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This paper deals with the issue of isotropic heat conduction in thermomechanical large-
strain problems. The aim of the paper is a comparison of different variants of Fourier’s law
used in the literature for a large strain problem. In particular, Fourier’s law is specified either
in the reference or in the deformed configuration by using different options of heat flux density
vectors which are presented and discussed. The paper includes working examples to illustrate
the presented theory. Moreover, different formulations of Fourier’s law are tested by using the
finite element method to investigate the influence of the applied variant on simulation results.
The analysis reveals that in a strongly deformed area the temperature distribution varies.

Keywords: heat conduction; isotropic Fourier’s law; large strains; thermomechanical coupling.

1. Introduction

Constitutive modelling of materials undergoing large deformations in non-
isothermal conditions is an issue raised in numerous publications. A motivation
for the development of such models can be the description of the material be-
haviour in various temperature ranges from extreme cases such as fire conditions
or hot forming to moderate temperature increases due to elastic or plastic ef-
fects, for example, a Gough-Joule phenomenon or plasticity induced dissipation,
respectively. Fully coupled models usually take into account the impact of tem-
perature changes on the mechanical field by considering thermal expansion as
well as temperature-dependent material model parameters.
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The problem of thermomechanical coupling is discussed in numerous papers
and books. Very often it is limited to geometrically linear problems, see, e.g.,
thermoelasticity in [17]. Models for large-strain thermoelasticity, which are often
applied for the description of rubber or polymer materials, are presented, for
instance, in [2, 7, 15]. In turn, thermoplasticity, used for i.a. metallic materials,
is discussed in small-strain setting in [18] and for large strains in [4, 6, 20–22].
The majority of publications are restricted to an isotropic material and heat flux.
This assumption is neglected in [9]. The aspects of the numerical implementation
of heat transfer and thermomechanical coupling can be found in [8, 19].

If large deformations are taken into account, referential (undeformed, ini-
tial) and current (deformed) configurations are considered. For this kinematic
assumption, the state of the material can be described by using referential or
spatial quantities referring to either of the two configurations. This also applies
to quantities related to the thermal field, such as the heat flux density vector.

The standard constitutive relation for the heat flux density vector is the
well-known Fourier’s law. For small-strain problems, the heat flux vector is then
calculated as the product of a positive definite second-order conductivity tensor
multiplied by the negative gradient of temperature. In the case of large strains,
Fourier’s law is similarly defined in the literature. However, it is not clear which
heat flux density vector and configuration should be chosen for the definition of
this constitutive relation.

The aim of this paper is to contribute to the current status and understanding
of isotropic heat conduction for large-strain thermomechanical problems in order
to show and directly compare the effect of different definitions of Fourier’s law.
In this regard, a comprehensive analysis of different measures for the heat flux
density vector is performed. It should be mentioned that the interpretation of
isotropic heat conduction is not uniquely handled in the literature. For the sake
of simplicity, the main focus lies in formulations with one scalar conductivity
parameter. The problem is analysed by using simple working examples as well as
by numerically using the finite element method (FEM). Two types of materials,
rubber and aluminium, undergoing large strains, are considered to show how the
definition of the constitutive relation for the heat flux density vector influences
the results. It is worth mentioning that the investigations presented in the paper
apply to all types of gradient flow, e.g., diffusion processes.

This paper is laid out as follows. In Sec. 2, a concise outline of the kinematics
for a large-strain problem is presented and the relations which are used in the
subsequent derivations are recalled. In Sec. 3, the definitions of three measures of
the heat flux density vectors are presented and discussed. Section 4 includes the
definitions of Fourier’s law defined in the reference and current configurations.
Section 5 presents the energy balance equation incorporating different Fourier’s
laws. In Sec. 6, simple analytical calculations of the different heat flux density
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measures are presented, and the graphical interpretation of the results is dis-
cussed. In Sec. 7, the results of numerical simulations of a selected test for the
two selected materials are presented. The paper is completed with concluding
remarks in Sec. 8.

The following notation for vector and tensor products is used in this con-
tribution: a · b denotes the scalar product of two vectors (i.e., a · b = aibi in
Cartesian index notation) and Aa represents the product of second-order ten-
sor A and vector a resulting in a vector (i.e., (Aa)i = Aijaj in Cartesian index
notation).

2. Aspects of large strain kinematics

The basis of kinematic relations for large-strain description can be found in
numerous references, for example, [3] or [25]. In this section, we focus on aspects
relevant to subsequent derivations, e.g. – we show the map of area elements
between configurations needed in order to express the relations between different
measures of heat flux density.

We consider the motion of a deformable body in a three-dimensional space.
Vector X denotes the position of a material particle in the reference (initial,
undeformed) configuration, whereas vector x(X, t) indicates the position of the
particle in the deformed (current) configuration at time t.

The deformation gradient F and its determinant J are defined as

(2.1) F =
∂x

∂X
, J = det(F) > 0.

The transformation of the incremental vector dX in the reference configuration
into its counterpart in the current configuration dx is therefore given by

(2.2) dx = FdX.

The relation between the volume element dV in the referential configuration
and the volume element dv in the current configuration is given via the deter-
minant of the deformation gradient

(2.3) dv = J dV.

In the reference configuration, the element of area dA with unit normal N
is considered, see Fig. 1a. The following definition is introduced

(2.4) dA = NdA.

On the other hand, in the current configuration, the element of area da with
unit normal n is used, see Fig. 1b, so that we define the following vector:

(2.5) da = nda.
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a) b)

Fig. 1. Heat fluxes in reference (a) and current (b) configurations.

The transformation of the area element dA to the current configuration, i.e., to
the area element da, is given by

(2.6) da = JF−T dA.

The derivation of the above relation can be found in, e.g., [3].
The transformation of normal N in the reference configuration to normal n

in the current one is given by the formula, see [1],

(2.7) n =
F−TN

|F−TN|
.

