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This article is the second part of a series about two-scale modelling of reactive powder con-
crete (RPC). In the first part [2] a method of modelling RPC microstructure was presented, the
boundary value problem of mechanics for a representative cell at the micro scale was formu-
lated and solved. In this part we will consider a method for determining material parameters
at the macro level, and describe a technique of enforcement of boundary conditions upon an
RVE as well as illustrate the theoretical considerations with results of numerical simulations.
In the third part of the series we will present the validation of the proposed numerical model,
based on the computational simulations of full size beams made of two RPC mixtures and own
laboratory testing of the beams.

Key words: two-scale modelling, numerical homogenization, RPC, FEM, numerical simula-
tions.

1. Solution to the boundary value problem at micro level

For the sake of clarity the formulation of the boundary value problem of
mechanics from the first part of the series will be repeated [3]. The boundary
value problem for a particular representative volume element (RVE), after the
finite element discretization, can be solved by minimising the energy function
with additionally imposed constraints on the unknown vector of displacements u:

(1.1)
min uϕ(u) =

1

2
uTKu− uT f

with conditions Cu− g = 0,
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where K is the stiffness matrix, C – compatibility matrix, f – vector of loads,
and g – vector of constraints.
This constrained minimization problem can be reduced, as shown in [1, 7],

to solving a system of linear equations:

(1.2) K̃u = F̃

in which

K̃ =
∑

e

[
(Ce

u)
TCe

u + (Qe
u)

TKeQe
u

]
,(1.3)

F̃ =
∑

e

[
De

uε[(C
e
u)

T − (Qe
u)

TKeRe
u]
]
,(1.4)

Qe
u = I−Re

uC
e
u,(1.5)

Re
u = (Ce

u)
T [Ce

u(C
e
u)

T ]−1.(1.6)

The symbol
∑
e
denotes the aggregation of finite elements e in micro scale. In

order to enforce RVE deformations consistent with the macro deformation ε
displacement boundary conditions of the first type were used [7, 12].

2. Displacement boundary conditions

Displacement boundary conditions are imposed as linear deformation on the
boundary Γ and they can be defined as follows:

(2.1) u ≡ x · ε ∀x ∈ Γ.

The Eq. (2.1) can also be written as

(2.2) r(x) = 0 ∀x ∈ Γ

with r(x) being the micro fluctuation of the displacement area, which automati-
cally satisfies the static boundary condition. The equation expressed in the form
of weighted residues will take the form

(2.3)

∫

Γ

δt · (u− x · ε) dΓ = 0 ∀δt.

This method of writing displacement boundary conditions is very convenient
when the task is solved on micro level with the method of finite elements. After
the discretization of the boundary value problem, the Eq. (2.3) will lead to
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a system of n-algebraic equations, where n denotes the number of degrees of
freedom on the boundary Γ of a representative volume element.
Using (2.3) we can write the displacement boundary conditions in a matrix

form

(2.4) Ce
uu = De

uε = ge
u,

where

Ce
u =

∫

Γ

HuN
TN dΓ ,(2.5)

De
u =

∫

Γ

HuN
TX dΓ ,(2.6)

X =
1

2

[
2ξ 0 η
0 2η ξ

]
.(2.7)

The rows of the matrix being the product HuN
T can be interpreted as lin-

early independent functions of the distribution of admissible boundary forces,
and the columns of the matrix Hu can be interpreted as the values of nodal
forces. Because of the fact that for displacement boundary conditions any dis-
tribution of boundary forces is permissible, we have adopted

Hu = diag
[
1 1 1 1 1 1 1 1

]
.

The Eq. (2.4) enforces on RVE the deformation according to the imposed macro
deformation measures ε and results in a zero value of the work of the permissible
distributions of boundary forces on the micro fluctuations of the displacement
area.

