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This paper presents the effect of the auxeticity on the behaviour of a plate subjected to the
loss of stability. The plate structure is composed of three layers built of auxetic or conventional
facings and a conventional core. The plate is loaded mechanically in the plane of facings
with forces increasing in time. The main technique of the problem solution is based on the
orthogonalisation and finite differences methods. Selected examples of plates were calculated
with the use of the finite difference method. The obtained results allow observing the similarities
and differences between plate models, whose structures are built of conventional layers or mixed
layers: auxetic-foam-auxetic. Investigations complement the knowledge of the responses of the
composite structures with auxetic properties. They show the possibility of using special plate
structures whose materials are characterised by the negative value of Poisson’s ratio.
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1. Introduction

Annular plates are one of the essential elements used in many engineering
applications, for example, in the aerospace industry, mechanical and nuclear
engineering, civil engineering or miniature mechanics. Among others, one of
the characteristic plate structures is the classic, three-layered composite struc-
ture. Examinations of the reactions of the sandwich plates are extensive. Chen
et al. [1] and Wang, Chen [2] can be mentioned as exemplary works, where the
dynamic and stability analyses of sandwich, annular plates loaded mechanically
have been performed.

Additional considerations may arise in addition to the basic requirements
related to the structure, such as strength and rigidity. Among new, possible
structure layer compositions, a special one can be the arrangement with the
facings, whose properties are unconventional, expressed by the behaviour of
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the auxetic material. The effect of the negative value of Poisson’s ratio of the
materials of the plate’s outer layers on the dynamic response of the three-layered
annular plate widens the knowledge of the behaviour of the examined plates
subjected to dynamic conditions. Selected papers present the plate’s reactions
to special structure properties characterised by the negative values of Poisson’s
ratio.

The circular and annular plates with a sandwich structure composed of or-
thotropic facings and an auxetic core are examined in [3]. The results show the
effects of the rigidity of the plate’s structure, the type of support system, and
the geometric dimensions. The distributions of the deflections, in-plane normal
and transverse shear stresses are presented using two methods of calculation:
based on the principle of the minimum total potential energy and the ABAQUS
system. The static bending of a three-layered sandwich plate with an auxetic
core and isotropic, homogeneous facings is presented in [4]. The multiparameter
effects of the geometry, boundary system and loading are analysed. The analyti-
cally and numerically solved problem of the FGM shell and plate structures with
auxetic properties is presented in [5]. The deformed shape, load distribution and
edge support type are taken into consideration in [6], which presents the bending
stress of the auxetic circular plate. The optimal Poisson’s ratio to minimise the
bending effect is examined. The axisymmetric circular plate made of isotropic
auxetic and conventional material with values of Poisson’s ratio within the range
of −1 to 0.5 is presented in [7]. Buckling and vibration analyses are performed
to evaluate the critical parameters. The compression and tension effects were
analysed in paper [8] for the thin circular disks subjected to two edge loads. The
eigenvalue buckling and post-buckling analyses were performed for disks made
of both traditional, linear elastic and auxetic materials. The numerical results
show the differences between compressed and stretched disks.

The nonlinear dynamic analysis of sandwich plates with the auxetic core
subjected to the thermal environment is presented in [9]. The results show the
effect of negative Poisson’s ratio values on the dynamic deflections, which are
smaller than for plates with a positive value of Poisson’s ratio. The effect of the
significant reduction of the mass and the increase of the vibration absorption
of the sandwich plate structure with a negative Poisson’s ratio in an auxetic
honeycomb core are underlined in paper [10]. The analysed composite plate
is located on the elastic foundation and loaded with a moving oscillator load
composed of the spring and damper. The multiparameter problem is studied.

The complex structure of the circular plate is examined in [11]. Auxetic
and porous heterogeneous plate with various thickness is located on a gradient
elastic foundation. The auxeticity effect on the static behaviour of the plate
is observed. The main applications of circular plates made of unconventional,
auxetic material are also presented. In engineering fields, they can be found in
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the power transmission systems, support tables, driven plates of a friction clutch,
a disk of vehicle brakes on friction pads, and some nano-plates embedded in an
elastic matrix.

