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CIRCULAR ARC CRACK AND CONCENTRIC INHOMOGENEITY IN
AN INFINITE ISOTROPIC ELASTIC PLATE UNDER TENSION

R RBHARGAVA AND RAM NARAY AN (POWAI, BOMBAY)

A circular inhomogeneity i5 embedded in an infinite elastic material which also confains a
circular arc crack. The inhomogeneity and the crack are concentric but the radius of the crack is
greater than that of inhomogeneity. The infinite plate is subject to a traction at infinity. The above
elasticity problem is solved in this paper using complex variable method, in the circular region
bounded by the radius of the crack including inhomogeneity. Some numerical calculations have
been done. It is seen that a more flexible inhomogeneity than outside material decreases the stress
intensity factor at the tips of the crack. Also, as expected, the stress intensity factor increases as the
 crack moves away from the inhomogeneity in the case when the inhomogeneity is more flexible
" than outside material, while it decreases in the case of more rigid inhomogeneity,

1. INTRODUCTION

The study of crack problems was first initiated by INcris 1], Grirprra [2] and
NeuBer [3]. A number of problems [4-10] have been solved in elasticity theory
on the stress distribution around a crack in an infinite flat plate subject to either
extensional or flexural loading at infinity. A simple method for some types of two-
dimensional crack problems has been given by MuskuELISHVILI [11]. The method
is based upon complex variable formulation of the problem. ENGLAND [12] extended
Muskhelishvili’s technique and gave a solution to an arc crack around the circular
elastic inhomogeneity in an infinite plate under traction at infinity. In this case
(considered by England) the crack exists at the boundary of the circular inhomo-
gengity. '

As is well known, Inclusion problems have been considered by various authors,
i.e., by FrReNkEL [13], MorT and Navarro [14], Esneiey [15], Jaswon and Brar-
GAVA [16] and others. The problem, when there is a circular inhomogeneity ‘and
another circular hole in an infinite medium undef traction at infinity, has been
considered by BHarGavA and Karcor [17]. The problem of a straight line crack
and inhomogeneity in an infinite medium has been considered by TamaTe {18]
and BaarGAava R, D. and BHArcava R. R. [19]°

In the present paper, the problem of two-dimensional elastic circular inhomo-
geneity and a circular arc crack in an infinite isotropic elastic material is considered.
The circular crack has the rame cenire (taken as origin) as the inhomogeneity but
is of different radius. The radii of the crack and the inhomogeneity are a and C,
respectively, and a>C. The crack subtends an angle 2a at the centre. The edges
of the cut are free from external stresses and the plate is subject to a tension
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N at infinity in X, ¥ plane making an angle § with the X-axis. The X-axis
passes through the mid-point of the crack (Fig. 1). The problem is considered
to be the plane problem, and thus the ¥-axis is in the plane of the section.
The inhomogeneity is welded to outside material to avoid slipping. -

Wy As is well known, the stresses
‘ Py, (i,j=r, 8 in polar coordinates)
ki 1 14 lﬁ are known if two complex potential
\ . T functions @ (z) and ¥ (z) are known,
/*"' These are related to stresses P;; by
K > the relations:
#i Hm ‘ -
¥ - i X Prr+P69=2_[qj(Z)+q)(z)],
> 7 Ton = {(1.1)
/ Km Prr+iPrG:[@(Z)+
¥y + 5(2_) —z¢'(2) -
\ - —GER ¥ ().
Nz

Similarly the displacement compo-

Fig, 1. Configuration and coordinate system. nents U,, U, are related to ¢ (2,
¥ (z) by the relation

~

‘ g
1.2) 2455 e (U +iUy)} =iz [KD (2) — @ (2) +29" (2) +(5/2) ¥(2)],

where z=re, y is the shear modulus, K=3-4 ¢ for the plane strain, and K=
=(3—0)/(1+0) for generalized plane stress, ¢ being Poisson’s ratio.

If the resultant traction at outer boundary is zero, the functions @ (z) and ¥ (2)
at large distances from the origin are of the form:

(1.3) B@=T+0E"D, PE=I"+0@E),
Where
2ue
—(N1+N2)+l l-i-'K’
and

i ,
== (N Np)e .