3. Determination of material parameters at macro level

The macro stresses, which may be interpreted here as components of the
elasticity matrices C are determined for the macro scale analysis by solving
three linear systems of equations for RVE [7]

(3.1)

δσ1 for δε = [1, 0, 0],

δσ2 for δε = [0, 1, 0],

δσ3 for δε = [0, 0, 1],
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(3.2) C =
[
δσ1 δσ2 δσ3

]
, C =




δσ111 δσ211 δσ311

δσ122 δσ222 δσ322

δσ112 δσ212 δσ312


,

where

σ =
1

V

∑

e

(De
u)

Tλ
e
,(3.3)

λe = (Re
u)

T (Fe −Keue),(3.4)

ue = q is the vector of nodal micro displacements of the RVE, Fe = 0 is the
vector of nodal micro loads on the RVE of volume V .
Using (3.2) and (3.3) for a plane state of stress and for isotopic linearly

elastic micro components, we will obtain

(3.5) C =




C11 C12 0

C21 C22 0

0 0 C33


,

where C11 = C22 6= 0, C12 = C21 6= 0, C33 6= 0 and assuming at a macro
scale level the form of the matrix of material elasticity like for isotropy, on the
basis of a numerical solution, it is possible to determine material parameters of
a homogenized medium at the macro scale.

(3.6)




C11 C12 0

C12 C22 0

0 0 C33


 =




E

1− ν2
ν E

1− ν2
0

ν E

1− ν2
E

1− ν2
0

0 0 G



, where G =

E

2(1 + ν)
.

After solving the above system of three equations with three unknown values
E, ν, G, we will obtain Young’s modulus, Poisson’s ratio and the shear modulus
(Kirchhoff’s modulus) respectively

E =
C

2
11 −C

2
12

C11

,(3.7)

ν =
C12

C11

,(3.8)

G =
C11 −C12

2
= C33.(3.9)
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4. Method of enforcing boundary conditions

In order to correctly force RVE deformations, consistent with the macro
deformation ε, which has to be “located” only on the boundary Γ , during the
aggregation of the matrix (1.3) and the vector of right-hand sides (1.4) of the
system of Eqs. (1.2), we proceed according to the scheme presented below.

Fig. 1. A scheme of the enforcement of boundary conditions
upon the RVE.

Depending on the location of the finite element on the boundary of the
RVE, we distinguish eight cases of calculating the boundary integral occurring
in Eq. (2.5). All possible combinations are presented in Table 1. The transition
from the system of local coordinates ξ, η to the global system x, y requires the
use of the Jacobian matrix of the transformation

(4.1) J =




1

4
[(η − 1)x1 − (η − 1)x2 + (η + 1)(x3 − x4)]

1

4
[(ξ − 1)x1 − (ξ + 1)x2 + ξx3 − ξx4 + x3 + x4]

1

4
[(η − 1)y1 − (η − 1)y2 + (η + 1)(y3 − y4)]

1

4
[(ξ − 1)y1 − (ξ + 1)y2 + ξy3 − ξy4 + y3 + y4]


,

where xi, yi, i = 1, 2, 3, 4 are the coordinates of the nodes in the global system
of coordinates.
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Table 1. Cases of integration dependent on the location of the finite element.