In this paper, the results of the numerical examinations of the annular plates
with the structure composed of auxetic-foam-auxetic materials are presented
aimed at enriching the analyses of this new type of composite plates. The exam-
inations of the annular plates with the structure of the three-layered composite
with conventional and auxetic properties are conducted with the use of two cal-
culation techniques: the analytical technique using the finite difference method
and the numerical technique using finite elements. The plates are subjected to
linear loads quickly increasing in time. Two different load cases are analysed:
plates radially compressed on the outer edge and plates radially stretched on the
inner edge. The case of “buckling at the stretching”, which is rarely examined,
significantly complements the evaluation of plate behaviour with specific aux-
etic properties. The numerous calculation results create the image of dynamic
responses of the examined structures on the effect of the various positive and
negative values of Poisson’s ratio of the facing material of the plates, whose
reactions to the auxeticity phenomenon are different.

2. Problem formulation

A composite, three-layered annular plate is the object of the analysis. The
plate structure is composed of thin facings made of auxetic or conventional
materials and a thicker conventional foam core. Figure 1 shows the loading
scheme of the plate. Both plate edges are slideably clamped. The plate is loaded

Fig. 1. The scheme of the plate.
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in the plane of facings with the forces quickly and linearly increasing in time
according to Eq. (2.1):

(2.1) p = st ,

where p – loading stress, s – the rate of the loading growth, t – time.
Such loading can be the reason for the loss of plate stability. To determine the

parameters of the critical plate state, such as time, load and deflection, the crite-
rion presented by Volmir [12] is adopted. According to this criterion, the loss of
stability occurs at the moment when the point of the plate with the maximum
deflection reaches the first maximum value of the velocity of deflection. The
black dots in Figs. 3, 4, and 7 represent the moment of the loss of plate stability,
which is specified according to the presented criterion.

Two models of plate loading are examined: a plate radially compressed or
radially stretched. The case of the plate radially stretched, named “buckling at
the stretching”, is not a typical buckling problem. It exists for the annular plate
specifically loaded on the inner edge with the forces directed to the middle of the
hole. The evaluation of the effect of the positive and negative value of Poisson’s
ratio on the plate’s dynamic reaction is conducted for plates whose layers are
both compressed and stretched. It makes the examined problem more complete.
The range of the accepted values of Poisson’s ratio is large from negative value
ν = −0.9 to positive ν = 0.3. Selected values of Poisson’s ratio ν were taken
into numerical calculations.

3. Solution procedure

The presented problem is solved analytically and numerically using the ap-
proximation methods: the analytical and numerical method with the usage of the
orthogonalisation and finite difference methods (FDM), and the second method
is the numerical one based on the finite element method (FEM). Two FDM
and FEM plate models allow observing axisymmetric and asymmetric buckling
forms of plate deformation for conventional and auxetic structures. The solution
procedure based on the finite difference method refers to the technique presented
in the following works [13–15].

The analyses of results obtained for two FDM and FEM plate models confirm
the observed behaviours of auxetic plates and enable the comparison of both
numerical models. Additionally, results mutually complement and enrich the
recognition of the problem.

The second solution is the FEM. Using the ABAQUS system, selected ex-
amples of plates are examined.
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3.1. FDM

The solution procedure using the FDM is based on several fundamental steps.
They are as follows: the system of the dynamic equilibrium equations of each
plate layer, the relations describing the transversal deformation of the plate’s
three-layered structure using the classical broken line hypothesis, which is based
on the participation of plate layers in carrying the plate load: the facings are
loaded with normal but the core with shear stresses [16], the equations of the
linear physical relations, and the use of the assumed stress function to express
the resultant membrane forces.

After the calculations and transformations, the basic equation is established,
which describes the deflections of the plate loaded dynamically:
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where wd – the additional plate deflection, r – plate radius, k1 = 2D, k2 =
4Drθ + νk1, D = Eh3

12(1−ν2) , Drθ = Gh3

12 – rigidities of the plate facings, E, ν –
Young’s modulus and Poisson’s ratio of the auxetic or conventional facing ma-
terial, respectively; h – the total plate thickness, δ, γ – differences of radial and
circumferential displacements of the points in the middle surfaces of the facings
δ = u3 − u1, γ = v3 − v1, H ′ = h′ + h2, Φ – the stress function, w – the plate
total deflection, M = 2h′µ + h2; µ, µ2 – facing and core mass density, h′ – the
facing thickness, and h2 – the core thickness.