In the forthcoming derivations, we take into account material and spatial
gradients of scalar quantities. Coefficients of the material gradient of a quantity
G are calculated in the Cartesian basis as

(2.8) Grad(G) =

[
∂G

∂X1
,
∂G

∂X2
,
∂G

∂X3

]T

whereas coefficients of the spatial gradient of the quantity G in the Cartesian
basis are

(2.9) grad(G) =

[
∂G

∂x1
,
∂G

∂x2
,
∂G

∂x3

]T

.

The dependencies between the material and spatial gradients in absolute
notation are as follows [25]:

Grad(G) = FT grad(G),(2.10)

grad(G) = F−T Grad(G).(2.11)
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3. Transformation relations of heat flux densities

The aim of this section is the presentation and discussion of different mea-
sures for the heat flux density and the relations between them.

Vector Q denotes the Piola-Kirchhoff (or nominal) heat flux density vector
in the reference configuration with the unit [W/m2]. The amount of heat which
flows through the area element dA (see Fig. 1) is therefore

(3.1) −Q ·NdA = −Q · dA,

with positive values indicating the inflow of heat.
On the other hand, vector q denotes the Cauchy heat flux density vector

in the current configuration. The amount of heat which flows through an area
element of the deformed configuration da is calculated as

(3.2) − q · nda = −q · da

The amount of heat flowing through the element area is the same in the reference
and the current configuration; thus, the following equality can be written:

(3.3) −Q · dA = −q · da.

After inserting Eq. (2.6) into Eq. (3.2), the following dependence is obtained:

(3.4) Q · dA = Jq · (F−T dA).

By using the algebraic relation u·(Sv) = v·(STu), the following transformations
between the heat flux density vectors are obtained:

Q = JF−1q,(3.5)

q = J−1FQ.(3.6)

The above relations can be found, for example, in [6].
In addition to the Piola-Kirchhoff and the Cauchy heat flux density vectors,

a third measure is often used in the literature called the Kirchhoff heat flux
density vector, denoted here with q̂. This vector is defined as the Cauchy heat
flux density vector multiplied by the determinant of the deformation gradient

(3.7) q̂ = Jq.

The following relations hold:

Q = F−1q̂,(3.8)

q = J−1q̂,(3.9)

q̂ = Jq = FQ.(3.10)
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It is worth mentioning that the relations between different heat flux measures
are sometimes not consistent in the literature. For example, the relation between
the Kirchhoff and the Piola-Kirchhoff heat flux densities in [21] is given as
q̂ = F−TQ, see the third line of Remark 56.1 in [21]. The relation from [21]
resembles Eq. (2.11); however, it should be emphasised that Eq. (2.11) is valid
for the gradients of a scalar quantity (which results in a vector), whereas Q and
q̂ are vector densities. In turn, in [4], the definitions of the heat flux measures
are not clearly presented. The energy balance, i.e., Eq. (53) in [4], includes the
divergence in the referential configuration DIV(F−Tq), where q is defined as
the “heat flux vector” (most probably the Cauchy heat flux density vector),
which is not consistent with the above transformations.

4. Fourier’s law for large strain deformations

In this section, attention is paid to constitutive relations for the heat flux,
in particular to Fourier’s law. For the finite strain problem, the relation can be
represented in the reference or the current configuration. In the former case, the
relation is specified for the Piola-Kirchhoff heat flux density vector, whereas for
the latter the Cauchy or Kirchhoff heat flux measures can be used. The way in
which Fourier’s law is written is a constitutive choice and all three variants can
be found in the literature. The effect of this choice is investigated in this paper.

4.1. Fourier’s law in the reference configuration

Fourier’s law can be specified in the reference configuration for the Piola-
Kirchhoff heat flux density vector in the following form:

(4.1) Q = −KGrad(T ),

where T = T (X, t) > 0 denotes the absolute temperature of particle X at time t.
Tensor K represents conductivity, and for an isotropic heat conduction, it is
assumed as

(4.2) K = KI,

where K is a parameter specified for the analysed undeformed material and
I is the second-order identity tensor. In general, K is assumed to be dependent
on temperature, see [4]. However, in this work, it is considered constant. The
unit of conductivity is [J/(s ·m ·K)] or equivalently [N/(s ·K)]. The conductiv-
ity parameter K cannot be transformed from the undeformed to the deformed
configuration as easily as a parameter given per unit of volume, i.e., through
scaling via the determinant of the deformation gradient.
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The constitutive choice (4.1) can be found in the literature, for example, in [4].
The transformation of Eq. (4.1) to the current configuration using Eqs (2.10)
and (3.5) yields

(4.3) q = − 1

J
FKFT grad(T ).

Assuming that, in the reference configuration, the heat flux is isotropic, i.e.,
K = KI, the above equation can be rewritten as

(4.4) q = − 1

J
Kb grad(T ),

where b = FFT is the left Cauchy-Green deformation tensor. Equation (4.4)
can be formulated in the following form:

(4.5) q = −k(F) grad(T ),

where

(4.6) k(F) =
1

J
Kb.

Equation (4.5) clearly shows that if isotropic Fourier’s law is assumed in the
reference configuration, then the Cauchy heat flux density vector is related to
the spatial gradient of temperature via tensor k dependent on the deformation.
As a result, the spatial heat flux density vector is non-parallel to the temperature
gradient in the deformed body.

