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THREE-DIMENSIONAL STABILITY PROBLEMS OF COMPOSITE
MATERIALS ANL» COMPOSITE CONSTRUCTION COMPONENT‘S

AN.GUZ and LU. BABIC (KIBV)

Thtee-dimensional static and dynamic linearized problems of stability were posed both for
compressible and incompressible bodies. In the case of homogeneous sub-critical deformations
the general solutions to these problems were constructed. Corresponding vaviational principles were
formulated and their validity was proved. n the framework of the three-dimensional linearized

' theory, plane and spatial problems of instability of deformation of layered and fibre materials
_ both at small and at large elastic deformations were studied, The elastic stability of bars, plates
and rolled shells made of composite materials was studied and the regions of applicability of classi-
cal and improved theories applied here were determined.

INTRODUCTION

- The problem of stability in mechanics of deformable bodies is a typical problem

for thin-walled structural components of traditional materials and thus, in most
' cases, it has been posed in terms of one- and two-dimensional theories of bars,
plates and shells, basing on the hypotheses of Euler, Bernoulli, Kirchhoff and Laval.
These studies yielded many important results used later for designing different
types of reinforcement and structures.

In various branches of modern technology, the wide application of reinforced
materials, with their specific properties (an essential anisotropy in their deformability,
low displacement resistance etc.), required universally vatid approaches to the
stability calculations for structural components made of new composite materials.
" For these materials limits of application of classical theories should be especially
found. Currently, three main directions can be outlined in the stadies of stability
of composite structural components.

The first direction is related to studies carried out within the framework of
classical applied theories of bars, plates and shells. The foundations of applied
stability theories, methods of study and solutions to particular problems and also
an analysis of stability studies of elastic and inelastic systems are given in the well-
-known monographies of S. P. Timoshenko, A, N. Dinnik, A. R. RZhanicyn, V. V.
Bolotin, A. 8. Volmir, H. M. Mustari and K. Z. Galimov, A. F. Smirnov, P. L. Ogi-
balov and also in review papers by V. V. Bolotin and E. 1. Grigoluk, E. I. Grigoluk,
E. I Grigoluk and V. V. Kabanov, V. Hatchinson and V. Koiter, 1. }. Vorovid
and N. I. Minakova and others.
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The second direction includes studies based on more accurate applied theories
(of the type of S.P. Timoshenko, E. Reissner, S. A. Ambartsumian and others)
of bars, plates and shells. These theoties are formed by introdﬁcjng hypothesse,
which are less restrictive than the classical ones, or by using other means of reducing
three-dimensional problems to two-dimensional ones.

The third direction involes works which pose three-dimensional problems withou
using any hypotheses. Such an approach makes it possible to solve problems with
an essentially three-dimensional stress state (problems of mathematical tectonics
in rock mechanics, theory of surface phenomena and others), problems of mechanics
of polymer and reinforced materials and to calculate the structural components of
these materials. This approach provides also the possibility of error estimation and
the determination of ranges of applicability of the theories as dependent on physi-
cal-mechanical characteristics of the composite materials. In its application to sta-
bility investigations of composites and composite structural components (aniso-
tropic bodies) such an approach was developed in recent years in the USSR mainly
at the Institute of Mechanics of the Academy of Sciences of the Ukrainian SSR.

The present paper presents the results of a study of the elastic stability of compo-
sites and composite structural components in the framework ¢f a three-dimensional
linearized theory, including a study of certain general problems of the three-dimens-
ional theory of elastic stability [5, 6, 16-20, 26, 29, 32, 33, 36, 41, 44}, the elucidation
of possible mechanisms of loss of stability in the structure of layered and fibre
materials [8, 9, 10, 13, 17, 21, 22, 30, 34, 36, 38, 40, 44] and stability studies of bars
[14, 36, 44], plates [7, 11, 12, 29, 36, 44, 47, 48] and shells [2, 3,7, 15, 23, 24, 25,
36, 44, 45, 46, 50] made of composites, with the determination of ranges of
applicability of tha theories included. The results given in what follows have been
essentially obtained by the authors.

1. FUNDAMENTAL RELATIONS

We consider linearized problems and give fundamental relations for generalized:
stress a*' (or the non-symmetric Kirchhoft stress tensor £i"y and components of the
Green deformation tensor 2&;.

Compressible bodjes

The linearized equations of motion and boundary conditions in Lagrangian
coordinates, which before deformation coincide with curvilinear coordinates &; (x,=
=x,, (01, 62, 0;)) in the case of finite initial deformations, are of the form

(1.D V, [o*" (0" + Y, u’g)+0';1" v, "]+ X¥m=0,
and

(1.2) [0’*"’ (5,':‘+V,, ”3)4—0(’”;"""7” zd'"] Ni|slml’*'”,

respectively.
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The boundary conditions in displacements on a part of the surface 8, are
(1.3) thy)s,=0. ‘
The boundary conditions in the case of dynamic boundary problems are
(r.4) Uple0=0, Uplp p=0.
The initial conditions in the case of mixed dynamic problems are
(1.5) tle=0=0,  fil;0=0.

