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The aim of the paper is to propose an improved procedure of damage material parameters
identification of the Chaboche model, coupled with the concept of isotropic damage model
proposed by Amar and Dufailly [2]. The proposed approach has been implemented into sub-
routines of the FE MSC.Marc code, as the user’s viscoplastic subroutine UVSCPL, and has
been used to perform FE static and dynamic computations. The paper gives a brief descrip-
tion of the Chaboche model including damage. The results are also presented of FE dynamic
analyses using the respective UVSCPL subroutine. Analyses have been made for the nickel-
based superalloy INCO718 and for steel. The numerical examples prove that the proposed
identification approach is effective and the numerical implementation is correct.
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1. Introduction

The identification of material parameters and numerical modelling of ma-
terial damage by means of continuum mechanics is the subject of the present
paper. The continuum damage mechanics deals with the microscale-defined dam-
age variables as an effective surface density of cracks or the density of cavity
intersections with a plane. For reference, see e.g. Kachanov [17] or Lemaitre
[24], where the authors focused on the extensive study of continuum damage
mechanics.

Since Kachanov [18] introduced in 1958 the concept of effective stress to
describe the rupture process under creep conditions, many theories of the con-
tinuous damage mechanics have been developed, regarding the concept of the
isotropic damage variable (see e.g. Rabotnov [31], Hayhurst and Leckie [16],
Lemaitre and Plumtree [25], Leckie [21], Simo and Ju [32], Fotiu et al.

[14], Skrzypek et al. [33]). In the present paper, the isotropic damage concept
is used (see Lemaitre [23] for details), which defines the surface density of mi-
crocracs and microcavities. For the sake of this concept the material damage
parameters are specified. This approach is introduced into the FE procedure
with the Chaboche model employed.
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2. Chaboche model equations

In the 1960s Perzyna [29] proposed the elasto-viscoplastic constitutive
model, based on the orthogonal condition in the plastic law. The extension of
the Perzyna law is the constitutive model proposed by Chaboche [12]. The
Chaboche model is based on the assumption of the strain additivity

(2.1) ε̇ = ε̇
E + ε̇

I ,

where ε̇ is the total strain rate, ε̇
E is the elastic strain rate and ε̇

I is the inelastic
strain rate.

The isotropic damage expressed by the scalar parameter fulfils the condition
D ∈ (0, 1). Based on the damage model proposed by Kachanov [18], the
effective tensor of elasticity B

∗ for damaged material may be represented by the
standard elasticity tensor B reduced by the damage parameter

(2.2) B
∗ = (1 −D) · B.

Therefore, the relation between the stress and strain rate for the assumed
isotropic model of material can be expressed as follows:

(2.3) σ̇ = (1 −D) · B : ε̇
E = B

∗ :
(

ε̇ − ε̇
I
)

.

Consequently, the nominal stress rate σ̇ is replaced by the effective stress rate
σ̇∗ in the damaged material, according to the formula

(2.4) σ̇
∗ =

σ̇

1 −D
.

Replacing the initial stress by the effective stress in the constitutive equations
of the undamaged material makes it possible to consider the case of damage.
Therefore the damage evolution D, proposed by Lemaitre [23], is expressed by
the equation

(2.5) Ḋ =

(

Y

S

)s

· ṗ.

The variables s and S are the damage material parameters, which are specified
on the basis of experimental tests. The rate of the equivalent plastic strain ṗ
will be specified in the next part of the paper. The function Y is determined by
the Young’s modulus E, the Poisson’s ratio ν and the current values of damage
D, the Huber–Mises equivalent stress σeq and the hydrostatic stress σH . This
function is called the damage strain energy release rate. It is expressed by the
equation

(2.6) Y =
σ2
eq

2 · (1 −D)2 · E
·
(

2

3
· (1 + ν) + 3 · (1 − 2 · ν) ·

(

σH
σeq

)2
)

.
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In isothermal conditions, the inelastic strain rate ε̇
I in the basic variant of the

Chaboche model can be expressed by the following formula

(2.7) ε̇
I =

3

2
· ṗ · σ

′ − X
′

J (σ′ − X′)
.

