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Rail corrugation is a significant problem not only in heavy-haul freight but also in light rail
systems. Over the last years, considerable progress has been made in understanding, measuring
and treating corrugation problems also considered a matter of safety.

In the presented research, convolutional neural networks (CNNs) are used to identify the
occurrence of rail corrugation in light rail systems. The paper shows that by simultaneously
measuring the vibration and the sound pressure, it is possible to identify the rail corrugation
with a very small error.
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1. Introduction

Rail corrugation is a (quasi-) sinusoidal wavy wear of the rail surface. It ap-
pears as peaks of a bright metallic lustre and darker colour troughs of the
depth of a few tenths of a millimetre. Light bands correspond to the presence
of a harder material. The parameters characterising the corrugation are wave-
length λ (distance between peaks) and the wave amplitude (depth) A. Depend-
ing on the wavelength, the standard [1] distinguishes between corrugation with
short waves (λ = 30 ÷ 100 mm), medium waves (λ = 100 ÷ 300 mm) and long
waves (λ > 300 mm). An example of short-pitch corrugation in light rail systems
is shown in Fig. 1.

Rail corrugation has been known for at least the last 100 years, but for a long
time was considered an enigmatic phenomenon due to the fact that measured
corrugation wavelength did not relate to existing wear models.
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Fig. 1. An example of short-pitch corrugation in light rail systems.

Nowadays, it is already known that rail corrugation is caused by a great range
of dynamic processes, which have been widely discussed in the literature over
the last decades [2–12]. One of the first complex researches concerning this phe-
nomenon was conducted by Grassie [3, 5–8]. He points to the second torsional
resonance of powered wheelsets and the ‘pinned-pinned resonance’ of the rail as
the main causes of corrugation. The resonance of the unsprung mass of the ve-
hicle on the track stiffness is also considered a common cause of corrugation in
a wide variety of circumstances, particularly if there is a coincidence of the P2
resonance (associated with the resonance of the vehicle as an unsprung mass on
the track stiffness, typically close to the Hertz contact resonance) and the first
torsional resonance of the wheelsets [8]. That is why wavy wear is commonly
identified in the areas where the road encloses tram rails due to the excessive
stiffness of the track (soft rail pads reduce the development of wavy wear) [2].

The type and method of processing rail steel in steelworks during the rail
rolling, as well as the inhomogeneous structure of the rail steel material (presence
of decarburised places of lower hardness), are also often indicated as the causes of
corrugation [4]. Corrugation is also produced by the uniform movement of the
same types of trains with little differences in speed.

Since the beginning of the 20th century, rail corrugation has been a significant
problem not only in heavy-haul freight, but also in light rail systems [13]. If left
uncontrolled, it significantly increases the vibrations affecting the vehicle, as well
as the noise emitted to the environment – which can be higher by up to 15 dB
(A-weighted sound level) [4]. Due to this high noise level, corrugations are often
referred to as ‘roaring rails’. This is especially important in tram networks, which
often run in a highly urbanised environment, as shorter-pitch corrugation causes
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vibrations in the range of the acoustic band perceived by the human ear. Due to
the increased contact forces between the wheel and the rail, corrugation causes
an increased probability of damage to the rail zone in built-up tracks (cracks,
surface defects), damage to bogies (play in screw connections) and increased
wear of tram wheelsets. It is also associated with the formation of particular
types of rolling contact fatigue (RCF), such as squats and Belgrospi’s defect.

Over the last few years, considerable progress has been made not only in
understanding but also in measuring and treating corrugation problems, because
mitigating corrugation problems is also considered as it is a concern of safety.

The most common detection method of railway track corrugation is based on
time-frequency analysis by using bogie or axle box acceleration measurements.
An example of such an approach, based on the continuous wavelets analysis and
the feature modes from the empirical mode decomposition method (EMD), can
be found in [14] in which a coupling dynamics model was developed by using
the SIMPACK multibody software. A similar model-based approach was pre-
sented in [15] using the wavelet packet energy entropy (WP-EE) or in [16] using
the ensemble empirical mode decomposition (EEMD) to estimate corrugation
wavelength, then bispectrum features were extracted to recognize the depth with
a support vector machine (SVM). In [17], Zhang et al. proposed a corrugation
detection method using the variational mode decomposition method (VMD),
combined with the smooth pseudo Wigner-Ville distribution (SPWVD) signal
time-frequency analysis method to determine the wavelength and the location of
the corrugation. In [18], Xiao et al. proposed corrugation detection and classifi-
cation using a machine learning approach. The axle box acceleration signal was
decomposed by wavelet packet decomposition (WPD) and the subsignals were
analysed using an adaptive short-time Fourier transform (ASTFT) to obtain the
optimal resolution time-frequency distribution and compute the corresponding
entropy. The training and testing samples were classified using an SVM.