4.2. Fourier’s law in the current configuration

Based on the same idea as in the previous subsection, i.e., that the heat flux
density vector is related to the temperature gradient via conductivity, Fourier’s
law can be represented in the current configuration by using the Cauchy heat
flux density vector, see [23],

(4.7) q = −k grad(T ),

where k is the conductivity tensor for the spatial formulation. For isotropic heat
conduction, it is assumed as

(4.8) k = kI,

where k is a scalar conductivity parameter.
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Postulating that Fourier’s law holds in the deformed configuration according
to Eq. (4.7), the obtained heat flux density vector can be pulled back to the
reference configuration by using Eqs (2.11) and (3.6) to yield

(4.9) Q = −JF−1kF−T Grad(T )

and for the isotropic heat conduction, i.e., Eq. (4.8), the above equation is as
follows:

(4.10) Q = −JkC−1 Grad(T ),

where C = FTF is the right Cauchy-Green deformation tensor. Equation (4.10)
can be written in the following form, see [23]:

(4.11) Q = −K(F) Grad(T ),

where

(4.12) K(F) = JF−1kF−T.

Another option of Fourier’s law in the current configuration is the relation
written for the Kirchhoff heat flux density vector

(4.13) q̂ = −k grad(T ).

This relation can be found in, e.g., [21, 22] or [26]. The same constant value of
conductivity is usually used in the literature for Eqs (4.7) and (4.13), although
the first equation is defined for the purely spatial heat flux density q, whereas the
second is stated for the heat flux density q̂, which is scaled via the determinant
of the deformation gradient. Moreover, often the scalar conductivity parameter
is considered as a material property rather than being referred to as a referential
or spatial form of Fourier’s law.

If Eq. (4.13) is adopted, the corresponding Piola-Kirchhoff heat flux density
vector is as follows:

(4.14) Q = −F−1kF−T Grad(T )

and for the isotropic heat conduction it equals

(4.15) Q = −kC−1 Grad(T ).

Fourier’s law for the isotropic heat conduction defined in the current config-
uration is assumed in such a way that the Cauchy heat flux (or the Kirchhoff
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heat flux) is proportional to the temperature gradient via a scalar value of con-
ductivity in the deformed body; thus, q (or q̂) is parallel to the spatial gradient
of temperature. It can be understood that in this approach, the isotropy of
the heat flux is considered in the current configuration. However, with this as-
sumption, the Piola-Kirchhoff heat flux can be non-parallel to the temperature
gradient in the reference configuration. In other words, in the reference con-
figuration, the Piola-Kirchhoff heat flux is related to the material gradient of
temperature through K that depends on the deformation gradient F. In this sit-
uation, conductivity in the reference configuration cannot be reduced to a scalar
value. Thus, in the reference configuration, the heat flux can then be treated as
anisotropic. This observation is of great importance for a proper understanding
of the heat flow for large strain problems.

To sum up this section, the most common constitutive equation for the heat
flux used in thermomechanics, that is, the isotropic Fourier’s law, is equivocal in
the large strain context as it can be defined in the reference or spatial configura-
tion. All choices are valid; however, from the physics point of view, the most rea-
sonable is the approach where the spatial heat flux is parallel to the temperature
gradient in the current configuration. For this variant one must be aware that
the Piola-Kirchhoff heat flux density vector is not parallel to the temperature
gradient in the material configuration. On the other hand, the deformation of
an initially isotropic material can cause its anisotropy, for instance, the reori-
entation of polymer chains in rubber-like materials, which can justify the ap-
plication of referential Fourier’s law resulting in non-parallel Cauchy heat flux
density vector and temperature gradient in the current configuration. However,
the deformation-induced anisotropy of a material is not necessarily related to
its thermal properties such as heat conductivity. In general, the particular for-
mat of the heat flux relation should be validated on the basis of experimental
investigations. It is worth mentioning that the referential Fourier’s law can be
convenient for numerical implementation since it involves the material gradient
of temperature.

A complete list summarising the three presented variants of isotropic Fourier’s
law and the resulting relations for the heat flux density measures are presented
in Table 1.

Table 1. Heat fluxes for different isotropic Fourier’s law variants.

Fourier’s law Piola-Kirchhoff heat flux Cauchy heat flux Kirchhoff heat flux

Q = −K Grad(T ) • q = −J−1Kb grad(T ) q̂ = −Kb grad(T )

q = −k grad(T ) Q = −JkC−1 Grad(T ) • q̂ = −Jk grad(T )
q̂ = −k grad(T ) Q = −kC−1 Grad(T ) q = −J−1k grad(T ) •
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5. Heat fluxes in energy balance

The coupled thermomechanical problem is usually described by using two
governing equations: the balance of linear momentum and the balance of energy.
The former equation is well-described in the literature, see, e.g., [3] or [13]. In
this section, only the latter one is presented with special attention paid to the
conductive term in the view of different formulations of Fourier’s law.

Here the energy balance equation in the temperature form, which is a conve-
nient formulation for numerical implementation, is written following Eq. (57.15)
from [21]

(5.1) c0Ṫ = −Hcond +R+Dmech −Hthel,

where Ṫ is the temperature rate. All components of the above equation are
expressed per unit of the reference volume: c0 – the heat capacity, Hcond –
conduction energy,R – external heat source, Dmech – mechanical dissipation and
Hthel – thermoelastic energy related to the Gough-Joule effect. The conductive
component Hcond can be written in terms of a chosen heat flux density measure.
In particular, for the Piola-Kirchhoff heat flux it is equal to

(5.2) Hcond = Div(Q).

The conductive term can also be expressed by using spatial heat flux measures,
see [22],

(5.3) Hcond = J div(q) = J div(q̂/J).

In the above equations, the divergence of the Piola-Kirchhoff heat flux Div(Q) is
calculated with respect to material coordinates, whereas divergences div(q) and
div(q̂) are computed with respect to spatial coordinates. Equation (5.1) is com-
pleted with proper boundary conditions for the temperature and the normal
heat flux

(5.4)
T = T on ∂ΩT

0 ,

QN = −Q ·N = Q on ∂ΩQ
0 ,

where ∂Ω0 = ∂ΩT
0 ∪ ∂ΩQ

0 is the boundary of the reference domain Ω0 and
∂ΩT

0 ∩ ∂ΩQ
0 = ∅. Moreover, the initial temperature condition must be specified.