The rate ṗ is defined by the equation (see e.g. Amar and Dufailly [2])

(2.8) ṗ =

〈

J (σ′ − X
′)

1 −D
−R− k

K

〉n

where k, K and n are material parameters. The material constant k corresponds
to the initial yield stress, while the factor R describes the isotropic hardening.
Following σ

′ and X
′ are the deviatoric parts of stress tensor and back-stress

tensor. Additionally, the invariant J (σ′ − X
′) is specified as

(2.9) J
(

σ
′ − X

′
)

=

√

3

2
(σ′ − X′) : (σ′ − X′).

The evolution of the isotropic hardening R is defined by

(2.10) Ṙ = b · (R1 −R) · ṗ,

while the kinematic X hardening is described as

(2.11) Ẋ =
2

3
· a · ε̇I − c · X · ṗ.

The variables b, R1 and a, c are the material parameters, which have to be spec-
ified on the basis of laboratory tests. It should be noted that it is necessary to
establish eleven material parameters in the presented model: two elastic parame-
ters E and ν, seven inelastic parameters k, n, K, c, a, b, R1, and two additional
damage parameters S, s.

The detailed description of several variants of the Chaboche model, with the
material parameters specified, was given by the present author in [4] and [37].
The constitutive equations of the Chaboche model, with respect to a hierarchy
of various models, were presented by Chaboche in [12] and Woznica in [36].
Aktaa and Schinke [1] applied the damage model proposed by Hayhurst
[16] to the Chaboche model. In the paper [11] Brocks and Lin extended the
Chaboche viscoplastic law to a finite strain form based on an internal dissipation
inequality. The authors assumed a multiplicative decomposition of the deforma-
tion gradient into elastic and inelastic parts. In order to numerically investigate
the extended viscoplastic law, finite element algorithm and several examples were
presented.
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3. Application of the Chaboche model to FE open code

In the numerical analysis the MSC.Marc system has been used. It is a multi-
purpose, FEA program for advanced engineering simulations, ready to be ex-
tended by user’s subroutines. In order to apply the Chaboche model to the
MSC. Marc system, the user-defined subroutines UVSCPL [34] were applied,
with the inelastic strain rate and the stress increments specified. The main part
of the algorithm used in the UVSCPL subroutine is presented in the form of
a flow chart, in two variants. In Fig. 1 the undamaged Chaboche model is
shown and in Fig. 2 the damage is considered. The present author used this
UVSCPL procedure for static and dynamic analysis with the Chaboche model
(see e.g. [6] and [38]). It should be noted that the values of time functions should
be calculated in each step of iteration.

∆X =
∆t

2
·
(

Ẋt−∆t + Ẋt

)

, Xt = Xt−∆t + ∆X

∆R =
∆t

2
·
(

Ṙt−∆t + Ṙt

)

, Rt = Rt−∆t + ∆R

⇓
σ
′

t,X
′

t, J (σ′

t − X
′

t), J (σ′

t), tr (σt)

⇓

ṗt =

〈

J(σ′
t − X

′
t) −Rt − k

K

〉n

⇓

ε̇
I
t =

3

2
· ṗt ·

σ
′
t − X

′
t

J (σ′
t − X′

t)

⇓

Ẋt =
2

3
· a · ε̇It − c · Xt · ṗt

⇓
Ṙt = b · (RI −Rt) · ṗt

⇓
∆ε

I
t = ε̇

I
t · ∆tt

⇓
∆σt = B · (∆εt − ∆ε

I
t )

Fig. 1. Flow chart of the UVSCPL subroutine – Chaboche model.



IDENTIFICATION AND VALIDATION OF DAMAGE PARAMETERS ... 7

∆X =
∆t

2
·
(

Ẋt−∆t + Ẋt

)

, Xt = Xt−∆t + ∆X

∆R =
∆t

2
·
(

Ṙt−∆t + Ṙt

)

, Rt = Rt−∆t + ∆R

∆D =
∆t

2
·
(

Ḋt−∆t + Ḋt

)

, Dt = Dt−∆t + ∆D

⇓
σ
′

t,X
′

t, J (σ′

t − X
′

t), J (σ′

t), tr (σt),σeq, σH

⇓

ṗt =

〈

(J(σ′
t − X

′
t)/1 −Dt) −Rt − k

K

〉n

⇓

ε̇
I
t =

3

2
· ṗt ·

σ
′
t − X

′
t

J (σ′
t − X′

t)