Note that inertial forces are not isolated from body forces in the relations (1.1)
and (1.2) and below. The relations for the components of the deformation tensor
are as follows:

(1.6) 2= (87 + V3 ug) Vit + (ST +V, 0™V, 1,

In terms of the Kirchhoff stress. tensor the relations (1.1} and (1.2) take the
following form: ,

(L7 Vit X*m=0,

(1.8) ‘ 17 N5, =P,

where

(1.9 1M=g*mP (30 4V, ul}+ 6"V, .

The lincarized state relations for the generalized stress tensor ¢*™ and for the
Kirchhofl stress tensor £ in the case of a hyper-elastic medium can be writien in
the following form:

(1.10) v g jinely
(1.11) 1M == gpriad Ve,
where

Ainaﬂ_léava(3+3)(3+3)o
{.12) AR A PP L v s L

‘ i
imafi ... ¢ S M irmﬂ..l___ i B i — 0

1.13) @ @+ Vo uig) 2 2 & ( dey  Oep, )@ )

Taking into account the relations (1.9) and (1.11), the Eqs. (1.1) and boundary
conditions (1.2) can be written as

(1.14) V: (@0 Y, 1)+ X*m=0,
(1.15) (@™ V5 1) Nyls, =P,

Assuming the extensions and shearing strains to be small as compared {o unity
(changes in areas and volumes are neglected), we obtain the basic relations for the
first version of the theory of small subcritical deformations. All the linearized rela-
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tions and equations remain valid if we disposc of the index and neglect changes
in size of the body before and after the deformation. If, however, elongations and
shears are small as compared to unity and the initial deformed state is determined
by means of the geometrical linear theory, then we get the second version of the
theory of small suberitical deformations. In that case, for components of the defor-
‘mations fensor we have ' '

(116) 28?j=VJ- l!?‘i—vi u?, 28“:Vj 'N,*"“Vi uj
and all the preceding relations remain valid if we take into account
(1.17) o %O‘ij’ . XFMoy XM Py P 5;’ + Vi z1,,(1; u %5:

For example, the linearized equations of motion (1.1) and boundary conditions

{1.2) have the form o
(118) ' v, (a""'+a{,”'V“ lt"’)+X'"=0,

(} ’19) (o-l'm_i_o.:)n V" um) Niifh:Pm’
where ¢ — components of the tensor of real stress.

Incompressible bodies

The linearized equations of motion, incompressibility conditions and boundary
conditions for stress can be represented in the following form:

(1.20) V, i Yyt G (0 4V g} p )+ XF=0,
(1.21)  GE (84 V) Vi u, =0,
(1.22) [P G 10+ Gt (O + Vo 1ig) Pl Nifs, =P

The linearized state relations for the symmetric tensor of generalized stress ¢ **
and the non-symmetric Kirchhoff stress tensor ¢ are written in the form

(1 23) O—*iu=ﬂ’irmq} V,’] U, +pG{i)ﬂ’
(129 e Yy g+ G (S5 Vo u) 2,

where, for a hyper-elastic body, the following holds:
(;_25) . pive8 = s _po (GBS G:)” _i_“G(l;thgn),

' H d d
1.26 itnafl __ ¢ 5 1 g am | {— 0 igl,
(1.26) K A+ V) gt g [ 5 ( 265, a0, ) @ +pGo]

It is necessary to note that in the case of an inc.ompressiblé ‘body,-argumams of
the clastic potential @°, in view of the incompressibility condition, follows the
relation ‘ :
(1.27) det ||6% + 265 i=15=1.

‘ For incompressible bodies the relations (1.20)(1.26} can be written also for
the case of small subcritical deformations. For example, for the first version of the
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theory of small subcritical deformations the linearized condition of incompressibi-
lity takes the form

(1.28) g (O +V; ul) Y, 1, =0,

We note that in the case of an incempressible body the relations (1.28) and
other relations of the first version on the theory of small subcritical deformations
do not follow directly from the relations (1.20)-(1.26). This is so since in the case
of small deformations the change of volume is determined by the first algebraic
mvariant, and for finite deformations by the third invariant of the Green deforma-
tion tensor.

Thus the relations given above exhaust the versions of posing dynamic and
static linearized problems of the theory of finite and small subcritical deformations.

2. VARIATIONAL PRINCIPLES

In formuiating variational principles we shall assyme that perturbations of
volume and surface forces do not depend on perturbations of displacement and the
functions under variation are continuously differentiable as many times as required.
We consider the variational principles of the Chu-Washizu type for static linearized
problems and we use the formulation of the latter in terms of the non-symmetric
Kirchhoff stress tensor. In that case, for the theory of finite subcritical deformations,
static problems are reduced to the relations (1.7)-(1.9) and (1.3), and for an in-

compressible body — to relations (1.20)-(1.22) and (1.3). We introduce the following
functionals: .