In addition to vibroacoustic methods, techniques based on scanning the rail
surface are also commonly used. In [19], Kang et al. proposed a corrugation
detection method based on laser imaging techniques, using multiple sensors in
parallel at high sampling frequency to capture the rail profile. In [20], Li et al.
used a 3D rail scanner to analyse the flatness of the rail surface and detect
corrugation using the time-frequency analysis based on the wavelet approach.

The measurement methods also include visual assessment (identification of
wear based on observing light and dark places on the running surface of the
rail head). Increasingly, deep learning methods are used, enabling to obtain pre-
cise results despite challenging conditions, such as deteriorated and changeable
lighting environments and various types of complex rail surface defects. Re-
cently, classification methods using complex deep convolutional neural networks
(CNNs) have become popular in corrugation detection and classification [21].
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This article proposes the implementation of CNNs in a supervised-learning
system (a classifier) for identifying sections with the occurrence of corrugation
based on vibration and acoustic signals. This solution allows to detect corruga-
tion while a vehicle (tram or train) equipped with vibration acceleration sensors
and microphones is moving on a track. In this research, we focus only on short-
pitch rail corrugation measurements, which are the dominant form of corrugation
in Polish railway and tram tracks.

2. Classification using CNNs

A classifier is a supervised-learning system that allows, based on teaching
examples and the applied learning algorithms, to associate the feature vectors
constituting its input with the class label. Learning classifier systems are used
in many areas to process very large data resources and automate the inference
process. It is impossible to fully review the specific applications of these systems
or even to mention all their application areas. In the context of this article,
it is noteworthy to mention the area of road roughness classification [22], intelli-
gent fault diagnosis of rotating machinery [23] or detection of damage to rolling
bearings [24].

Learning classifier systems are also used in the diagnostics of the track and
turnouts, for example, see [25–27]. One way to identify a class is to use deep
learning methods. Here, a CNN can be proposed. CNNs are particularly useful
in image and speech recognition but, more generally, in classification processes.

Such a network, in various configurations, performs better in many cases
compared to other solutions. It is the result of research on the visual cortex
[28, 29]. The most important component of a CNN is a convolutional layer. The
idea behind such a layer is that its neurons connect to only a small number
of the previous layer’s neurons (the receptive field). As a result, teaching such
a network is much faster and more effective than in the case of networks in which
neurons are fully connected. The weights of the neuron in the convolution layer
are filters that emphasise specific elementary features of the image. Thanks to
the use of a particular filter, a specific map of features is obtained. Different
filters are used to create a whole stack of feature maps.

Map of layer features l is calculated as [30]:

(2.1) xlj = f

(∑
d

kljd ∗ xl−1
d + blj

)
,

where l is network layer, xl−1
d is d-th vector of features in layer l − 1, xlj is j-th

vector of features in layer l, k is a convolution kernel, b is bias vector, and f is
activation function.
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In CNNs, the rectified linear unit (ReLU) activation function can be used [28]:

(2.2) f(x) =

{
x, x ≥ 0,

0, x < 0.

Another layer that can often be found in CNN is a pooling layer. Its purpose
is to subsample the input image in order to reduce both the risk of overtraining
and computational load. This is done by collecting input data using a specific
aggregate function (such as max or mean). Normalisation is often performed
between the convolution layer and the ReLU layer, which speeds up training
and reduces the sensitivity to initialisation values of the network weights. All
these layers can be used many times in the network.

The last part of the CNN are, as a rule, fully connected layers creating
a supervised learning classifier implemented in the form of a neural network
with a softmax function as an output. The output of a fully connected layer can
be expressed as:

(2.3) xl = g
(

(wl)Txl−1 + bl
)
,

where l is network layer, xl−1 is output of layer l − 1, xlj is output of layer l,
wl is fully connected layer weight matrix, b is bias vector, and g is activation
function.