The subsequent section of this paper presents the results of numerical sim-
ulations obtained with the finite element method (FEM). The method is based
on a weak formulation of the initial boundary value problem. The weak form of
Eq. (5.1) with the conductive term (5.3), boundary conditions (5.4), and with
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Euler backward integration of Ṫ (Tn is the temperature from the previous time
step and ∆t is the time increment) is as follows:

(5.5)
ˆ

Ω0

δTc0
T − Tn

∆t
dV −

ˆ

Ω0

Grad(δT ) ·QdV

︸ ︷︷ ︸
Icond

−
ˆ

Ω0

δT [R+Dmech −Hthel] dV −
ˆ

∂ΩQ
0

δTQdA = 0,

where δT is a test function, and the integration is performed over the reference
domain, which in certain instances can be a more efficient approach from the
computational point of view.

Now Fourier’s law will be applied in the alternative forms presented in
Eqs (4.1), (4.7) or (4.13). Inserting Fourier’s law specified in the reference con-
figuration in the form (4.1) with isotropy assumed, the following integral related
to the conductive term in the weak form is obtained:

(5.6) Icond = −
ˆ

Ω0

Grad(δT ) · kGrad(T ) dV.

Using isotropic Fourier’s law for the Cauchy heat flux density vector in the form
(4.7) with the pull back from Eq. (4.10), the integral related to heat conduction
is equal to

(5.7) Icond = −
ˆ

Ω0

Grad(δT ) · JkC−1Grad(T ) dV

and for isotropic Fourier’s law related to the Kirchhoff heat flux (4.13) with the
relation from Eq. (4.15) the integral is as follows:

(5.8) Icond = −
ˆ

Ω0

Grad(δT ) · kC−1 Grad(T ) dV.

6. Analytical example

To illustrate the influence of the deformation on the heat flux density vectors,
we consider a simple 2D working example (plane strain) based on an exercise
from [3] and enhanced with thermal coupling. Two aspects are analysed in this
section. Firstly, the influence of the adopted Fourier’s law formulation on heat
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flux measures is investigated. Secondly, it is shown how the different measures
of heat flux can be applied for the calculation of a resultant heat flux across
a chosen boundary of the analysed specimen.

We consider a square section of the uniformly deformed material. The fol-
lowing mapping is given:

(6.1) x1 =
1

4
(18 + 4X1 + 6X2), x2 =

1

4
(14 + 6X2).

The initial and deformed configurations are presented in Fig. 2.

Fig. 2. Initial and deformed 2D specimen with isotherms
(displacement and temperature field are fully prescribed).

The coefficients of the deformation gradient (reduced to 2D representation),
its inverse and the determinant are as follows:

(6.2) F =


∂x1

∂X1

∂x1

∂X2

∂x2

∂X1

∂x2

∂X2

 =
1

2

[
2 3

0 3

]
, F−1 =

1

3

[
3 −3

0 2

]
, J =

3

2
.

The right and the left Cauchy-Green deformation tensors have the following
coefficients:

(6.3) C = FTF =
1

2

[
2 3

3 9

]
, b = FFT =

1

4

[
13 9

9 9

]
.

Let us assume that the temperature distribution in the current and the reference
configuration is described with the functions

(6.4) T (X) =
1

4
(18 + 4X1 + 6X2)ξ, T (x) = x1ξ.
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Parameter ξ is introduced to obtain appropriate units and has value 1. The
material and the spatial gradients of the temperature field are constant vectors
in the analysed domain and they are respectively equal to

(6.5) Grad(T ) =


∂T

∂X1

∂T

∂X2

 = ξ

 1

3

2

, grad(T ) =


∂T

∂x1

∂T

∂x2

 = ξ

[
1

0

]
.

6.1. Heat fluxes for different variants of Fourier’s law

6.1.1. Fourier’s law in the reference configuration. Let us assume that iso-
tropic Fourier’s law is specified in the reference configuration for the Piola-
Kirchhoff heat flux density vector, see Eq. (4.1). Using Eqs (3.9) and (3.10) the
Cauchy and the Kirchhoff heat fluxes are then equal to

(6.6)

Q = −K Grad(T ) = −Kξ

 1

3

2

,
q = −1

6
Kξ

[
13

9

]
, q̂ = −1

4
Kξ

[
13

9

]
.

By using Eq. (4.4) the Cauchy heat flux can be represented in the following
form:

(6.7) q = − 1

J
Kb grad(T ) = −


13

6
K

3

2
K

3

2
K

3

2
K

grad(T ) = −1

6
Kξ

[
13

9

]
.

Thus, conductivity in the current configuration is the tensor multiplying the
spatial temperature gradient in Eq. (6.7).

It can be observed in this example that the Cauchy heat flux density vector q
is not parallel to grad(T ), see Fig. 3 (left).

6.1.2. Fourier’s law in the current configuration Now the isotropic consti-
tutive law for the heat flux is assumed in the current configuration, see Eq. (4.7).
Then the Piola-Kirchhoff and the Kirchhoff heat fluxes are calculated by using
Eqs (3.8) and (3.10) and are equal to

(6.8) q = −k grad(T ) = −kξ

[
1

0

]
, Q = −kξ

 3

2

0

, q̂ = −kξ

 3

2

0

.



124 B. WCISŁO et al.

Fig. 3. Heat fluxes for Fourier’s law defined in the reference configuration (left)
and in the current configuration (right).

By analogy with Eq. (6.7), the Cauchy heat flux for Fourier’s law defined in the
reference configuration can be represented in the following form:

(6.9) Q = −JkC−1 Grad(T ) = −

 3k −k

−k 2

3
k

Grad(T ) = −kξ

 3

2

0

,
and conductivity in the reference configuration is the tensor multiplying the
referential temperature gradient in Eq. (6.9).