1
21) Il (2‘, o, u):- e wimocﬁ Vogs Vi — tim (‘vmi - Vi um) — X Uy dv—
2 £

v

- f Py ds— f N; ™™y, ds;
Sy 52 :
‘ I ,
(22) IZ (15 o, U, P) = f E ’Cmmﬂ 'z"a,ﬂ Vi - ('Umi - Vi um) +
v

: +pGg! (5:?+VH "3‘) vmi"'X*m um:ldz}* f pEm Up ds— le tim U dS;
S5y Y
where

(2.3) Vop= Vg thy.

If the requirements listed at the beginning of this paragraph are fulfilled, then from
the stationarity condition of the functional (2.1) (', o, u,, are subject to variation)
we obtain the relations (1.7), (2.3), (1.8), (1.11) and (1.3). In the same way, from the
stationarity condition of the functional (2.2) (', v,,, u,, P are subject to varjation)
the relations (1.20), (1.21), (1.22), (2.3), (1.24) and (1.3) follow.
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Thus it is characteristic of the formulated variational principles that all the
relations of linearized problems including the boundary conditions for displacements
can be obtained from the stationarity condition of respective functionals. In the
same way, by introducing suitable functionals, variational principles can be for-
mulated for various versions of the theory of small subcritical deformations.

3. GENERAL SOLUTIONS OF STATIC LINEARIZED PROBLEMS IN THE CASE OF UNIFORM
SUBCRITICAL. DEFORMATIONS

In what follows we assume that the 8, coordinates coincide with the rectangular
Cartesian coordinaies x,. Below, all the considerations are carried out in Lagrange
coordinates x, of the non-deformed body. _

Linearized relations between stress and derivatives of displacements for a trans-
versally isotropic compressible body in the case of a uniform initial state
G.1) Up =0 (4 — D) X;, 0'?;():511‘??0: U?j=5ij}7ja Ay=Ay=4,

' A=const,  pi=p;, P1=Pp:
can be wriiten in the following form:
For a compressible body with finite initial deformations

(3-2) 0:’;':5!) aik ;{k uk’k+(1 "“5“}) GU (/1; ui’j'f"zi uj, i) .

For the first version of the theory of small initial deformations it is necessary to
take into account the fact that o}, 0,

We note that for finite initial deformations and the first version of small initial
deformations the linearized relations (3.2) do not coincide with the relations for
a lnear transversally-isotropic body
(.3) A1 =dy,, G d12=26G1,  813=das, G3=Gus,

i=d;, GUEG““, Aj d,‘j?l:/i,- Aji s

For the second version of equations of the theory of small initial deformations

the relations between the stress and derivatives of displacements are of form

39 Gy =01y Oy Uy i+ (1— i) Gy (i 5+ 4, )

and coincide with the relations for a linear elastic anisotropic body.

We consider now the construction of general solutions of equations for finite
and various versions of small initial deformations in the case of static problems.
Solutions to equations of the type (1.1), (1.18) in the case of a uniform initial state,
(3.1) for a cylindrical transversally isotropic body whose axis of isotropy coincides
with the axis Ox, and with a curvilinear cross-section, can be represented in the form

d o2 d 92

=E? onodxy Xso M _EEW— Os 05 X

Uy

(3.5)

A(A B il ) 4 z + il
Haz= + axg X

= 2 2
ax;  ox;
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where # and s are a normal and a tangent to the contour, respectively, and the func-

tions ¥ and y fulfill the equations
32

2 —
(A+Cl P ) P=0,

(3.6)

2 2, #2 a 2 p2 a*
¥ +(C2+53)A"é}?§‘"+c.z 3 ax; x=0.

The solution (3.5) and (3.6) are general solutions for finite initial deformations and
different variants of small initial deformations. We write down the expressions for
the constants 4, B and {2 for all the versions of the problems.

For finite initial deformations

. Ay dgy ‘f‘P:: A2 _ Gy +P§ A™?

Ay a3+Gis

DTl A . GI3+P: A2
ay +py A2 LG tpi AT

(@13 +P§ A7 N (Gys +P§l*2) ]é
T e +pT A7) (G D L

Cc= (11 +P5 A7) (@33 +p3 A3 D H(Gra+p1 27D (Gra+ps A7) — (@3 +64s)
(@11 +p7 A (Grs+py 477 )

For the first version of the theory of small initial deformations in the formulae
{3.7), it should be that p,~p;.

" For the second version of the theory of small initial deformations in the ex-
pressions (3.7), it should be assured that p} ~p;, Ay=i=1.