The softmax function calculates for each neuron of the last fully connected
layer the probability that the network input vector belongs to a specific class
[31]:

(2.4) pc =
exp

(
(wL

c )TxL−1
)

C∑
c=1

exp ((wL
c )TxL−1)

,

where pc is the probability that the example x belongs to the class c, L is the
last layer of the CNN, xL−1 is the output of layer L – 1, w is vector of weights,
and C is number of classes.

The above expression allows to determine the loss function E:

(2.5) E = − 1

m

m∑
i=1

C∑
c=1

yc,i log(pc),

where m is number of teaching examples, yc,i is equal to 1 if c is the target class
for i-th example, and 0 otherwise.

Network learning algorithms minimise the loss function. The trained network
allows for the process of classifying the input feature vectors to take place.
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Due to the considerable effectiveness of convolutional networks in recognis-
ing images, it was decided to use them in identifying the occurrence of rail
corrugation.

3. Research methodology

In order to obtain training and test examples, 35 available recordings of
a low-floor tram ride through various measurement sections were used. The
locations of corrugation were known.

For the analysis, the vibration acceleration signal from one of the sensors
(Brüel & Kjaer type 4504) placed on the wheelset of the tram (on the right and
left axle box), measured in the vertical direction (perpendicular to the vehicle
axis), was selected. Both rails were affected by the corrugation in the measure-
ment section. The sound pressure was also used, measured with two microphones
(Brüel & Kjaer 4189-A-021) attached under the vehicle near the first wheelset,
on its left-hand and right-hand sides.

Additionally, the value of the averaged vehicle speed was determined based
on the spectral analysis of the signal obtained from a tachometer, which gene-
rated an impulse with every rotation of the wheel. The measurement data ac-
quisition was carried out using a 17-channel Brüel & Kjaer 3560-C acquisition
module. Signals were recorded synchronously in all measurement channels. The
signals were initially recorded with a frequency of approx. 65.5 kHz. Such a wide
range of recording was chosen as it was planned to use the results in many other
studies. Archiving recorded signals in digital form was done directly on a laptop
computer. Prior to the measurements, the measurement path was calibrated.

In Fig. 2, examples of short-time Fourier transform analyses for the cases of
occurrence and absence of corrugation are presented. The analyses are performed
on fragments of the original recording of vibration accelerations on the wheelset
of the tram in the vertical direction (perpendicular to the track) and narrowed
in the frequency and time domains.

As shown in Fig. 2, the detection of corrugation in some cases is not triv-
ial and must be based on an analysis of a sufficiently long signal fragment in
frequency bands in order to average the appropriate measures.

Due to the occurrence of the signs of the corrugation phenomenon in low
frequencies, the band was narrowed down to approx. 500 Hz, which was obtained
by filtering with a non-recursive filter and signal decimation. The high-pass
filtration above 10 Hz was also performed with the Butterworth filter due to the
presence of very significant vibrations in the band below the cut-off frequency
in all analysed recordings, regardless of the presence or absence of corrugation.
This narrowed the scope of the possibility of detecting the phenomenon of long-
wavelength corrugation; however, it allowed to partially remove the components
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a)

b)

c)

d)

Fig. 2. Results of short-time Fourier transform analyses for the case of corrugation (a)
and different track sections without corrugation (b), (c), (d).
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originating from completely different inputs than those sought. Of course, it
should be remembered that the generated vibration frequencies depend not only
on the wavelength but also on the travel speed.

In order to generate the appropriate number of training examples needed to
train and test classifiers, each recording was divided into smaller time sections
of 2.5 s. The length of the section was selected arbitrarily. Based on the ob-
tained fragments, point measurements of signals were determined. These were
root-mean square (RMS) values in five separate frequency bands for each of the
four measurement channels. Each band was approx. 50 Hz wide (after taking
into account the high-pass filtration, the first band effectively covered the range
of approx. 40 Hz). The highest band covered the range from approx. 200 Hz to
approx. 250 Hz. Due to the nature of the generation of the phenomenon, appro-
priate excitation should be expected exactly in these bands (depending on the
wavelength and speed of travel). Unfortunately, often other phenomena unre-
lated to corrugation may also occur in the same bands. Hence, other measures in
the range up to about 500 Hz were also taken into account: kurtosis, skewness,
impulse, crest, waveform and clearance factors. These measures were calculated
for both acceleration signals and sound pressure.