Both plate edges are slideably clamped. The boundary conditions are as
follows:

(3.2)
w|r=ri(ro) = 0, w′r|r=ri(ro) = 0,

δ = γ|r=ri(ro) = 0, δ′r|r=ri(ro) = 0.

The initial conditions for the additional plate deflection are presented by the
relations:

(3.3) wd |t=0 = 0, wd,t|t=0 = 0.
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The following conditions are connected with the mechanical loading of the
plate:

(3.4)
σr|r=ri = −p (t) d1, σr|r=ro = −p (t) d2,

τrθ|r=ri(ro) = 0,

where σr – radial stress, τrθ – shear stress, d1, d2 – quantities, equal to 0 or 1,
determining the loading of the inner or/and outer plate perimeter, and ri, ro –
the inner and outer plate radius, respectively.

The preliminary plate shape is not absolutely flat. The plate has prelimi-
nary deflections. The form of plate imperfection, expressed by the preliminary
deflection ζo (ζo = wo/h), is expressed by the accepted relation [17]:

(3.5) ζo (ρ, θ) = ξ1 (ρ) η (ρ) + ξ2(ρ)η (ρ) cos (mθ),

where wo – plate initial deflection, m – number of initial circumferential waves,
ξ1, ξ2 – calibrating numbers, η (ρ) – function: η (ρ) = ρ4 + A1ρ2 + A2ρ2 ln ρ +
A3 ln ρ+A4, Ai – quantities fulfilling the conditions of clamped edges, and ρ = r

ro
– the dimensionless plate radius.

The solution procedure is based on some shape functions connected with
the plate’s additional deflection, radial and circumferential displacements and
accepted stress function. The equations are as follows:

• for the additional plate deflection ζ1 [17]:

(3.6) ζ1 (ρ, θ, t) = X1(ρ, t) cos (mθ),

• for the differences of the radial and circumferential displacements δ, γ [14]:

(3.7)
δ (ρ, θ, t) = δ (ρ, t) cos (mθ),

γ (ρ, θ, t) = γ (ρ, t) sin (mθ),

• for the accepted stress function F [17]:

(3.8) F (ρ, θ, t) = Fa(ρ, t) + Fb(ρ, t) cos (mθ) + Fc(ρ, t) cos (2mθ),

where ζ1 = wd
h , F = Φ

Eh2
, δ = δ

h , γ = γ
h , and m – the number of circum-

ferential waves, which is compatible with the initial number of waves (see
Eq. (3.5)).

The following part of the solution procedure is based on the use of the approx-
imation methods. For the elimination of the angular variable θ, the orthogonal-
isation method was used. The derivatives with respect to ρ were approximated
by the central differences in the discrete points of the finite difference method.
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The main system of the differential equations for the analysed plate has the
following form:

PU + Q = ÜK ,(3.9)

MY Y = QY ,(3.10)

MV V = QV ,(3.11)

MZZ = QZ ,(3.12)

MGGG + MGUU + MGDD = 0,(3.13)

where U, Y, V, Z – vectors, whose elements consist of the additional deflections
and components of the stress function, respectively, ÜK – a vector, whose ele-
ments are expressed by the products of the derivative of the additional deflection
with respect to time t and number K, equal to K = K 72 · h′h ·roh2M , Q, QV , QY ,
Qz, D, G – vectors, whose elements consist of the plate’s material parameters,
geometrical dimensions, initial and additional deflections, number m, dimension
radius ρ and displacement differences δ, γ, and MY , MV , MZ , MD, MG, MU ,
MGG, MGD, P, MGU – matrices, whose elements consist of the plate’s mate-
rial parameters, geometrical dimensions, number m, FDM parameter b (b – the
interval in the FDM) and dimension radius ρ.

The numerical calculations are conducted using Runge-Kutta’s integration
method for the initial state of the plate. The time was expressed by dimensionless
time t∗ connected with real time t (see Eq. (2.1)) by the relation: t∗ = t ·K7,
where K7 is the number expressing the rate of mechanical loading growth.

3.2. FEM

Calculation using the finite element method is conducted in the ABAQUS
system at the Academic Computer Centre CYFRONET-CRACOW (KBN/SGI−
ORIGIN−2000/PLodzka/030/1999). The plate structure is built of shell and
solid elements. The facings are modelled with 3D 9-node shell elements, but the
core layer is modelled with 3D 27-node solid elements. The surface contact inter-
action with the TIE option was assumed to connect the surfaces of the facings
and the core meshes. Dynamic analyses were conducted by applying the dynamic
module of the ABAQUS programme [18].