In this case, it can be observed that the Piola-Kirchhoff heat flux density
vector Q is not parallel to Grad(T ), see Fig. 3 (right).

6.2. Heat fluxes across the surface

We focus on the heat flux through edge A0−B0 in the reference configuration
or its mapping A − B in the current configuration, see Fig. 2. The unit vector
normal to edge A0−B0 is denoted by N. The unit vector normal to edge A−B
is denoted by n and calculated via Eq. (2.7). They are respectively equal to

(6.10) N =

[
1

0

]
, n =

F−TN

|F−TN|
=


√

2

2

−
√

2

2

.
The length of edge A0 − B0 is equal to |A0B0| = 2l0, where l0 is a parameter
introduced to obtain appropriate units, which has the value 1. The length of
edge A− B is thus |AB| = 3

√
2l0. The depth of the specimen is denoted by d0

in the following.

6.2.1. Fourier’s law in the reference configuration. First, the analysis is per-
formed for the heat flux density vectors from Eq. (6.6), i.e., for Fourier’s law in
the reference configuration. The amount of heat flowing through edge A0 −B0,
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calculated by using the Piola-Kirchhoff heat flux density vector in the reference
configuration, equals

(6.11)
ˆ

A0−B0

−Q ·Nd0 dS = −Q ·Nd0|A0B0| = 2Kξd0l0.

The amount of heat flowing through edge A−B calculated in the current con-
figuration using the Cauchy heat flux density vector is as follows

(6.12)
ˆ

A−B

−q · nd0 ds = −q · nd0|AB| = 2Kξd0l0.

Now the amount of heat is computed by using the Kirchhoff heat flux density
vector. We derive the proper integration formula starting from the first part of
Eq. (6.11)

(6.13)
ˆ

A0−B0

−Q ·Nd0 dS =

ˆ

A0−B0

−(F−1q̂) ·Nd0 dS

=

ˆ

A0−B0

−q̂ · (F−TN)d0 dS 6=
ˆ

A0−B0

−q̂ · nd0 dS.

When the Kirchhoff heat flux density vector is used for integration, it is not
multiplied by the unit normal n from the current configuration, but by a vector
F−TN which has the same direction as n and which is not normalized. Thus,
the resultant heat is in this case equal to

(6.14)
ˆ

A0−B0

−q̂ · (F−TN)d0 dS = −q̂ · (F−TN)d0|A0B0| = 2Kξd0l0.

6.2.2. Fourier’s law in the current configuration. The heat flux density vec-
tors are now taken from Eq. (6.8), i.e., for Fourier’s law in the current config-
uration. The amount of heat flowing through edge A0 − B0 calculated in the
reference configuration by using the Piola-Kirchhoff heat flux density vector is
as follows:

(6.15)
ˆ

A0−B0

−Q ·Nd0 dS = −Q ·Nd0|A0B0| = 3kξd0l0.

The same calculations can be performed in the spatial configuration by using
the Cauchy heat flux density vector

(6.16)
ˆ

A−B

−q · nd0 ds = −q · nd0|AB| = 3kξd0l0.
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Finally, the Kirchhoff heat flux density vector is applied for the calculations

(6.17)
ˆ

A0−B0

−q̂ · (F−TN)d0 dS = −q̂ · (F−TN)d0|A0B0| = 3kξd0l0.

The results obtained for the different heat flux measures coincide as ex-
pected. If conductivity is considered as a material parameter independent of the
deformation (i.e., values of K and k are the same), as it is usually assumed in
the literature, then for the referential and spatial variants of Fourier’s law, the
amount of heat flowing through an analysed surface can vary significantly.

7. Numerical simulations

In this section, numerical simulations are performed in order to discuss the
influence of the applied Fourier’s law. The analysed specimen is an elongated
rectangular plate with the dimensions 200× 100× 10 mm, as presented in Fig. 4.

Fig. 4. Analysed plate in plane strain: boundary conditions, dimensions (left),
and finite element discretisation with 20× 40× 1 elements (right).

Plane strain conditions are assumed for the 3D configuration and the bottom
surface is fully clamped. At the top side of the sample an enforced vertical dis-
placement is applied, whereas the horizontal movement is constrained. Regard-
ing the boundary conditions for the thermal field, the side walls are insulated,
the bottom surface has constant temperature T0 = 293.15 K, which corresponds
to the initial temperature, and the prescribed temperature on the top surface
of the sample increases together with deformation.

In the beginning, the vertical displacement and temperature in the essential
boundary conditions on the top edge increase uniformly to dmax and T0 +200 K,
respectively. In the second part of the process, the boundary conditions are fixed
and heat flows in the specimen in order to obtain a stationary state. Figure 5
shows how multiplier λ in the essential boundary conditions depends on time
for the deformation process duration time tproc.
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Fig. 5. Load multiplier vs time.

The simulations are performed for two different materials. The first is a natu-
ral rubber and the second is an aluminium alloy. The maximum value of the
enforced displacement dmax is equal to 200 mm for rubber and 100 mm for alu-
minium.

The three possibilities to apply Fourier’s law are considered:
• material Fourier’s law for the Piola-Kirchhoff heat flux Q = −kGrad(T )

(variant 1),
• spatial Fourier’s law for the Cauchy heat flux q = −k grad(T ) (variant 2),
• spatial Fourier’s law for the Kirchhoff heat flux q̂ = −k grad(T ) (variant 3).
The specimen is discretised using hexahedral elements with linear interpola-

tion of displacement and temperature fields, here specified as H1 (the 2D prob-
lem is solved by using 3D elements). The primary mesh division is 20×40×1 in
the horizontal, vertical and thickness directions, respectively. To avoid volumet-
ric locking for nearly incompressible rubber and for aluminium modelled within
an isochoric plasticity framework, the modification of the finite elements called
F-bar is applied [5]. An alternative approach based on the enhanced assumed
strain approach can be found, for example, in [12].