Location
of the finite
element,
see Fig. 1

Calculation cases of Ce
u

1 C
e
u = C

Γ1 =

∫

Γ1

HuN
T
N · det |J|dΓ1 =

1∫

−1

HuN
T (ξ,−1)N(ξ,−1) · det |J| dξ

2 C
e
u = C

Γ2 =

∫

Γ2

HuN
T
N · det |J|dΓ2 =

1∫

−1

HuN
T (1, η)N(1, η) · det |J| dη

3 C
e
u = C

Γ3 =

∫

Γ3

HuN
T
N · det |J|dΓ3 =

1∫

−1

HuN
T (ξ, 1)N(ξ, 1) · det |J|dξ

4 C
e
u = C

Γ4 =

∫

Γ4

HuN
T
N · det |J|dΓ4 =

1∫

−1

HuN
T (−1, η)N(−1, η) · det |J| dη

12

C
e
u = C

Γ1+Γ2 =

∫

Γ1

HuN
T
N · det |J|dΓ1 +

∫

Γ2

HuN
T
N · det |J| dΓ2

=

1∫

−1

HuN
T (ξ,−1)N(ξ,−1) · det |J| dξ +

1∫

−1

HuN
T (1, η)N(1, η) · det |J| dη

23

C
e
u = C

Γ2+Γ3 =

∫

Γ2

HuN
T
N · det |J|dΓ2 +

∫

Γ3

HuN
T
N · det |J| dΓ3

=

1∫

−1

HuN
T (1, η)N(1, η) · det |J| dη +

1∫

−1

HuN
T (ξ, 1)N(ξ, 1) · det |J| dξ

34

C
e
u = C

Γ3+Γ4 =

∫

Γ3

HuN
T
N · det |J|dΓ3 +

∫

Γ4

HuN
T
N · det |J| dΓ4

=

1∫

−1

HuN
T (ξ, 1)N(ξ, 1) · det |J| dξ +

1∫

−1

HuN
T (−1, η)N(−1, η) · det |J| dη

41

C
e
u = C

Γ4+Γ1 =

∫

Γ4

HuN
T
N · det |J|dΓ4 +

∫

Γ1

HuN
T
N · det |J| dΓ1

=

1∫

−1

HuN
T (−1, η)N(−1, η) · det |J| dη +

1∫

−1

HuN
T (ξ,−1)N(ξ,−1) · det |J| dξ

0 C
e
u = 0
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(4.2) Det[J] =
1

8
{x3 [y1(ξ − η) + (η + 1)y4 − (ξ + 1)y2]

+ x2 [−y4(η + ξ) + (η − 1)y1 + (ξ + 1)y3]− ηx1y2 + ηx1y3 − ηx4y3

− ξx4y1 + ξx4y2 − ξx1y3 + ξx1y4 + x4y1 + x1y2 − x4y3 − x1y4}.

An analytical solution to all the integrals included in the table can be found
in the paper [2].

5. Calculation algorithm

On the basis of the publications [4–6, 8–10, 12], we present in Fig. 2 the
algorithm of two-scale modelling which was implemented in the author’s own
software CH v 1.4.2 [2]. This algorithm includes the possibility of non-linearity
both at the micro and macro scales.
The fast converging method of conjugate gradients [13] was used to solve the

system of FEM equations both at the macro and micro scales. The course of
action leading to the solution with this method is presented below. The system
of Eqs. (1.2) that defines the finite element form of the boundary value problem
at the micro scale is used as an example.
Let us consider the function ϕ : RN → R

(5.1) ϕ(u) =
1

2
uT K̃u− F̃Tu,

where u, F̃ ∈ RN and K̃ = K̃T ∈ RN×N is a positively defined symmetric
matrix. With these assumptions the function (5.1) has one minimum which is
also a global minimum [11]. The extremum is located at the point which satisfies
the equation,

(5.2) ∇ϕ = 0.

We calculate

(5.3)
∂ ϕ

∂ ui
=

1

2

∂

∂ ui

∑

j,k

K̃jk uj uk −
∂

∂ ui

∑

j

F̃j uj

=
1

2

∑

j,k

K̃jk

(
∂ uj
∂ ui

uk + uj
∂ uk
∂ ui

)
−
∑

j

F̃j
∂ uj
∂ ui

=
1

2

∑

j,k

K̃jk (δij uk + uj δik)−
∑

j

F̃j δij =
1

2

∑

k

K̃ik uk +
1

2

∑

j

K̃ji uj − F̃i

=
1

2

∑

k

K̃ik uk +
1

2

∑

j

K̃ij uj − F̃i =
(
K̃ u− F̃

)
i
.
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Fig. 2. An algorithm of two-scale modelling (numerical homogenization).

The function (5.1) reaches a minimum when

(5.4) K̃ u− F̃ = 0 ⇔ K̃ u = F̃.
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Therefore, the solution to the above system of equations boils down to finding
a minimum of the positively defined square form (5.1). The solution with the
conjugate gradient method will proceed according to the following algorithm:

r1 = F̃− K̃ u1, p1 = r1

do while ‖rk‖ > δ

αk =
rTk rk

pT
k K̃ pk

rk+1 = rk − αk K̃ pk

βk =
rTk+1 rk+1

rTk rk

pk+1 = rk+1 + βk pk

uk+1 = uk + αk pk

end do

where u1 is the initial solution and 0 < δ ≪ 1.

6. Numerical simulations

In order to check whether the two-scale algorithm works properly, a test
was run for an isotopic material with a homogenous microstructure described
in micro scale with a linearly elastic dependence. The calculations were carried
out for a plane state of stress. In this case a two-scale analysis should generate
the elasticity matrix Dt in the form

(6.1) Dt =




E

1− ν2
Eν

1− ν2
0

Eν

1− ν2
E

1− ν2
0

0 0
E

2(1 + ν)



,

where the index t stands for a theoretical (expected) value, E and ν denote
the material parameters of the microstructure. In order to check whether the
calculations carried out with the own home-made software were correct, they
were compared with the results obtained with the professional Abaqus software.
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The test was run for a 0.1 m thick disk with the dimensions, type of load, sup-
ports and microstructure parameters as in Fig. 3. The elements of the elasticity
matrix (6.1) at the macro level should have the following values

(6.2) Dt =




29761.90 4761.90 0

4761.90 29761.90 0

0 0 12500.00


.