Obtained results complement the calculation results of the FDM plate model,
for example, through the maps of critical deflections. Presented two FDM and
FEM plate models are compared. Some comments can be useful in the modelling
of plates and similar structures. The character of observed plate behaviours is
confirmed.
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4. Exemplary results

Exemplary results are calculated for the annular plate with the following
geometrical parameters: inner radius ri = 0.2 m, outer radius ro = 0.5 m, fac-
ing thickness h′ = 1 mm, and core thickness h2 = 5 mm. The plate structure
is composed of outer layers and a core made of isotropic materials with con-
ventional or auxetic properties, with the value of Young’s modulus equal to
E = 1550 MPa, the value of Poisson’s ratio ν = 0.3, 0, −0.3, −0.6, −0.9, mass
density µ = 1500 kg/m3 and polyurethane foam with the value of Young’s mod-
ulus equal to E2 = 13 MPa, the value of Kirchhoff’s modulus G2 = 5 MPa,
the value of Poisson’s ratio ν2 = 0.3 and mass density µ2 = 64 kg/m3. The
value of Young’s modulus facings equal to E = 1550 MPa is fixed. Treating
both conventional and auxetic facings material as isotropic for the fixed value
of Young’s modulus and accepted variable values of Poisson’s ratio, the val-
ues of Kirchhoff’s modulus, which are related to them, change. The value of
Young’s modulus was adopted to be equal to 1550 MPa from [19], where it was
obtained based on the simulation process for the laminated periodic composite
material with auxetic properties.

Two models of plate loading are considered. A plate radially compressed on
the outer edge (see Fig. 2a) and a plate radially stretched on the inner edge (see
Fig. 2b). The plate is loaded mechanically with the stress linearly increasing
in time (see Eq. (2.1)). The value of the rate of loading growth is equal to
s = 100 MPa/s.

a)

b)

Fig. 2. Scheme of the plate (1, 3 – facings, 2 – core): a) radially compressed on the outer edge,
b) radially stretched on the inner edge with the thickness dimensions of layers.
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4.1. Convergence analysis for the FDM plate model

Tables 1–3 present the values of the critical dynamic loads pcrdyn calculated
for the different plate modes and numbers of discrete points N used in the
FDM. The convergence evaluation is performed for the auxetic plates radially
compressed and stretched with the values of Poisson’s ratio equal to ν = −0.3,
−0.9, and −0.6, respectively. The selected numbers of discrete points are equal
to N = 11, 14, 17, 21, 26.

Table 1. The values of the dynamic, critical stress differences pcrdyn depending on the num-
ber N of discrete points for the FDM auxetic plate model radially compressed on the outer

edge with the value of Poisson’s ratio ν = −0.3 loaded.

m
pcrdyn [MPa]

N = 11 N = 14 N = 17 N = 21 N = 26

0 8.55 8.20 8.00 7.85 7.75

1 8.05 7.75 7.60 7.45 7.35

2 6.65 6.40 6.30 6.20 6.20

3 5.35 5.25 5.15 5.10 5.10

4 4.70 4.60 4.60 4.55 4.50

5 4.45 4.40 4.40 4.35 4.35

6 4.50 4.45 4.45 4.40 4.40

7 4.65 4.65 4.60 4.60 4.60

8 4.95 4.90 4.90 4.90 4.90

Table 2. The values of the dynamic, critical stress differences pcrdyn depending on the num-
ber N of discrete points for the FDM auxetic plate model radially compressed on the outer

edge with the value of Poisson’s ratio ν = −0.9.

m
pcrdyn [MPa]

N = 11 N = 14 N = 17 N = 21 N = 26

0 16.05 15.90 15.80 15.75 15.70

1 15.30 15.15 15.10 15.05 15.05

2 12.80 12.70 12.70 12.65 12.65

3 10.65 10.60 10.60 10.60 10.60

4 9.55 9.55 9.55 9.55 9.55

5 9.10 9.10 9.10 9.15 9.15

6 9.05 9.05 9.05 9.05 9.10

7 9.15 9.15 9.20 9.20 9.20

8 9.35 9.40 9.40 9.40 9.40

9 9.65 9.65 9.65 9.70 9.65

10 10.40 10.35 10.35 10.30 10.30
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Table 3. The values of the dynamic, critical stress differences pcrdyn depending on the num-
ber N of discrete points for the FDM auxetic plate model radially stretched on the inner edge

with the value of Poisson’s ratio ν = −0.6.