⇓

Ẋt =
2

3
· a · ε̇It − c · Xt · ṗt

⇓
Ṙt = b · (RI −Rt) · ṗt

⇓

Yt =
σ2
eq

2 · (1 −Dt)2 · E
·
(

2

3
· (1 + ν) · +3 · (1 − 2 · ν) ·

(

σH
σeq

)2
)

⇓

Ḋt =

(

Yt
S

)s

· ṗt

⇓
B

∗

t = (1 −Dt) · B
⇓

∆ε
I
t = ε̇

I
t · ∆tt

⇓
∆σt = B · (∆εt − ∆ε

I
t )

Fig. 2. Flow chart of the UVSCPL subroutine – Chaboche model with damage.
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Additionally, at the beginning of a given time step ti, in the first iteration all
values with index t are taken as the final values from the previous step ti − ∆t.

It should be noted that other commercial FE codes exist; they enable us
to introduce the constitutive models defined by the user. For example, some
results can be specified of FE analyses. They are the user-defined material mod-
els UMAT, in the form of a subroutine introduced to the FE ABAQUS code
with the unified viscoplastic model proposed by Bodner and Partom [10]
and by Chaboche [13] for polycrystal alloys, and the creep model suggested
by Bertram and Olschewski [9] for single crystal alloys, coupled with the
anisotropic damage model. All these models are presented by Qi and Brock [30].

4. Identification of damage parameters

4.1. Concept of identification

The present author used the concept proposed by Amar and Dufailly [2]
in the process of identification of material parameters dealing with damage. In
this concept it is assumed that at the beginning of the identification process of
damage material parameters the basics constants for the Chaboche model are
specified. If the parameters: E, ν and k, n, K, c, a, b, R1 are known, the damage
material parameters can be specified. The detailed description of identification of
the material parameters for the Chaboche model is described e.g. by Kłosowski
[19] or Amar and Dufailly [2]. The design of experiments suitable for the para-
meter identification of the Chaboche material model under the uniaxial loading
and stationary temperature conditions has been proposed also by Furakawa
and Yagawa [15]. For the detailed studies of experimental methods in material
dynamics and impact, the author refers to the work [28].

The material parameters are usually identified on the basis of the uniaxial
tension tests. In the case of uniaxial tension tests, the stress tensor σ has one
non-vanishing component σ

(4.1) σ =









σ 0 0

0 0 0

0 0 0









,

while the Huber–Mises equivalent stress σeq = σ and the hydrostatic stress
σH = σ/3. Then the function of the energy density (Eq. (2.6)) can be rewritten as

(4.2) Y =
σ2

2 · (1 −D)2 · E
.
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For simplicity it has been assumed that rupture of the specimen is specified by
the rupture time tr, while D = 1.0. Additionally, in practical applications it is
necessary to specify the value of the critical damage Dc, which indicates the
limit of the theory. It should be noted that this factor must be lower than 1.0.
It usually lies between 0.2 and 0.8, depending on the type of material; see e.g.
Lemaitre [22]. Substituting Eq. (4.2) into Eq. (2.5) we obtain

(4.3)

Ḋ =

(

σ2

2 · (1 −D)2 · E · S

)s

· ṗ,

Ḋ · (1 −D)2·s =

(

σ2

2 · E · S

)s

· ṗ.

The author has assumed, as Amar and Dufailly in [2], that the value of
the parameter s is chosen arbitrarily; only the factor S has to be determined.
Then the interchange of variation is used; the Eq. (4.3) can be transformed to
the expressions

(4.4)

1
∫

0

(1 −D)2·s dD =
1

2 · s+ 1
=

tr
∫

0

(

σ2

2 · E · S

)s

· ṗ dt,

1

2 · s+ 1
=

(

1

2 · E · S

)s

·
tr
∫

0

σ2·s · ṗ dt ;

(2 · s+ 1)1/s = 2 · E · S · 1
(

tr
∫

0

σ2·s · ṗ dt
)1/s

.

Finally, we obtain the equation of the damage material parameter S

(4.5) S =
(2 · s+ 1)1/s

2 · E ·





tr
∫

0

(

σ2·s · ṗ
)

dt





1/s

.