Here N,, N, are the values of the principal stresses at infinity, f is the angle made
by the direction of N, with X-axis and g, denotes the value of the rotation at
infinity. '3t will be assumed that g, is zetro.

It is convenient to define a new function £ (z) by the relation

e @ _ e\ & _[a
w  owmsf-e(D)-2ele)

Z
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whence
a2 a _[a®\ &
(1.5) ¥(z)= @(z)—-w—Q( )—7@)'(2).
The behaviour of £ (z) near the origin is given by
aZ

(1.6) Q@)=-I"_;+0Q).

From (1.13,, (1.2), (1.4) it may be seen that

a? zZ 1
P, +iPe=@(2)+Q (?)+Z_ (;2"—?) ¥(z),
(1.7

a

sy -slsoi-of)of5-) ]
.uag {e. (Ur+1 0)}212 K (Z)—Q z —Z 2 P (Z) -
For solving the problem, two sets of functions {@ (z), ¥ (z), 2 (z)} are to be
evaluated. One will relate to circular inhomogeneity. This will be distinguished
by writing the subscripts  to @ (2}, ¥ (2} and 2 (2). The other will relate to the rest

of the region extending up to infinity, including the arc crack. The subscripts m
affixed to the functions will cater for this region.

2. BOUNDARY CONDITIONS AND SOLUTION OF THE PROBLEM

Thus the boundary condition for the outer region may be written as foi!ows
At infinity,

2.1) ¢,,,(z)=1“+0(z"%), Y. (2)=I"+0(z"7%),

whence, at the origin,
2

2.2 2,.(z)= —++0().

Also at the rims of the crack, stresses are not applied. Thus (PL+iP3) = 0.
0] =<e
r=g

Note that we have used the superscripts + and — for stresses on the left and right
regions of the crack (Fig. 1). In terms of the functions @ (z) and £ (2), this condition
may be wriiten as

2.3) - SO+ (=0, &F(+02; (=0,

where the point z on the crack is distinguished by writing ¢ for z. The Egs. (2.3)
may readily be transformed into

[D, (1) +£2, (t)] Y -[D, O+, =
(@ () — 2, (I)} t—{o, (t)— 2y (0]~ =0

where' the symbols have obvious meanings,

(2.4)

Rozprawy Inzynierskie — @3
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Also on the commen interface between the inhomogeneity and the outer mate-
rial the stresses P,,, P, and displacements U,, U, are continuous. Noting that at
the boundary of the interface z= Ce'®, the above conditions may be written in terms
of @,, ¥, (j=i, m) with the help of (1.1); and (1.2} as follows:

D, (ce®) + B, (Ce=1% — Ce™ 1 &, (Ce™ ") e~ 22 F, (Ce™ )=, (Ce'®)+
.(2‘5) + Qﬁi (Ce“'e) it @;(Ce‘iﬂ) —e 20, (Ce™ 0y,
o [K,, @(Cel®) — B, (Ce™ ")+ Ce= &, (Ce™ )+~ 20 ¥, (Ce™ )] =

W

1 . - . oy : L
3#— [K, ®;(Ce®y— &, (Ce )+ Ce 0 @ (Cem 1)}~ 71 P, (Ce™9)].

We shall construct the complex potentials @, (z), ¥, (z) for the infinite plate
which satisfy the conditions given at infinity as well as along the rims of the crack
L and at the interface. For this purpose, we divide the comyplex potentials into two
parts

(26) Qjm (Z) = lem (Z) + @Zm (Z) 2 gym (Z) = ?1 m (Z) + 5UZi'n (Z) H
and henc;
(27) ' Qm (Z):le (Z)+92m (Z) *

The problem of the circular ar¢ crack in an infinite plate under temsion T at
infinity is already solved. The solution of the problem is given in [11] and [20]. This
solution denoted by @, (2), 24, (2); Dap (2), 22, (z) may be taken as the per-
turbation due to the presence of inhomogeneity. The functions @, (z) and 2y, (z)
are given by

& 1 [ z a+C a2]+D”+D‘2 a?
Jm(Z)—m C1?+C0‘;FC—1? |ttt
(2.8)

az] b, D_, a

=2

Z a
[C1;+CO+C_(-Z—+C_2 5 5 ;‘,

21 (2) ZTX(_zj

where X (z) denotes that branch of

(2.9} X(Z)=(Z_eﬁm)1”2 (iu ei“)llz

a a
- - - » . Z
which is single-valued in the entire plane cut along L such that X (z)— (a) for

|z] 00, Note that [11], @,,, (2); Qi (7) satisly the Lgs. (2.4). The constants Ci,
Co, C_1, C_3, Dy and D_, are given by