m
pcrdyn [MPa]

N = 11 N = 14 N = 17 N = 21 N = 26

5 19.55 19.50 19.45 19.40 19.40

6 17.50 17.45 17.45 17.45 17.45

7 17.10 17.10 17.10 17.10 17.10

8 17.70 17.50 17.55 17.55 17.55

9 18.10 18.05 18.20 18.15 18.20

Shown above arrays of numbers pcrdyn enable formulating the following ob-
servations:

• the number N = 14 fulfils the appropriate accuracy, which is expressed by
a technical error of up to 5%. The number N = 14 was used in numerical
calculations,

• the minimal values of critical dynamic loads pcrdyn are for the wavy forms
of plate buckling,

• the values of pcrdyn for the axisymmetric (m = 0) plate mode are about
two times larger than for the asymmetric mode, which corresponds to the
minimal value of pcrdyn. It confirms the importance of the generalised way
of the problem solution, which includes the asymmetric forms of plate
buckling,

• the differences between the values pcrdyn for plates with higher modes are
much smaller than between the lower mode numbers,

• for the stretched plates with circumferential waves, the fluctuations of
values pcrdyn versus the numbers N are small. The translation to the higher
mode (m = 7) for the minimal value of the critical dynamic load pcrdyn is
observed.

4.2. FDM plate model radially compressed on the outer edge

Figure 3 presents the time histories of deflections of auxetic plates radially
compressed on the outer edge.

Two cases of auxetic material of plate facings are analysed: with the value of
Poisson’s ratio equal to ν = −0.3 and the extreme value of Poisson’s ratio equal
to ν = −0.9. The minimal value of the calculated critical dynamic load pcrdyn is
equal to pcrdyn = 4.4 MPa for plate mode m = 5 with auxetic facings ν = −0.3
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a)

b)

Fig. 3. Time histories of deflections for the FDM plate model radially compressed on the outer
edge with auxetic facings with the value of Poisson’s ratio: a) ν = −0.3, b) ν = −0.9.

and pcrdyn = 9.05 MPa for plate mode m = 6 with auxetic facings ν = −0.9.
In the overcritical region of the plate work, the vibrations are initiated by the
increasing load.

Figure 4 shows the groups of dynamic results for modes m = 4, 5, 6 of pla-
tes with conventional and auxetic facings. Results depend on the values of Pois-
son’s ratio ν. The minimal values of critical dynamic load pcrdyn are for plate
facings with ν = 0 and the examined cases of conventional (ν = 0.3) and auxetic
(ν = −0.3) plate structures.
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Fig. 4. Time histories of deflection for the FDM plate model radially compressed on the outer
edge with auxetic and conventional facings for various values of Poisson’s ratio.

Table 4, in detail, shows the values of critical, dynamic loads pcrdyn.

Table 4. Critical dynamic loads pcrdyn for the FDM plate model radially compressed on the
outer edge with auxetic and conventional facings for various values of Poisson’s ratio.

m
pcrdyn [MPa]

ν = 0 ν = 0.3 ν = −0.3 ν = −0.6 ν = −0.9

4 4.4 4.6 4.6 5.55 9.55

5 4.2 4.4 4.4 5.35 9.1

6 4.2 4.45 4.45 5.4 9.05

Summarising, it can be observed that
• the form of the loss of plate dynamic stability is asymmetrical with m = 5

or m = 6 circumferential waves,
• the agreement of plate behaviours between plates with auxetic (ν = −0.3)

and conventional (ν = 0.3) structures exists,
• much higher values of critical dynamic load pcrdyn are observed for plates

with a high absolute value of Poisson’s ratio of auxetic facings.

4.3. FEM plate model radially compressed on the outer edge

Time histories of deflections and velocity of deflections for the FEM plate
models radially compressed on the outer edge with various values of Poisson’s
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ratio are shown in Fig. 5. Four cases are presented for auxetic facings with the
values of Poisson’s ratio equal to ν = 0, −0.3, −0.6, −0.9. Selected values of

a)

ν = 0

b)

ν = –0.3

c)

ν = –0.6

[Fig. 5abc].
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d)

ν = –0.9

Fig. 5. Time histories of deflections and velocity of deflections for FEM plate models radially
compressed on the outer edge with various values of Poisson’s ratio:

a) ν = 0, b) ν = −0.3, c) ν = −0.6, d) ν = −0.9.