Fig. 3. Disk in the plane state stress, the material microstructure modelled with a homoge-
nous RVE.

On the macro level the following elasticity matrix values (6.3) were obtained
from the two-scale analysis, with the values of homogenized material parame-
ters at the macro level E = 28999.71 MPa, ν = 0.16, G = 12499.88 MPa. In
comparison with the expected values (6.2) the obtained results give a relative
error of δ = 0.000979%, each element of the matrix (6.3) is determined with the
same precision

(6.3) DCH =




29761.61 4761.86 0

4761.86 29761.61 0

0 0 12499.88


.
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In order to verify the calculations, the results for macro stresses, macro
deformations and macro displacements were compared. In the tables below the
following denotations have been adopted: σCH

11 , ε
CH
11 , u

CH , vCH – respectively
the components of the state of macro stress, macro deformation, horizontal and
vertical displacements of FE nodes, determined with the two-scale algorithm.
We have used a 4-node 8-dof rectangular finite element with bilinear shape
functions. The values without the upper index CH were calculated with the
Abaqus software, using the finite element CPS4R (a 4-node bilinear plane stress
quadrilateral, reduced integration, hourglass control).

Fig. 4. Field of macro stresses: Abaqus σ11, numerical homogenization σCH
11 .

Fig. 5. Field of macro stresses: Abaqus σ22, numerical homogenization σCH
22 .
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Fig. 6. Field of macro stresses: Abaqus σ12, numerical homogenization σCH
12 .

Fig. 7. Field of macro strains: Abaqus ε11, numerical homogenization εCH
11 .

Fig. 8. Field of macro strains: Abaqus ε22, numerical homogenization εCH
22 .
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Fig. 9. Field of macro strains: Abaqus ε12, numerical homogenization εCH
12 .

Table 4. Macro displacements.

Node
No.

uCH

[m]
u
[m]

δ

[%]
vCH

[m]
v
[m]

δ

[%]

1 0.000E+00 −6.916E-37 0.00 0.000E+00 −9.483E-38 0.00

2 −4.149E-04 −4.152E-04 0.08 −7.318E-05 −7.302E-05 0.22

3 −9.940E-04 −9.942E-04 0.02 9.678E-05 9.576E-05 1.06

4 −2.112E-03 −2.110E-03 0.10 −5.786E-04 −5.770E-04 0.28

5 0.000E+00 −1.308E-36 0.00 0.000E+00 −9.411E-38 0.00

6 −4.704E-04 −4.702E-04 0.04 −3.396E-06 −3.498E-06 3.02

7 −8.510E-04 −8.509E-04 0.00 6.152E-05 6.133E-05 0.31

8 −1.002E-03 −1.003E-03 0.10 −2.130E-04 −2.127E-04 0.11

9 0.000E+00 −1.308E-36 0.00 0.000E+00 9.411E-38 0.00

10 −4.704E-04 −4.702E-04 0.04 3.396E-06 3.498E-06 3.02

11 −8.510E-04 −8.509E-04 0.00 −6.152E-05 −6.133E-05 0.31

12 −1.002E-03 −1.003E-03 0.10 2.130E-04 2.127E-04 0.11

13 0.000E+00 −6.916E-37 0.00 0.000E+00 9.483E-38 0.00

14 −4.149E-04 −4.152E-04 0.08 7.318E-05 7.302E-05 0.22

15 −9.940E-04 −9.942E-04 0.02 −9.678E-05 −9.576E-05 1.06

16 −2.112E-03 −2.110E-03 0.10 5.786E-04 5.770E-04 0.28

Further analyses were directed at obtaining effective material parameters of
reactive powder concrete at the macro level by two-scale modelling with the use
of the microstructure model described in [2, 3]. First, ten random RVEs were
generated (Fig. 13) with the following composition:
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• Red colour represents the cement matrix – quantitative participation 47.08%,
• Light blue colour represents thicker aggregate – quantitative participation
40.52%,

• Dark blue colour represents finer aggregate – quantitative participation 8.40%,
• Yellow colour represents pores (air voids) – quantitative participation 4%.
The material parameters adopted for the analysis were:

• Cement matrix E = 29000 MPa, ν = 0.2,

• Thick aggregate E = 75000 MPa, ν = 0.3,

• Fine aggregate E = 55000 MPa, ν = 0.3,

• pores (air voids) – empty space without finite elements.