D0+P~1C1=2Fs P-1Cot+p..C=0, D—z‘“PoC—z”—*ZF’:

(2.10) 2o Ci4py C—2,=0, D_,4p C_,=0,

—Dotp  Ci=Do+po Co+pi C_1+p2C_3,
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where the constants p_, are the coefficients of the following power series expansions:
. | -
.11) (1= e ™2 (=2, P Y p o2l z<l,
: n=0
Pu= "Dty n=0,1,2,...

From (2.8), for |z|<a, &,, may be writien as

 —" z .
(212) (_?51'" (2):? 2 C: CI,T’
where n=0
213) Co=Do+poCo+p, Coi+p2C_s,

C: =p(u-1) Cl +Pl’l C0_+pr|+l C-—l +Pn+2 C—2 3 }'321 .

The corresponding function ¥, (z) which is derived from (1.5} may be expanded
in the region lzi<a as

1 [ral
(2']-4) Vynfz) =" ? Z D: (%)

where "0
(215) Di=n+1DC ,+{—D_,+p 1 C (+p_2Co+p_3C)dg,n+
F(P 0 Coat Py Cor P2y CotPouany €1) (1 =6g, 1),
n=0,1,2, ..., | '

where dg,n denotes the usual Kronecker delta.

Next, we construct the auxiliary potentials @, (z) and £2,, (). Note that
By Vi alveady salisfy tie conditions at infinity. Thervefore @,,, ¥;,, are taken
to be such functions which give zero tractions at infinity. This implies that

]
3

(2.16) D, (2)=0(z72), Vo (2)=0(z"2) il |z|->o00,
whence
(2.17) 2, (=0() if |z|—0.

Since the Eqgs. (2.4) are dual homogeneous Hilbert problems for two functions
@, (z) and Q,, (z) and @, (z), 2y, () already satisfy these equations, hence &,,,
Q,,, will also satisfy these Egs. (2.4). Moreover, @,,, (2) and Q,, (2} are analytic
in the entire plane cut along L. Hence these functions may be constructed by the
use of Muskhelishvili’s technique. Considering the conditions (2.16); (2.17) and
the fact that &,,, {z) and ¥,,, (2) could have poles of various orders at the origin,
we get 1

(2.18) By (2) :—; [Z A (;)+ Z A, (—;-) +

n=2 H=

it Sl e

=1 n=0




220 R, R, BEHARGAVA AND RAM NARAYAN

ew auoet] S (o) Sal:S

n=0
PYREENAR|
+X( ) 2 B_, z + Z 0 ’
.thre n=1 R=0
__ZP—kBrH-IH n=0, 12, .., Zp—kBk71=03
(2.20) - F=t
A-—n= Z Pka{rH»Ic)J ]1:2, 3, revy Z pkBA-(k+1):0-
k=0

k=0

The complex potential &,, (z) in the Bq. (2.19) and the corresponding function
¥, (2), obtained from the Eq. (1.5) for C<|z|<a, may be expanded in Laurent
series as follows: : /

1 hod n
e2)  Ca@=5 ZE(;) Vanl@ = Z ,,(a),

where
E—1:OJ
2.22) E_,=2 k;: PeB_eamys  1=23.,
-E'uzzpkBu—kMZp_.kBﬂ_{_k, n=0,1’2,””
k=0 k=1
F_I:O,
Fﬁn:(n.—l)Eﬁ("fz)_z P—kB‘n-chg, n=2, 3,,
7 (2.23) Ic.:Zl

F,=mn+1) ( 2 (pwBrtrira— Z PkBu+2—k) + Z Pr E—(n+k+2)_
=1 k=0 k=0

[1¢]
- Zp—kﬁf(n—k+2)! r=0, 1:23-; '

k=1

Substituting the Egs. (2.12), (2.14) and (2.21} into the Eq. (2.6), we get the expres-
sion of the complex potentials valid in the region C<|zj<a for infinite plate which
satisfy the conditions at infinity and along the rims of the crack L. Thus it may be

geen that
s S e+ SetimlZ]]

(2.24) n=t

¥ (2) = [Z’F( '+ Z( Dn*"*”")( )]

n=9
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where C, and D} are known constants, while E,, E_, and F, F_, are linear
functions of unknown constants B, and B_,.