Simulations have also been carried out for finite elements with quadratic
interpolation of the displacement field and linear interpolation of temperature
(elements H2/H1), in particular for rubber and the first variant of Fourier’s law.
In that case, the results for elements H2/H1 coincide with those obtained for
elements H1 with F-bar.

All numerical tests are performed with Wolfram Mathematica packages called
AceGen and AceFEM [10, 11] with user-defined subroutines for the two applied
materials. An implementation of a thermoplastic model is presented, for in-
stance, in [24]. The simulations are performed by using adaptive increments
of time. The minimum and maximum increments are 0.001tproc and 0.01tproc,
respectively.

The energy balance equation is implemented via the weak form presented
in Eq. (5.5) with the conductive term from Eqs (5.6), (5.7) or (5.8). We apply
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the Euler backward integration scheme for the temperature rate in the energy
balance equation, although different numerical time integration schemes could
be used, see, e.g., [8].

7.1. Rubber

The thermomechanical coupling for rubber involves thermal expansion. For
the sake of simplicity, thermoelastic coupling (Gough-Joule effect) is neglected
in the energy balance. The adopted free energy function is as follows:

(7.1) ψ(b, T ) =
1

2
κ

[[
ln(Jb)

]2
− 3αT [T − T0] lnJb

]
+

1

2
µ
[
[Jb]−1/3tr(b)− 3

]
,

where Jb = det(b) with b = FFT, αT is the linear coefficient of thermal ex-
pansion, and κ and µ are bulk and shear moduli, respectively. The material
parameters used in simulations are based on [15] and presented in Table 2.

Table 2. Material parameters for rubber.

Property Symbol Value Unit

Bulk modulus κ 1950 N/mm2

Shear modulus µ 0.4225 N/mm2

Thermal expansion coefficient αT 6.36 · 10−4 1/K

Conductivity k 0.2 N/(s ·K)

Heat capacity c0 1.5066 N/(mm2 ·K)

In Fig. 6, the diagram presenting the total reaction force vs time is presented
for process duration tproc = 600 s. It can be observed that all curves in the left
diagram almost coincide; however, a magnification of the middle part of the dia-
gram reveals some differences in the total reaction force. The material response
for variant 1 is softer than for variants 2 and 3 and the discrepancy grows with
time in the second part of the simulated process. It seems that in this numer-
ical test, the influence of the choice of Fourier’s law on the global mechanical
response is not significant. However, the mechanical response generally depends
on the type of coupling (thermal softening, heat expansion), applied boundary
conditions as well as on the values of model parameters.

The diagram in Fig. 7 (left) shows the sum of heat fluxes at nodes on the top
side of the sample (called further the total “reaction” heat flux). It can be seen
that all curves run in a similar way; however, the quantitative difference between
them is significant. The amount of heat flowing through the analysed surface
is the highest for variant 1. The difference between the results for variants 2
and 3 can be explained by the change of material volume caused by thermal
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Fig. 6. Diagram of total reaction force vs time (left) and magnification of its middle part
(right) for rubber sample.
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Fig. 7. Total “reaction” heat flux vs time (left) and final relative temperature distribution
along the vertical central axis (right) for rubber sample.

expansion. The assumed Poisson ratio for rubber is equal to ν = 0.49; thus, the
change of material volume due to mechanical deformation is negligible.

The diagram in Fig. 7 (right) presents the relative temperature T −T0 along
the vertical central axis in the reference setting of the sample at the end of the
simulated process. Due to the relatively small value of conductivity of rubber,
only one-third of the sample undergoes heating. The boundary temperature is
prescribed, but the temperature distribution in the internal part of the sam-
ple differs for the models with referential and spatial Fourier’s laws. It can be
observed that for variant 1, the temperature in the sample is higher than for
variants 2 and 3, and the heated part of the sample is slightly wider.

The deformed meshes for variant 1 and variant 2 are depicted in Fig. 8. It can
be observed that, due to small material conductivity, the temperature gradients
are the largest in the upper part of the sample. The temperature considerably
varies in the most deformed area and significant differences are visible in the
top corners. For comparison, the temperature distribution in the undeformed
mesh is also presented in Fig. 9. For variant 1, the isotherms are horizontal,
whereas for variant 2, they are curved near the sides; thus, the influence of the
deformation on the temperature distribution is visible in this area.

It can be noticed in the legends in Figs 8 and 9 (on the right) that the min-
imum relative temperature has a very small negative value. This is caused by
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Fig. 8. Deformed mesh of rubber sample with relative temperature distribution at the end of
simulation for variant 1 (left) and variant 2 (right) of Fourier’s law.

Fig. 9. Reference configuration of the rubber sample with final relative temperature distribu-
tion for variant 1 (left) and variant 2 (right) of Fourier’s law.

small oscillations in temperature distribution in the lower part of the sample,
which are caused by the applied time integration scheme, see [27]. The oscilla-
tions do not influence the results in the area of interest.

In Fig. 10, a magnification of the most deformed part of the sample is pre-
sented. In the centre of each finite element, the Cauchy heat flux density vector is
visualised. It can be observed that for variant 1, vectors q are not perpendicular
to isotherms and that directions are close to the directions of the Cauchy heat
flux vectors for variant 2. However, the consistent scale of the displayed vectors
shows that the magnitude of the heat flux is different for the two analysed cases.

To investigate the influence of the rate of the loading on the sample response
the simulations are repeated for two and ten times longer processes, i.e., for
tproc = 1200 s and tproc = 6000 s, which allows for the transport of more heat
towards the centre of the specimen. For a faster process the influence of different
Fourier’s law expressions is smaller; thus, the case is not considered here. For all
simulations, the increase of extension and temperature on the top surface lasts
0.5tproc. The results are presented in Figs 11 and 12.
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Fig. 10. Magnification of deformed mesh (right top corner of rubber sample) at the end of
simulation with relative temperature distribution and Cauchy heat flux density vectors for

variant 1 (left) and variant 2 (right) of Fourier’s law.