We can notice that the parameter S depends on the parameter s and the
history of loading (directly on σ and ṗ). It is necessary to establish the rupture
time of the specimen tr form the uniaxial tensile tests. Additionally it is necessary
to obtain the value of the σj and ṗj at each time step. Calculations to the first
approximation of the value of the damage parameters have to be performed
without damage. To calculate the integral from Eq. (4.5), the present author
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used simple method of numerical integration, according to the formula

(4.6)

tr
∫

0

(

σ2·s · ṗ
)

dt =
n
∑

j=1

[

(σj)
2·s · ṗj · ∆tj

]

.

Therefore, in the next calculation step, knowing the value of the rupture
strain εr established in the laboratory test, the parameter S is calculated. The
first approximation of the parameter S is made on the basis of the Chaboche
model analysis without damage. According to Eq. (4.5), considering the evolu-
tion of the stress and ṗ, the first approximation of the damage parameter Si is
determined. The parameter S is evaluated from the following equation:

(4.7) Si+1 = Si ·
εexp
r

(εr)i
,

where εexp
r is the rupture strain, which has been established on the basis of the

experimental test; (εr)i and Si are the rupture strain and the value of damage
parameter S obtained in the i-th iteration of the numerical simulation (index i
specifies the number of approximation of the parameter S). In the above concept
of identification it is necessary to know the load history and the rupture time tr,
which corresponds to the rupture strain εr (leading to the rupture of specimen
of the investigated material).

4.2. Identification example – experiment simulation

In this section the present author is basing on the known material parame-
ters for Chaboche model with damage. For these known parameters the author
performed simulation of experiments of the uniaxial tensile tests, which are used
in the identification process of the damage parameters, according to the concept
of identification presented in the preceding section. At the beginning of the iden-
tification process of the damage parameters, the author assumed that the basic
parameters for Chaboche model are known (E, ν, k, n, K, c, a, b and R1).

Amar and Dufailly [2] presented the material parameters for nickel-based
superalloy INCO718 (at 650◦ C [2]): E = 162000.0 [MPa], ν = 0.3 [−],
k = 501 [MPa], b = 15.0 [−], R1 = −165.4 [MPa], a = 80000.0 [MPa],

c = 200.0 [−], n = 2.4 [−], K = 12790
[

(MPa · s)1/n
]

, S = 4.48 [MPa],

s = 3.0 [−]. On the basis of these material parameters, the authors performed
the simulation of the constant strain rate test for ε̇ = 0.01

[

s−1
]

(see Fig. 3,
“Experiment simulation”). The numerical calculation was performed for the truss
structure, subjected to the uniaxial tension test. The following geometrical para-
meters were assumed: length l = 1.0 [m] and cross-sectional area A = 0.001 [m2].
It should be noted that failure of the specimen happened suddenly, see Fig. 3.
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Fig. 3. Constant strain rate test for ε̇ = 0.01 s−1.

On the basis of the simulation of experiments performed for the constant
strain rate test ε̇ = 0.01

[

s−1
]

, the following rupture time texp
r = 1.92 [s] (which

corresponds to εexp
r = 0.0192 [–]) is established. For the purpose of the first

approximation of the damage parameters, the author carried out the numerical
calculations for the Chaboche model without damage to the limit of the strain
εexp
r (see Fig. 3). On the basis of these calculations the evolution of the stress

and the rate ṗ was specified, see Fig. 4.

Fig. 4. Stress and ṗ in the strain domain for ε̇ = 0.01 s−1.



12 A. AMBROZIAK

Additionally, at the beginning of the identification process, it was necessary
to assume the value of s. In the present investigation the author performed the
identification process for five assumed values of parameter s: 1.0; 2.0; 3.0; 4.0;
5.0. In these cases it is possible to observe evolution of the damage material
parameters. The values of parameters s may be specified optionally, but the au-
thor assumed them to be an integer S (the parameter s is the exponent in the
Eq. (2.5)). The first approximation of the parameter S (named S1 see Table 1), is
calculated on the basis of the Chaboche analysis without damage. The following
approximation Si, according to Eq. (4.7), is performed for the Chaboche model
coupled with damage. In each step of numerical calculations, strain (εr)i is spec-
ified and compared with the rupture strain obtained from laboratory tests. The
results of identification of the damage material parameters are given in Table 1.
It is possible to observe that the convergence of the parameter S is better for
higher values of the parameter s.