On the other hand, the complex potentials @; and ¥, for the circulai inhomo-
geneity are holomorphic in the region {z|<C. They can directly be expanded in-
to Taylor series as ‘

@25) @1@—22 ( ) !irfl(z)H2 2 ( )

where G, and H, are unknown constants which are determined by the conditions
of continuity on |z|=C. Substituting the Egs. (2.24) and (2.25) into (2.5) to satisfy
the requirements of continuity of (P, +iP.) and (U,+ilp), and comparing the
coefficients of the same powers of ¢* on both sides, we obtain

. = _ a\2 _ -
(C;+Cg)+(E0+EO)_(“E) F_2=G0—|—G0,

_ He _ a\? ~
(ch C0)+ (KmFo Eo)’l'# sz(c) =KIGO_G()9
m

. ) . n _ _ C\n-2
E_n (“g_,) —(i’l— 1) (C::_PE") (_(1—) +(D:m2*F|n—2) (—:I—) —_

=—{(n-1) Gyt Hu-2}.
{2.26) \a
Hi

(G)" 1 . _ (C i’ Ij (C)u—-z
_”;I{mE—u E +E(”_1)(C;;+En) ?) ( n=2" n-2) d =

:(n_l)(;'u'i_Hﬂ——Z: nszi 3: ey

. C‘ a\n a\n+2
(C,1+En)( +{I’1+])E_" C F—(u+2) C :Gru

Hy ; _C n_ i ( a )n
Kn (Cn +En) ( o ) (’1+]) E n C +

m ; Nt

}'-!i _ d n+2
+){TFv(u+2) (E) =K;G,, n=L1,...

By eliminating G, and H,_, from the Egs. (2.26),.3, we get

Ll
Hon . Cyan _ o
227 E_,=-— -—-——ﬂ' e {(n—1) (a) (CI+E)+
( (] 1 ) + 1 .
‘(‘{nt
Hi
(;l;) -1 Chyan—-2 _ ’
(—a—) (D:Lz_Fu—Z)s n=2,3 ...

+m
K tts
— +1
#I?l
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The Egs. (2.26)_1,,_ and (2.26)¢ give

(ﬂ;Km)dKi (M)H c\2

L lll"’l - —_

F,=— n # (;) (Cr+ Cot+Eo+Eo),
2( ’)+K~1

Hon
(Juif(m)
- K;
ll'tl)l - C v =t E—
(M:) (a) (C,+E), n=12,...
+ K;
ﬂtﬂl

Substituting the Eqs. (2.22) inte (2.27) and (2.28), the following infinite sets
of linecar equations are obtained for B, B_,! ‘

Z’ Pchf(Hl):O,

(2.29) kzl ( H) _

1 Hi C\zn Ch\2e—2 _
ZPRB—(R+II)=_2— ‘(‘ﬁ‘m) {(”_1)( ) C:_(:I_) D:—z}'l'
k=0 +1 .

(2.28)

. C\2
F“(n+2)=(n+1) (zﬁ) E_,—

Zp—kBk—l_O:
k=1
@30 (AK,,,)_Kﬁ(&)H
—_ 1 ??1 - 1 tm ' !
Pox B = (Z B Z P—k-Bh)+ ) i A ®
k=1 k=0 k=1 2(j)+Kl——1
ﬂ"l
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@ B c? @ ;
@31) Zp_kBH..=(n+1)(1— az) D pBlgont
k=1 k=0

. Juil(n i-Km
s B
+7m££m (g) et C‘f-{-? JT________ (E)zf!+ .
i o
-+ -+
j‘tm )um

T 5 \ ] =
* (Z panfk_ Z Py Bn+k)n n= 1s2: A
k=0 k=1

After the determination of B, and B_,, the coefficients 4, and A_, are calculated
by the Egs. (2.20) and the coefficients G, and H, by the Eqgs. (2.26). Thus the problem
is reduced to the solution of infinite set of linear equations (2.29) and (2.30) in
the unknowns B,, B_, in which the values of I, I, K, w;/ttn, K., Cla are given
and p,, p, can be found out by (2.11).