Additionally, the vehicle speed was taken into account at the classifier input.
There were relatively few sections where the presence of corrugation was found
by visual observation. In order to check the effectiveness of detecting corrugation,
many registrations of various types of substructure as well as crossings were used
for which no corrugation was found. Table 1 shows how many examples were
obtained in each set.

Table 1. The cardinality of subsets with examples.

Class The cardinality of learning sets

Positive – with corrugation 617

Negative – without corrugation 22565

Total 23182

Table 1 shows that the positive class is sparse and poorly represented in
relation to the alternative class. For this reason, the weighted percentage error
was used to assess the classification error, expressed by the formula:

(3.1) ε =
100

K

K∑
i=1

Ki∑
j=1,j 6=i

aij

Ki
,

where K is number of classes, Ki is number of elements in i-th class, and aij are
elements of the class distribution matrix (error matrix) outside the diagonal.
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4. Results and discussion

Figure 3 shows exemplary (randomly selected) components of the attribute
vector relating to vibration accelerations measured on the right-hand side of
the vehicle, which were normalised to the maximum value for the sections with
corrugation (Fig. 3a) and sections where no corrugation was found (Fig. 3b). The
first value presented in Fig. 3 is the normalised speed, the next are the effective

a)

b)

Fig. 3. Comparison of the vectors of acceleration signal measures from the sensor on the
right-hand side of the vehicle for the randomly selected fragments of signals obtained: a) from

sections with corrugation, b) from sections without corrugation.
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values in five bands followed by kurtosis, skewness, as well as factors of impulse,
crest, waveform and clearance. From the exemplary figures and the analysis
of data from a larger sample, it can be concluded that the identification of
corrugation on the basis of single measures for the data under consideration
may not be possible, and only an appropriate combination of these measures may
reduce the recognition error. This is due to the fact that in many cases, the
measurements that are sensitive to the occurrence of corrugation (e.g., RMS
value in the band up to approx. 50 Hz) are also sensitive to the occurrence of
other phenomena. Additionally, it is important to use information from both
sides of the vehicle, as certain phenomena (e.g., rail crack) may occur on just
one of them, which hinders the correct classification.

In order to solve the problem, a classifier based on convolutional networks
was chosen, as it is specialised in image recognition. Three variants were taken
into consideration: vibration acceleration signals only, solely acoustic pressure
signals, and both pressure and vibration signals simultaneously. Such an ana-
lysis made it possible to determine whether one of the measurements could be
eliminated in order to simplify the corrugation detection system.

For each of the aforementioned input data sets, the network was indepen-
dently configured by running multiple simulations to find the optimal network
structure. The structure of the convolutional network was selected using the sim-
plification method, comparing test errors expressing the inability of the network
to generalise the learned knowledge. Testing was conducted based on a hold-out
test, whereas 70% of the data were randomly selected for training and 30% of
the available examples were selected for testing. Such an assessment of a testing
error has the potential to inflate its value [32]. The tests were repeated 30 times
for each method.

The optimization of the network structure was carried out with regard to
the selection of the number of neurons in the convolution layers and the softmax
network layer. The kernel size was chosen arbitrarily to reduce the number of
parameters supplied.

An example of the results of the classification error for the test set for dif-
ferent network structures is shown in Fig. 4. This figure concerns the set of
vibration and sound pressure data considered jointly and two convolutionary
layers of the network. The number of neurons in the first layer of the softmax
network was marked with N . The output layer always contained two neurons
(identification of one of the two classes). The parameters n and m denote the
numbers of filters in both convolutional layers, respectively. It was assumed that
the number of filters in the first layer is smaller than in the second (for networks
with two layers), in accordance with the frequently used principle [28]. In order
to reduce the number of parameters, the number of filters in the second layer
was twice as large as in the first.
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Fig. 4. Influence of the network structure selection on the obtained classification errors.

The network weights were selected randomly, so the learning was carried out
many times to reduce the impact of the initial weight values on the results. Of
course, a repetition of 30 times may turn out to be too small to eliminate such
an impact. However, the optimization of the network structure (although it does
not ensure the global minimum classification error) allowed for the selection of
the structure with an acceptable error.

Further attempts were also made by adding another layer of the convolutional
network, but no improvement in the quality of the classification was achieved.