Table 1. Identification of damage parameters.

s = 1.0 [–]

i 1 2 3 4 5 6 7
Si [MPa] 0.179 0.200 0.219 0.232 0.250 0.260 0.265

(εr)i 0.0170 0.0175 0.0180 0.0183 0.0187 0.0190 0.0191
s = 2.0 [–]

i 1 2 3 4
Si [MPa] 1.99 2.10 2.15 2.20

(εr)i 0.0182 0.0187 0.0189 0.0191
s = 3.0 [–]

i 1 2 3 5
Si [MPa] 4.26 4.33 4.40 4.45

(εr)i 0.0189 0.0189 0.0190 0.0191
s = 4.0 [–]

i 1 2
Si [MPa] 6.15 6.25

(εr)i 0.0189 0.0191
s = 5.0 [–]

i 1 2
Si [MPa] 7.62 7.70

(εr)i 0.0190 0.0192

For each of the assumed values of the parameter s, parameters S are esti-
mated, see Table 1. For these pairs of damage material parameters, numerical
simulation of the uniaxial tension tests for ε̇ = 0.01 s−1 is performed, see Figs. 5
and 6. In spite of the same rupture strain εr specified for each pair of parameters
s and S, it is possible to observe small differences between strain vs. stress curves,
given in Figs. 5 and 6. These differences can be seen better on the background
of the strain vs. damage D curves.
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Fig. 7. Creep test for σ = 2000 [MPa] for different values of damage parameters.

Fig. 8. Creep test for σ = 2000 [MPa] for different values of damage parameters.

Similarly to the case of a constant strain rate, the damage parameters can

be determined on the basis of the creep tests. For that purpose the evolu-

tion of the stress and the rate ṗ (see Fig. 10) is performed. The parameter

S (see Eq. (4.5)) in the Chaboche model calculations without damage are ex-
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Fig. 9. Creep test for σ = 2000 [MPa] .

Fig. 10. Stress and ṗ in the time domain σ = const = 2000 [MPa].

ploited, see Fig. 9 (MSC_UVSCPL+Ch). On the basis of simulation of exper-

iments of the creep test, the rupture times tr = 1.045 [s] (which correspond to

εexp
r = 0.0171 [–]) are specified. Based on the stress and ṗ evolution (see Fig. 10)

the first approximation of the parameters S = 3.98 [MPa] is calculated for the

assumed value of s = 3.0 [–]. Next iteration of the numerical analysis gives the

final values of S = 4.45 [MPa].
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4.3. Identification example – direct experiment

In this section the present author identify the damage parameters for steel

at 20◦C, based on laboratory tests, performed by Kłosowski [19]. The ex-

perimental tests were carried out at the Department of General Mechanics of

RWTH Aachen. The following parameters for the basic variant of the Chaboche

model are taken for steel (see Kłosowski [19] for details): E = 223000 [MPa],

ν = 0.3 [–] and k = 210.15 [MPa], n = 9.51 [–], K = 14.085 [MPas1/n],

c = 38840 [–], a = 611700 [MPa], b = 16.74 [–], R1 = −138.48 [MPa].

Like in the former case (see preceding section), the damage material para-

meters for Chaboche model are specified on the basis of the constant strain rate

tests. According to the Eq. (4.5) and assuming the value of s = 2.0 [–], with

the following approximations considered, the parameter S = 0.4 [MPa] has been

specified.

The results of damage analysis for the estimated damage parameters

(s = 2.0 [–], S = 0.4 [MPa]) with two different strain rates ε̇ = 0.01
[

s−1
]

and ε̇ = 0.001
[

s−1
]

are given in Figs. 11 and 12. Good agreement has been

obtained of strain vs. stress curves from FE calculations and the experiment.

On the basis of numerical simulations the present author has observed that

the damage is indicated when the strain is equal to 0.01 [–]. The strains less than

0.01 [–] result in the zero value of the damage parameter D. There is no differ-

ence between the results obtained from the numerical simulations with damage

(MSC+UVSCPL+Ch+Dam) and without damage (MSC+UVSCPL+Ch), see

Fig. 13. This limit specified the strain at the damage threshold.