Fig. 11. Diagrams of total reaction force vs load multiplier (left) and of total “reaction” heat
flux vs load multiplier (right) for rubber sample elongated with changing process duration.

Fig. 12. Deformed mesh for rubber sample with relative temperature distribution at the end
of simulation for variant 1 (left) and variant 2 (right) of Fourier’s law and for slow process

tproc = 6000 s.

It can be observed that the longer the process is, the more the curves of
the reaction sum for the analysed variants of Fourier’s law differ. However, the
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differences are still very small. The application of variant 2 causes a slightly
larger reaction force sum. In the case of the “reaction” heat flux sum, it can be
seen that a longer process allows for a greater amount of heat flowing through
the upper surface; however, for each process duration, the relations between
curves obtained for variant 1 and variant 2 are similar. When the deformed
sample is analysed, see Fig. 12, it can be seen that for variant 1 of Fourier’s law
a greater part of the sample is heated than for variant 2. When comparing this
figure with the results obtained for tproc = 600 s, see Fig. 8, it is observed that
the influence of the applied Fourier’s law has the same character. To sum up,
for the analysed Fourier’s law variants, the results obtained for changing process
duration differ quantitatively but not qualitatively.

7.2. Aluminium

The second analysed material is aluminium alloy described with a thermo-
plastic material model that takes into account thermal expansion, plastic heat-
ing and thermal softening. In the model, the decomposition of the deformation
gradient into reversible and plastic counterparts is applied, see [20], i.e.,

(7.2) F = FrFp.

The reversible part of the free energy function related to elastic deformation
and thermal expansion is assumed in the following form:

(7.3) ψ(br, T ) =
1

2
κ

[
1

2
[Jbr − 1]− 1

2
ln(Jbr)− 3αT [T − T0] ln(Jbr)

]
+

1

2
µ
[
[Jbr]−1/3 tr(br)− 3

]
,

where br = Fr [Fr]T is the reversible left Cauchy-Green deformation tensor and
Jbr = det(br).

The yield function F is introduced as

(7.4) F (τ , α, T ) = f(τ )− σy(α, T )

with

(7.5) σy =

√
2

3
[σy0 [1−HT [T − T0]] + [σy∞ − σy0] [1− exp(−δα)]].

The contribution f(τ ) represents the Huber-Mises stress measure, here intro-
duced for the Kirchhoff stress tensor τ = 2[∂ψr/∂br]br. Moreover, linear ther-
mal softening with coefficient HT and hardening of saturation type dependent
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on hardening parameter α are accounted for. In the above equation, σy0 and σy∞
are the initial and the final yield strengths, respectively, and δ is a saturation
constant.

The flow rule is written as

(7.6) − 1

2
Lvbr = γ̇Npbr,

where Lvbr denotes the Lie derivative of the reversible left Cauchy-Green de-
formation tensor, see [13], Np = ∂F/∂τ is the normal to the yield function, and
γ̇ is the plastic multiplier.

The Kuhn-Tucker loading-unloading conditions complement the description

(7.7) γ̇ ≥ 0, F ≤ 0, γ̇F = 0.

The relation between the hardening parameter and the plastic multiplier is α =√
2/3γ.
The plastic heating contribution is considered via the simplified form, i.e.,

Dmech = χα̇σy where χ is the heat dissipation factor. The rate of hardening
parameter α̇ is calculated in the code by using backward Euler integration, i.e.,
α̇ = [α − αn]/∆t, where αn is the value of the hardening parameter from the
previous time step.

Material parameters are taken from [16] and presented in Table 3.

Table 3. Material parameters for aluminium.

Property Symbol Value Unit

Bulk modulus κ 57 133 N/mm2

Shear modulus µ 26 369 N/mm2

Initial yield strength σy0 367.5 N/mm2

Final yield strength σyf 488.8 N/mm2

Saturation constant δ 16 N/mm2

Conductivity k 121 N/(s ·K)

Heat capacity c0 2.423 N/(mm2 ·K)

Thermal expansion coefficient αT 23.2·10−6 1/K

Thermal softening modulus HT 0.0016 1/K

Heat dissipation factor χ 0.9 –

In Fig. 13, the diagrams of the total reaction force vs time are presented.
In the left one, the results for the whole process are shown, and it can be seen
that all curves are very close to each other. The diagram on the right presents
a magnification of the middle part of the diagram on the left, where a slight
difference in the sample response is visible. Similarly to the rubber specimen,
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Fig. 13. Diagram of total reaction force vs time (left) and magnification of its middle part
(right) for the aluminium sample.

the application of variant 1 of Fourier’s law results in a slightly softer response
of the material model.

The diagram in Fig. 14 (right) presents the amount of heat flowing through
the upper surface vs time, which is much higher for variant 1 than for the other
variants. The results for variants 2 and 3 are very close to each other. In this
case, the prevailing type of deformation is plastic, which is isochoric for the
Huber-Mises yield function. The final relative temperature distribution along
the vertical central axis of the aluminium sample in the reference configuration
is shown in Fig. 14 on the right. The application of variant 1 of Fourier’s law
results in a linear distribution of temperature along the sample, whereas spatial
Fourier’s laws cause a non-linear distribution.

Fig. 14. Total “reaction” heat flux vs time (left) and relative temperature distribution along
vertical central axis at the end of the simulation (right) for the aluminium sample.

In the analysed test, the aluminium sample undergoes softening caused by
geometrical effects and thermal softening in the yield function, see Eqs (7.4)
and (7.5). In the absence of regularisation, this could lead to strain localisa-
tion and pathological mesh dependence. In the analysed case, the regularising
influence is provided only by heat conduction, see [14, 24]. To examine if the pre-
sented simulations are mesh-insensitive, we repeat calculations for variant 2 of
Fourier’s law using two and four times denser finite element meshes, see Fig. 15.
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Fig. 15. Diagrams of total reaction force vs time (left) and of total “reaction” heat flux vs
time (right) for the aluminium sample – comparison of results for different meshes.