Once the constants E,, F,, E_,, F_, are koown, these values are substituted

_into (2.24) to obtain the explicit values of @, and ¥,,; note that Cr, D, are already
known from (2.13), (2.15). Also the values of G,, H, are substituted into (2.25)
to find explicit expressions for @;(2), ¥;(2).

The stresses and displacements can directly be found out by substituting these
values of (@, ¥)) and (D, ¥, into (1.1} and (1.2).

A few particular cases of interest can be considered. Thus, for example, Jet the
elastic moduli of the inhomogeneity be the same as those of the outside material,
ie., let ;=u, and K,=K,. |t may be shown from (2.18) that &,,, and ¥,,, come
out to be identically zero. Similarly the case of cavity and arc crack can be obtained
by putting g, =0 in the Egs. (2.29) and (2.30). In this case K, and K; are cancelled
from (2.29) and (2.30), and therefore the stressed state in the sheet is independent
of Poisson’s ratio. For rigid inhomogeneity, one may take the limit p,-—>oo. In this
case K, remains in the Egs. (2.29) and (2.30) and hence the distribution of stresses
in the infinite plate changes with Poisson’s ratio. For rigid outside material, we
put p,—o0. '

3, STRESS INTENSITY FACIOR AT THE TIPS

Tt is of some interest to find out the effect of inhomogeneity on the strésses at
the crack tip. Consider the case when tension at infinity is applied in X-direction.
Thus we have I'=7/4 and I"=—-T/2.

The definition given by Six, PArIs and ERDOGAN [21] is used to find the stress
intensity factor. Tt is known that, in the case of an infinite plate with only a circular
arc crack of radius @ subtending an angle 2 at the centre (and no inhomogeneity
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or cavity), the stress intensity factor at the tips of the crack is given by (K, —iKa0),
where

¥ T Vasina [(1 L0 Zo:) oc+(1 'zof,) 30!.]
0= WJ/E) —sin®o-cos® o= Jeos o +sin®-z-jcos — |,
T Vasina [(

¢ 2 (1+sin? of2)

Using the same defiition for the stress intensity factor at the crack tips, but noting

the presence of inhomogeneity as in this paper, the stress intensity factor comes
out to be (K, —iK,), where

o o o o 3u
K, 1—sin?—-cos? -w) sin— 4+ (1 +sin? —) sin M] .

2 2 2 2 2

. ) 2(1+sin? «f2) { PO+ RS
Ky —iK; = (Ko —iKy0) | 1+ Sif o0 rRE1p? -
C2(L+sin? 0/2) (PS—RQ)]
- T ine FERWTl )

and

1
P=§ (5+12cose—cos2ae),

L NV B Venne,
Q_T (n_ _")SIDIIC{,

n=1

1 .
R="Z (6 sin & —sin 2a),

1 o
§= ra {Bo + E (B,+B_,)cos noc} .
n=1

4, NUMERICAL EXAMPLE

To know the effect of inhomogeneity on the crack tips, some numerical calcu-
lations have been done for the following values: Two cases of cracks were taken,
ong when it subtends an angle of 10° and another when it subtends 20° at the centre.
Poisson’s ratio is taken to be 1/3, therefore K;=K,,=1.666 and the problem is solved
as plane strain problem. The radius of the inhomogeneity is taken as plane strain
problem. The radius of the inhomogeneity is taken as 1.0 in all cases. The radius
of the crack was successively taken as 1.5 (.25) 2.5. Similarly the ratio of shear moduli
Hil pin, Was successively taken as 0, 1/3, 1/2, 1, and 3. i

In each case the set of linear equations in (2.29) and (2.30) have been solved
by the method of iteration and the first 15 values of B_, and B, arc determined.
This is ensuring good convergence. In Figs. 2, 3 the influence factor, i.e. (the stress
intensity factor with inhomogeneity) the stress intensity factor with only the crack
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in the infinite matérial, has been plotted versus the shear modulus ratio p/p,
for different values of @ and for the case when the crack subtends an angle of 10°.