Fig. 10. Field of horizontal macro displacements: Abaqus u, numerical homogenization uCH .

Fig. 11. Field of vertical macro displacements: Abaqus v, numerical homogenization vCH .
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Fig. 12. Form of the disk deformation at the macro scale.

Fig. 13. Randomly generated RVEs.

The main and only goal of this task was to determine effective material pa-
rameters on the macro level, i.e. the task was not solved for macro scale (the
first block of the algorithm presented in Fig. 2 was done). The state of macro
deformation corresponding to pure shearing ε = {0, 0, 1} was adopted for the
analysis. The macro stresses σ and the macro elasticity matrix C were deter-
mined. Using the constitutive relation for an isotopic linearly elastic material
the macro deformations were calculated from the relationship

(6.4) ε = C
−1
σ.

The results are presented in Tables 5–7 and in Fig. 14. In addition, the
expected (mean) values of macro parameters were calculated
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(6.5) xsr =
1

10

10∑

i=1

xi,

where x denotes the value of Young’s modulus, Poisson’s ratio and the shear
modulus (Kirchhoff’s modulus) The standard deviation for each parameter

(6.6) σ =
√
σ2 where σ2 =

1

9

10∑

i=1

(xi − xsr)2

and the normal distribution density function was determined

(6.7) Φxsr,σ (x) =
1

σ
√
2π

exp

(
− (x− xsr)2

2σ2

)
.

Table 5. Elasticity modulus.

RVE
No.

E
[MPa]

Standard
deviation

Expected
value

Normal distribution density function

1 43421.50

1116.66 42545.52

2 43440.90

3 42052.52

4 41084.63

5 44356.80

6 42572.80

7 42954.21

8 40679.34

9 42849.57

10 42042.97

Table 6. Poisson’s ratio.

RVE
No. ν

Standard
deviation

Expected
value

Normal distribution density function

1 0.2219

0.0017 0.2211

2 0.2207

3 0.2205

4 0.2203

5 0.2213

6 0.2201

7 0.2203

8 0.2251

9 0.2220

10 0.2188
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Table 7. The shear modulus.

RVE
No.

G
[MPa]

Standard
deviation

Expected
value

Normal distribution density function

1 17767.60

463.26 17421.28

2 17793.70

3 17228.22

4 16833.99

5 18159.84

6 17446.77

7 17600.39

8 16602.70

9 17531.91

10 17247.71

Fig. 14. The stress-deformation dependence for pure shearing at the macro scale.

For the sake of clarity all straight lines showing the linear stress-strain re-
lationship have been removed from the above diagram except for the two that
correspond to the cells RVE 4 and RVE 5, which are respectively lower and up-
per limits of the obtained results. The averaged relationship from all the RVEs
is also presented.

7. Conclusions

The paper presents a method of two-scale modelling for determining effective
material parameters of reactive powder concrete at the macro scale on the basis
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of the analysis of its microstructure in the range of linear elasticity. The dis-
placement version of the finite element method was used to solve the boundary
value problems at both scales. The problems were analysed for a plane state of
stress. At the macro level (construction) and at the micro level (material mi-
crostructure) a four-node rectangular finite element with two nodal degrees of
freedom was used. The displacement field within the element was approximated
with bilinear shape functions [3, 2].
The method of two-scale modelling makes it necessary to enforce deforma-

tion on the boundary of a representative volume element (RVE) consistent with
the adopted or calculated macro deformation. The paper presents the realisa-
tion of this task through aggregation of the RVE global stiffness matrix with
analytically calculated (without numerical integration) matrices Ce

u, whose form
depends on the location of the aggregated finite element in relation to the RVE
boundary.
The results of numerical examples presented in this paper confirm that the

authors’ own software CH v 1.4.2, in which the two-scale model of reactive pow-
der concrete is implemented, works properly. The solutions to the boundary
value problems of mechanics for the RVE (micro analysis) [3, 2] and the full
two-scale modelling (micro-macro) bring expected results and are consistent
with publications by other researchers.
A complex comparison of the results of numerical simulations for beams

and the results of experimental tests in terms of determination of constitutive
material parameters will be the subject of the third part of this series.
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