The presented results confirm that heat conduction provides sufficient regulari-
sation as the curves are very close for each discretisation.

The deformed primary meshes for variants 1 and 2 at the end of the deforma-
tion process are presented with temperature distributions in Fig. 16, whereas the
temperature distributions in the undeformed meshes are presented in Fig. 17.
For the aluminium sample, the differences are visible not only at the top corners
of the sample but in the central part as well. Variant 1 gives horizontal isotherms
in the reference configuration, which results in curved isotherms in the deformed
mesh, compatible with the deformation of finite elements.

Fig. 16. Deformed mesh for the aluminium sample at the end of simulation with relative
temperature distribution for variant 1 (left) and variant 2 (right) of Fourier’s law.

Fig. 17. Reference configuration of the aluminium sample with final relative temperature
distribution for variant 1 (left) and variant 2 (right) of Fourier’s law.
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For the aluminium sample, the Cauchy heat flux density vectors are ex-
amined in one (top right) quarter of the specimen, see Fig. 18. It can be ob-
served that despite the different temperature distributions the directions of the
heat flow are very close for the two analysed variants. However, looking more
closely at the most deformed part of the sample, it can be observed that the
magnitudes of the heat flux vectors are different for the two variants. For vari-
ant 1, the heat flux vectors show a regular pattern even in the most deformed
part of the sample, whereas the vectors for variant 2 have several times larger
magnitude in the strongly deformed finite elements than in the remaining part
of the sample. This behaviour is surprising and can be explained by the fact
that variant 2 of Fourier’s law is defined in the spatial configuration in which
the finite element mesh evolves.

Fig. 18. Deformed mesh at the end of simulation for one-quarter of the aluminium sample
with relative temperature distribution and Cauchy heat fluxes for variant 1 (left) and variant 2

(right) of Fourier’s law.

For a deeper investigation of this issue, the most deformed part of the spec-
imen is presented in Fig. 19 for the three analysed meshes. It can be seen that
the finer the mesh is, the more distorted the elements are. The calculation of the
spatial temperature gradient in a so strongly deformed mesh for variants 2 and 3

Fig. 19. Deformed meshes for the corner part of the aluminium sample at the end of simulation
for three analysed meshes.
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of Fourier’s law is then unreliable. It can be concluded that for such large strains,
the discretisation should be refined adaptively with growing deformation since
this would provide a more reliable approximation of the temperature gradient
calculated in the deformed configuration. The application of a finer mesh with
a constant density (in the reference configuration) during the whole simulation
does not help the problem and causes even greater local disturbances.

8. Conclusion

The aim of this paper was to contribute to a better understanding of dif-
ferent heat flux measures and isotropic forms of Fourier’s law for a large-strain
thermomechanical setting. For this purpose, a thorough analysis of common
heat flux density vectors and the variants of Fourier’s law specification has been
performed. For a better interpretation, a simple analytical example has been cal-
culated and discussed. It has been shown that by using Fourier’s law in the cur-
rent configuration for the Cauchy heat flux, the related Piola-Kirchhoff heat flux
is not perpendicular to isotherms in the reference configuration and vice-versa.

For a more exhaustive analysis, computational tests have been performed via
the FEM to investigate the influence of the adopted constitutive law for the heat
flux on the results. Numerical simulations have revealed that the formulation
of Fourier’s law for a large-strain problem can influence the outcome related to
a thermal field, for example, the sum of “reaction” heat fluxes at the surface
with essential boundary conditions for temperature. Moreover, the distribution
of temperature in the analysed specimen varied for the different Fourier’s law
variants, especially in the strongly deformed parts where temperature gradients
were significant. The simulations of the rubber sample performed for chang-
ing process duration showed that a longer process allows for the transport of
more heat towards the centre of the specimen, which resulted in more signif-
icant differences in temperature distribution and mechanical response for the
analysed variants of Fourier’s law. What is more, the application of Fourier’s
law in the reference configuration results in a more uniform temperature distri-
bution in the sample. In the analysed cases, the local differences of temperature
field slightly influence the global mechanical response. However, it should be
emphasised that for a stronger thermomechanical coupling or high-temperature
gradients in a strongly distorted sample the differences could be more significant.

It is interesting that for the different variants of Fourier’s law resulting
in the different temperature maps, the directions of the heat flow are close.
Thus, the choice of Fourier’s law does not significantly affect the general tra-
jectory of the heat flux in the sample. However, in the most distorted finite
elements, the Cauchy heat flux density vectors had much higher values for the
spatial Fourier’s law. The analysis presented in the paper leads to the impor-
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tant observation that the calculation of a temperature gradient in the deformed
configuration without adaptive mesh refinement can result in an unreliable ap-
proximation of the heat flux.

Taking into account all simulation results, it seems that the model which is
closer to the physical behaviour is the one with the spatial Fourier’s law formu-
lation, where the spatial heat flux is directly proportional to the spatial tem-
perature gradient, see Table 1. On the other hand, if the deformation-induced
anisotropy is related not only to mechanical but also to thermal properties,
then the application of the referential Fourier’s law is reasonable. In such cases,
the presence of a deformation gradient in the spatial heat flux reflects this
fact and may be physically justified. However, from the computational view-
point, the more efficient formulation is very often the material one, mainly due
to less contribution to the tangent operator. Then, the application of Fourier’s
law for the Piola-Kirchhoff heat flux density vector, i.e., the referential heat
flux directly proportional to the referential temperature gradient, seems to be
a natural choice. In such a case, it should be clear that this can influence the
thermal fields, in particular in the most distorted mesh parts of the simulated
specimen.
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