In Fig. 4, the erack subtends an angle of 20°. The influence factor has been plot-
ted versus the radius of the circular arc for g;/ 1, =1/3, 1, 3, respectively. It is observ-

104 T I T

103

42/,

e, 2K

‘E L 20 _e/n”z/ﬂm

SR --"""“"a--—u:.
8 Ki/Kig, Kz [Kz0 =t

8

2009t )
2 =
3 T

= 0

: i S
“y -
£ ayy .

3

0.95

v | | I
0835 175 20 2.05 75

radius of the crack

Fig. 4. Crack tip stress intensity factor vs radius of the crack.

ed that the presence of more flexible inhomogeneity decreases the stress intensity
factor, while the more rigid inhomogeneity increases it; also for g, <, the stress
intensity factor increases as radius of crack increases, while for ;> u, the stress
intensity factor decreases as the radius increases.
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STRESZCZENIE

SZCZELINA O LUKU KOLOWYM T KONCENTRYCZNA INKLUZIA W NIESKONCZONEJ
1ZOTROPOWEJ PLYCIE SPREZYSTEJ] PODDANE] ROZCIAGANIU

W nieskonczonym ofrodku sprezystym umieszczona jest okragla inkluzja oraz szezelina o
huln kolowym. Inkluzja i szczelina sy rozmieszezone koncentrycznie, przy czym promien szezeliny
jest wickszy od promienia inkluzji. Nieskonczona plyta podgana jestw nieskoniczonosci rozcig-
ganiu. PowyZszy problem spredysty w niniejszej pracy zostal rozwigzany przy uzyciu metody zimien-
nej zespolonej w obszarze kolowym ograniczonym promieniem szozeliny i zawierajgcym wewnaftrz
inkluzjg. Przeprowadzono kilka obliczen numeryczanych. Wykazano, Zze jesli inkluzja jest podat-
nigjsza niz malerial otaczajacy, to wspdlczynnik koncentracii maprgzenia w kofcach szczeliny
maleje. Rowniez, czego nalezalo sig spodziewad, wspdlezynnik koncentracji naprezenia wzrasta
wraz z oddalaniem sie szezeliny od inkluzji w przypadku, gdy inkluzja jest podatnigjsza niz mate-
rial otaczajgcy, natomiast maleje w przypadku, gdy inkluzja jest sztywniejsza,

Pegswme

TPEIIMHA C KPYIOBOY AYTOW WM KOHUEHTPHUYECKOE BKJIFOUEHUE B BECKO-
HEYHOM M30TPOITHOW YIIPYIO¥W ITUIMTE TIOABEPTHYTOM PACTSOXEHITO

B GecxoHeYHOM yupyro# cpejle NOMECLICHE XPYTITIOE BKIIOUCHUS W TPeOIMHA © KPYTOROH Iyroif,
Bunroyenme B TpemmHa pacOoNIOMEHB KOHLUGHTPHYCCKH, IPH¥eM PafHyC TPeHIuHsl OOMALHIe, 1¢M
PamAyc BRMOYSHNA. DECKOHEWHAR INHTA NHOABEPTAgTes B OSCKOHEYHOCTH PACTIKCHMIO, BhIIes
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TNpABCACHHAA YIIPYrad 3afaya peilieHa B HACTOMLEH padoTe NPy BCRHONB30B2HEH METOA KOMILTeKC~
HOH nepeMentol B kpyrosol o0IacTH orpaHAYeRHON PauycoM TPeIIRHs! M COMepIKaBIIei BHYTDH
pritovenne. TEpOBe/eHO HECKONEKG YHCHEHHSIX DACIeTOB. [OKa3aH0, YTO eCAR BiINOYeHHe Goies
NOJAT/IHBO, WM OKpywalommit MaTepuan, Torga Xo>(AEIeHT XOHUCHTPANEH HAIPAKEHM
B BEPIUMHAX TPEIIRALT yGeiBaeT, TOme, TT0 CHENOBANO OKUEATS, KO3thhHIMEHT KOHIEHTPAHA
HANPMKCHAH BO3PACTAET COBMECTHO ¢ YAANCHACM TPCINEHEL OT BRINCYEHHS B CHYYac, KOLOA BXIH-
uerne Gonee TORATIMBO, HpM OKPYKRIOWKE MATEPHAT, BMECTO T0ro xoapdummert yGmBacr
B Chyyae, KOTAa BRMIOUCHHE #BIAETCA OONEE HECTKAM.
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