Fig. 11. Numerical simulation of the uniaxial tension test for ε̇ = 0.01
�
s−1

�
.
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Fig. 12. Numerical simulation of the uniaxial tension test for ε̇ = 0.001
�
s−1

�
.

Fig. 13. Numerical simulation of the uniaxial tension test for ε̇ = 0.01
�
s−1

�
to the εd.

In Table 2 the characteristic values of the ductile damage parameters for three

chosen types of steel are given. The strains εd and εr (see Table 2) specify the

strain at damage threshold and strain at failure, and Dc is the critical damage

(the value of damage parameter D at macrocracks initiation).
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Table 2. Characteristic ductile damage parameters.

Material εd [–] εr [–] Dc [–]

investigated steel 0.01 a) 0.45 b) 0.10 a)

steel XC 38 [23] 0.00 0.56 0.22

steel 30CD4 [23] 0.02 0.37 0.24

steel E24 [23] 0.50 0.88 0.17

a) parameters are established on the basis of numerical simulations of uniaxial tensile tests,
b) parameter is established on the basis of laboratory tests.

5. Numerical examples

5.1. Example 1

In this example the numerical analysis of circular steel plate under impact

load are investigated. According to symmetry of the structure and loading, a
quarter of the plate was analysed. The geometry of the plate used in the numeri-

cal calculations is shown in Fig. 14. In the analysis, the four-node shell elements
were applied (Element 139, see [34]). The verification was done of the assumed

boundary conditions and type of the analysis. For details see [3], where the au-
thor described the application of the Bodner–Partom constitutive equations in

the finite element analysis.

Fig. 14. Circular steel plate subjected to the impact pressure.
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For the examined material, the following parameters were assumed: the elas-
tic modulus E = 223000.0 [MPa], the Poisson’s ratio ν = 0.3 [–]; the thick-
ness of the steel plate t = 1 mm. Additionally, the following material pa-
rameters for Chaboche model were taken: k = 210.15 [MPa], n = 9.51 [–],
K = 14.085 [MPas1/n], c = 38840 [–], a = 611700 [MPa], b = 16.74 [–],
R1 = −138.48 [MPa], with the damage parameters s = 2.0 [–] and S = 0.4 [MPa]
estimated in the previous section.

The numerical calculations were performed using the proportional damping
matrix with the Rayleigh damping multipliers α = 3.46 · 10−6 and β = 27.32.
Parameters α and β are the stiffness matrix multiplier and the mass matrix
multiplier, respectively. They were calculated by the formula

(5.1)

α = 2 · (ξ2 · ω2 − ξ1 · ω1)

ω2
2 − ω2

1

,

β = 2 · ω1 · ω2 ·
(ξ1 · ω2 − ξ2 · ω1)

ω2
2 − ω2

1

,

assuming that for the value of critical damping, the first two frequencies were
given. The concept of specifying these multipliers is proposed in the paper [7].
To integrate the nonlinear equations of motion, the Newmark algorithm with
the time step ∆t = 5 · 10−7 was carried out.

Elasto-viscoplastic Chaboche model with damage is used to describe the be-
haviour of the steel plate under dynamic vibrations Fig. 15. These results of
numerical simulations are compared with the results of the experimental test,
which was performed in the impact pipe.

Fig. 15. Inelastic damped vibrations of the plate.
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It should be noted that the elastic solution (see Fig. 16) gives a completely
different response of the vibrations, while the Chaboche model calculations are
close to the experimental results. The maximum value of the damage parameter
in this case is about 0.002 [–], thus a non-damage state of the plate is observed.
Additionally, the velocity and acceleration plots (Figs. 17, 18) in the time domain
illustrate the dynamic behaviour of the plate under impact load.

Fig. 16. Elastic damped vibrations of the plate.

Fig. 17. Middle point velocity.
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Fig. 18. Middle point acceleration.

5.2. Example 2

At the beginning, the dynamic analysis of a rod subjected to the impact
force is presented. The elasto-viscoplastic constitutive equations of the Chaboche
model with damage are taken to describe the behaviour of the material. Numer-
ical calculations are performed for a simple truss structure, with the following
geometrical parameters: l = 1.0 [m] (length) and A = 0.001 [m2] (cross-section
area). One of the ends of the rod is fixed while the next end is free. The free end
of the truss element is subjected to impact forces F .