Poisson’s ratio agree with values adopted in the FDM analysis in order to present
the comparison of two FDM and FEM plate models and confirm observed plate
behaviours.

Marked by the down arrow, the point of the velocity curve indicates the
moment of the loss of plate stability assigned by the adopted criterion. With
the increase of the absolute value of Poisson’s ratio, the time to the loss of plate
stability is prolonged. The detailed values of pcrdyn are presented in Table 5.
Table 5 shows the comparison between the two analysed plate models FEM and
FDM. The results are comparable. The smaller values are for the FEM plate
model.

Table 5. Critical dynamic loads pcrdyn for the FDM and FEM plate models radially compressed
on the outer edge with auxetic and conventional facings for various values of Poisson’s ratio.

pcrdyn [MPa]

ν = 0 ν = 0.3 ν = −0.3 ν = −0.6 ν = −0.9

m 5 6

FDM 4.2 4.4 4.4 5.35 9.05

m 5

FEM 4.0 4.2 4.2 5.2 9.0

The additional calculation results of modes m = 4 and m = 6 are presented
in Fig. 6 for the auxetic FEM plate model with the value ν = −0.9. The loss of
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dynamic stability of the plate with m = 4 or m = 6 is for the higher value
of time t (t > 0.09 s) than for the plate with m = 5, whose critical dynamic load
pcrdyn is the smallest (t = 0.09 s, see Fig. 5d). The maps of deflections show the
forms of plate buckling and the values of deflections, whose value decreases with
the increase of number m. The overcritical vibrations are observed for lower
plate mode m = 4.

Summarising the comparative analysis of two FDM and FEM plate models,
the following conclusions can be formulated:

• the minimal value of the critical dynamic load pcrdyn is for the asymmetric
plate mode (m = 5, m = 6),

a)

b)

 

 [Fig. 6ab].
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c)

Fig. 6. Results of FEM plate models radially compressed on the outer edge with value of
Poisson’s ratio ν = −0.9: a) time histories of deflections and velocity of deflections with map
of deflections for m = 4 mode, b) map of critical deflections for m = 5 mode, c) time histories

of deflections and velocity of deflections with map of deflections for m = 6 mode.

• the increase of the absolute value of Poisson’s ratio prolongs the critical
time to the loss of plate stability and increases the value of the critical dy-
namic load pcrdyn,

• the vibrations initiated in the overcritical region of plate work decrease for
plates with a higher absolute value of Poisson’s ratio,

• there is a good comparison between the results obtained for the FDM and
FEM plate models.

4.4. FDM plate model radially stretched on the inner edge

Figure 7 presents the results of the calculations of the annular FDM plate
model radially stretched on the inner edge. Results depend on the values of
Poisson’s ratio ν. There are groups of the results for the plate modes m = 6,
7, 8 for plate structures with conventional and auxetic facings. For the plate with
the negative value of auxetic facings equal to ν = −0.9, six deflection curves are
presented for m = 6–11.
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a)

b)

Fig. 7. Time histories of deflection for the FDM plate model radially stretched on the inner
edge with auxetic facings for the following values of Poisson’s ratio: a) ν = 0, ν = 0.3, ν = −0.3,

ν = −0.6, b) ν = −0.6, ν = −0.9.

The results confirm the observations presented for the plate mode compressed
on the outer edge. The minimal value of the critical load pcrdyn is for the plate
structure with ν = 0. For the higher value of Poisson’s ratio, the values of
pcrdyn increase. The asymmetric form of buckling with the seven circumferential
buckling waves occurs for all of the analysed cases except for the auxetic plate
with ν = −0.9. For this example, the critical buckling form is expressed by the
plate mode m = 9.
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The values are presented in detail in Table 6.