Based on the obtained results, the standard deviation was also calculated,
which allowed to assess the estimated stability of the classification error for
a given network. A diagram of the final form of the network, taking into account
both vibrations and acoustic pressure, is presented in Fig. 5.

Fig. 5. The structure of the convolutional network used to detect the phenomenon of rail
corrugation in the version that takes into account accelerometers and acoustic pressures (Acc
– accelerometers, Mic – microphone, L – left-hand and R – right-hand side, Vel – velocity).

Before the learning process, the effective values were normalised by relating
them to the maximum values obtained in the data set. The input layer of the
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network was an “image” composed of the vectors of the previously described
measures. In the final version, including vibration acceleration, sound pressure
and speed, a vector with 45 elements was fed to the network input.

The first convolutional layer in the network proposed in Fig. 4 was composed
of 18 filters (convolution kernels). The kernel in the first convolution layer was
1× 5 in size. The non-linear activation function ReLU defined by Eq. (2.2) was
used. Before the next convolution layer, a max-pooling layer with a dimension
of pooling region equal to 1× 4 was used. From areas of this dimension, the
maximum value was determined. Because the step size for traversing input was 1,
pooling regions overlap. The next convolution layer was built of 36 filters with
a size of 1× 4. After this layer, another max-pooling layer with a dimension of
pooling region equal to 1× 2 was used. The last layers of the network were layers
of the classical pattern recognition neural network with two fully connected
neuron layers of 10 and 2 neurons in size, respectively, and with a softmax
layer at the output. For the cases with only vibrations or only sound taken
into consideration, the network structure was simpler, although it also required
two convolutional layers.

Table 2 shows the best results for various network structures obtained on sep-
arate test sets, assessed using the error described by Eq. (3.1), with 30 averages
obtained by a hold-out test.

Table 2. Summary of the total classification error – the best average results obtained.

Variant Input measures included Weighted classification
error ε – mean [%]

Standard deviation
of error [%]

1 Only vibration accelerations 3.04 2.07

2 Only sound pressure 2.58 2.21

3 Sound pressure and vibration
acceleration combined

0.50 0.64

The analysis of the results shows that the best results can be obtained using
both vibrations and sound (variant 3). Taking these values into account at the
same time allows to obtain negligible identification errors. Presumably, if all
channels are taken into account, it increases the resistance to interferences that
may occur temporarily on some of the channels. Table 2 also shows that the re-
sults of the test error for variants 1 and 2 do not differ significantly, and the errors
obtained are also at an acceptable level in each of the considered cases. Taking
into account the fact that the diagnostic system mounted on the vehicle may
cover the same track section many times – which should increase the accuracy
of the final classification – it seems that such a system can be built based on two
measuring microphones or alternatively two vibration acceleration sensors. The
CNN made it possible to achieve a very small classification error, although its
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training, and especially the selection of the network structure, requires a long
time. However, the learned network can operate in real time, constituting the
basis for building a diagnostic system. It is also important to observe that fur-
ther simplification of the system, e.g., by leaving only one of the channels, meant
that the errors obtained were much higher (in the order of 8÷10%), which indi-
cates that measurements on both sides of the vehicle are necessary. This may be
due to the occurrence of vibration or acoustic phenomena, for example masking
the occurrence of corrugation on one side of the vehicle at the given moment.
Moreover, in the case of a theoretical situation when corrugation appears on
only one of the rails, it might not be possible to detect such a state.

5. Conclusions

As a result of the conducted analyses, it is possible to propose a system
for identifying the occurrence of rail corrugation. The proposed system can be
based on two microphones or two unidirectional vibration acceleration sensors
mounted on a wheelset. This solution allows to achieve corrugation detection
with errors that are fully acceptable. As shown, taking into account signals both
from microphones and accelerometers, the presented method allows to obtain
classification errors of 1%. It can be assumed that when considering multiple
runs of a tram equipped with the measuring system, the expected classification
error may be further reduced. The required measurement bandwidth covers the
range of low frequencies (up to approx. 500 Hz), and the measures used are very
simple to calculate. The multi-channel recording of signals with a relatively
low sampling frequency does not cause data collection problems. As shown,
a CNN with a simple architecture is very suitable for data analysis. However,
the process of building such a classifier is very time-consuming. The presented
results concern the best network structures among many considered, therefore,
optimising the network structure is not of a global nature. The obtained error
may be even smaller than the presented one.
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