The dynamic analysis for three different values of the impact forces
F = 0.10 [MN] (see Fig. 20), F = 0.11 [MN] (see Fig. 21) and F = 0.12 [MN]
(see Fig. 22) is performed. The force is acting rapidly on the structures, in the
time t = 0.0 [s], see Fig. 19. For the calculation, the material constants, cor-
responding to the Chaboche model with the following damage constants were
taken (INCO718 at 650◦C [2], see also [20]): E = 159.0 [GPa], ν = 0.3 [–],
k = 514.21 [MPa], b = 60.0 [–], R1 = −194.39 [MPa], a = 170000.0 [MPa],

c = 500.0 [–], n = 4.0 [–], K = 1023.5
[

(MPa · s)1/n
]

, S = 4.48 [MPa],

s = 3.0 [–]. The reference calculations (named MSC_UWSCPL+Ch, see
Figs. 20, 21 and 22) were performed without damage, according to the FE pro-
cedure given in Fig. 1.

In the research, two variants of the Chaboche model analysis are compared
with each other: considering and neglecting the damage. In this case, small in-
fluence of damage is observed in the examined time range when the values of
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forces are F = 0.10 [MN] (see Fig. 20) and F = 0.11 [MN] (see Fig. 21). The
force F = 0.12 [MN] (see Fig. 22) results exceed the limiting damage value, the
specimen is destroyed. Evaluation of the damage parameter D, specified by Eq.
(2.5), as a function of time, is given in Fig. 23. Due to the merely numerical
character of the example, only the calculations for free vibrations are consid-
ered. To integrate the nonlinear equations of motion, in the present example the
Newmark algorithm [27] with the time step ∆t = 5 · 10−5 [s] is applied.

Fig. 19. Force factor value history diagram.

Fig. 20. Displacement diagram for F = 0.10 MN.
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Fig. 21. Displacement diagram for F = 0.11 MN.

Fig. 22. Displacement diagram for F = 0.12 MN.

In the second variant of calculations, geometry of the plate is taken from the
Example 1, see Fig. 14. In this case, the material parameters for INCO alloy at
650◦C are accepted for the description of the plate material. The evolution of
pressure in time domain is accepted according to Fig. 19. High value of the impact
pressure, p = 11.5 [105 Pa], was assumed for distinct presentation of application
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Fig. 23. Damage parameter evolution.

Fig. 24. Damage analysis with UVSCPL+UACTIV subroutines.
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Fig. 25. Displacement diagram with damage parameter evolution.

of the proposed procedure for damage analysis. It should be noted that the
subroutine UACTIV [34] was used to deactivate elements in the structure model,
when the value of the damage parameterD in all integration points of the element
is greater than the value of critical damage Dc. The vertical displacements for the
quarter of a plate are presented in Fig. 24. The elements close to symmetry lines
are deactivated due to evolution of the damage parameters, see Fig. 25. Then
the crack runs to a diagonal of the plate. Finally, the middle part of the plate
separates and moves rigidly. The author is aware of the fact that the detailed
investigation of the structure crack propagation is connected with dynamic crack
problems and the knowledge of explosions (see e.g. Nemitz [26], Basista and
Nowacki [8] and Włodarczyk [35] for details). Nevertheless, this calculated
example demonstrates practical applications of the presented procedure.

6. Conclusions and final remarks

In this study, the author proposed an improved concept of identification and
validation of damage parameters. A model of isotropic damage based on a con-
tinuum damage variable on the concept of effective stress, can be directly applied
in calculations. The procedures are presented to introduce the Chaboche model
considering damage, into the open commercial FE-program code. Identification is
made for nickel-based superalloy INCO718 and for steel by means of elastic mod-
ulus change caused by damage. The numerical examples prove that the Chaboche
law and the presented method of performing the numerical implementation, are
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effective. The future research should be concentrated on the development of the
FE procedure, with emphasis placed on temperature influences and criterion for
crack extension.

It is worth pointing out that the presented damage approach with the concept
of damage parameters identification has been successfully used by the present
author to describe the damage evaluation in the elasto-viscoplastic constitutive
equations of the Bodner–Partom model, (for details see [5]).
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