1162/evco.2009.17.3.437
https://doi.org/10.1162/evco.2009.17.3.437
https://doi.org/10.1016/j.strusafe.2009.06.005
https://doi.org/10.1260/0266-3511.29.2.61
https://doi.org/10.1080/17415977.2021.2016738
https://doi.org/10.21494/ISTE.OP.2017.0115