Table 6. Critical dynamic loads for the FDM plate model radially stretched on the inner edge
with auxetic and conventional facings for various values of Poisson’s ratio.

m
pcrdyn [MPa]

ν = 0 ν = 0.3 ν = −0.3 ν = −0.6 ν = −0.9

4 19.95 21.00 21.20 26.15 46.90

5 14.80 15.60 15.75 19.50 34.65

6 13.30 14.05 14.15 17.45 30.40

7 13.05 13.85 13.90 17.10 28.45

8 13.50 14.20 14.35 17.45 27.65

9 14.55 15.15 15.10 18.20 27.40

10 15.40 15.95 15.90 19.25 27.85

11 15.95 16.65 17.10 20.45 28.05

To summarise, one can notice that
• the form of the loss of plate dynamic stability is asymmetrical,
• for the value of ν = −0.9, the buckling mode moves to m = 9,
• for higher values of Poisson’s ratio for auxetic facings, the critical dynamic

load pcrdyn is higher.

4.5. FEM plate model radially stretched on the inner edge

The results obtained for the auxetic FEM plate model with ν = −0.6 are
shown in Figs. 8 and 9. Figure 8 shows the time histories of deflections and
velocity of deflections of the plate model radially stretched on the inner edge.

 

Fig. 8. Time histories of deflections and velocity of deflections for the FEM plate model radially
stretched on the inner edge with value ν = −0.6 of Poisson’s ratio and mode m = 7.
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Fig. 9. Map of critical deflections of the FEM plate model radially stretched on the inner edge

with the value ν = −0.6 of Poisson’s ratio and mode m = 7.

The case of the plate mode with m = 7 of buckling waves is presented. The
critical deflection map is shown in Fig. 9. The other examined FEM plate modes
m = 6 and m = 8 confirm the plate reaction observed for m = 7. Values of pcrdyn
are similar and equal to pcrdyn = 15.7 MPa for m = 6, pcrdyn = 15.4 MPa for
m = 7, and pcrdyn = 15.4 MPa for m = 8.

Comparing the results obtained for two FDM and FEM plate models radially
stretched on the inner edge with the value of Poisson’s ratio equal to ν = −0.6
for the auxetic facings, the following conclusions can be formulated:

• the critical dynamic load pcrdyn calculated for the FEM plate model is
smaller than that calculated for the FDM plate model (see Tables 5 and 6),

• there are no great differences in values of pcrdyn between plate modes
m = 6,7,8, which designate the critical buckling form of the plate at the
moment of the loss of dynamic stability,

• the plate subjected to the “buckling at the stretching” requires higher
values of a load than the plate under the compression on the outer edge. It
shows significant differences between the actions of traditional compressive
loads and stretched loads.

5. Conclusions

The presented problem shows the responses of three-layered annular plates
laterally mechanically loaded on the negative values of Poisson’s ratio of the fac-
ings layers. Numerous numerical calculations enabled creating a dynamic image
of the auxeticity effect. They complete the results shown for the same plate ob-
ject but subjected to static analysis presented in [20]. The main aim of the under-
taken investigations has been realised. The comparisons of the plate’s buckling
behaviours have been conducted between three-layered structures: auxetic-foam-
auxetic and between the auxetic and conventional materials of plate facings. The
observations are composed of calculation results of both FDM and FEM plate
models. The results confirm the character of behaviours of auxetic plates. Ob-
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served differences, for example, smaller values of critical loads obtained for the
FEM plate model are important in modelling plates and similar structures.

The main conclusions can be formulated as follows:
• Negative values of Poisson’s ratio, which characterise auxetic materials,

influence the plate’s structural responses through the character of work of
the outer plate layers subjected to normal stresses.

• The critical static and dynamic loads increase with the increase of the abso-
lute value of Poisson’s ratio of auxetic material of plate facings. The impact
of the value of Poisson’s ratio is observed, particularly for the examined
value ν = −0.9, which is close to the number ν = −1.

• The form of buckling is asymmetric. Therefore, the problem cannot be
limited to the axisymmetric one. The proposed approximate analytical
and numerical solution, whose fundamentals have been used in calculations
related to traditional plates, enables the effective investigation of new plate
structures.

• The effect of the auxetic facings does not change the buckling reaction of
plates with conventional facings (the results for ν = −0.3 and ν = 0.3).

The presented results show the behaviour of the auxetic three-layered plates
on the special layer property expressed by the negative value of Poisson’s ratio.
In general, it can be observed that plate responses have a structured character
and, in a qualitative range, can be predicted. The evaluation of the plate’s
behaviours can be further conducted, including the complex thermo-mechanical
loads for auxetic layered plate structures that are transversely heterogeneous.
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