Ft is necessary to note that constants a,, G;; entering the relations (3.2)-3.7)
have different form for different versions of the theory. The general solutions con-
structed here enable one to obtain, for different versions of the theory, character-
istic determinants of a large group of stability problems of reinforced rhaterials
and structural components. Those characteristic determinants can be buill for an
arbitrary form of an elastic potential and it is only for numerical calculations that
it is necessary to set a specific form of the potential for calculating the constanis
ay, and Gy ;.

For an incompressible transversally-isotropic body, the linearized equations of
state for the case of finite initial deformations can be represented in the form
(3.8 0':,-"_” Sin g (L =80} i (A 4 2y 1t )+ 0100 277
The gencral solutions of the static equations (1.20) in the case of a uniform initial
state have the form

0 o d a*

2

(B7 CZ=Cx [C?-

— Y |/ —
oy " ondx, X7 e on Bndx, *°
1 3 i

2—6113 /“Lz+a12/1 2 —

=

3
B9 =27 4y, p=a [(mz A

) 3 1 S I a
—Hi3 ;"»2“?13:'12)4'*(!1133“2‘!‘!’:3 ) sz]
3

1

s

M=d=1"%, A=l 0:?:5;;}7:, P?=P:,
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where ¥ and x satlsfy Egs. (3.6), and the quantitics {2 can be determined by means

of the formuiae .
1 1 1

PENE o 2 B "—c+{02 2 A7) 7
R A A ’

A7 (2 s +Y)
3 3 ' "
2C={[A% @33 — A" (ay3+ pt; 3)+P;] A% —[27 (a3 + pya) —
: 3

s 3
—A"* (‘3'12”1'2‘4"12)_/1— 2 Pi]} [2‘3'2 (e 12‘*‘1):)}—1-

The constants &y, and g, can be calculated from the respective relations; the latter
depend on the form of the elastic potential.

4. STABILITY OF REINFORCED LAYERED AND FIBROUS MATERIALS

Layered materials

Basing on the general solutions given above, plane and three-dimensional prob-
lems of stability of deformation of layered materials at small and highly elastic
subcritical deformations are considered, i.e. the loss of stability of structure of the
material is studied for the case when the wave-length of the form of loss of stability
1s not determined by the length of the sample or the shape of the structure component,
but by the relations between the geometric and mechanical characteristics of the
layers. The reinforced materials are assumed to be piece-wise homogeneous, that
is the problemis are posed as exact ones. The material is composed of subsequent
layers of the bond and the filler. In the case of small subcritical deformations the
materials of the layers are assumed to be orthotropic, and for finite initial defor-
mations problems with transversally isotropic layers are considered. In order to
solve the considered problems, it is necessary to construct such solutions of the
equations (3.6) and (3.7) for a compressible body or of the equations (3.6) and
(3.10) for an incompressible one, which satisfy suitable periodicity and symmetry
conditions accordingly to the type of stability loss (bending, symmetric and others).
Then, the continuity conditions of the -vectors of stress and displacement at the
line separating the layers

- *
4.1 Pfi|x3j= _,,=p;*5_1);x§q (1), Pzalxw _;.—P*“)| g Al P3§1)1x3,= ~},,:pggx)ug;)=,,(1),

— g4 s 301)
ulj|x3i=-—il'_ugi)|x§;)a --:l"z([J ] uZi’x:‘i:—n"‘u(I !x&l)mk(l)’ u3iix3,-—h u3; !xa(;l)—h(l)

result in a homogeneous sysiem of equations which, through related conditions of
the existence of non-trivial solutions, yield characteristic equations determining the
critical loadings. All the quantities related to layers of filler are marked by the index
“17.

As for particular cases we obtain and study characteristic equations for the
following problems: stability of a strip (layer) bounded by two half-planes (half-spa-
ces); stability of the interface, between a compressible and. an incompressible medium,
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in the form of half-planes (half-spaces); surface instability of a half-plane (half-space)
of a compressible and an incompressible material,

It has been found that an internal loss of stability does not occur at cach grouping
of components in a composite. It does occur when the less rigid layers of the bond
are substantially thicker than the layers of the filler (at low concentrations of the
filler). The critical values of the parameters of wave excitation when there is loss
of stability in the structure of the material at /A > 10 can be determined with suffi-
cient precision by replacing layers of the filler with half-planes (half-spaces). In

{1}
B and
0 a0
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and the corresponding quantities w!") as dependent on the parameter EX/E for
isotropic layers. In Fig. 2 the dependence of the quantities p*')/E™" on the patameter
of wave-excitation w'!) is displayed for the bending form of stability loss for ortho-

tropic layers.
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It is necessary to note that all the numerical results obtained here, including
those displayed in Figs. | and 2, are valid for the following problems in the case
of small deformations; the three-dimensional non-axially-symmetric problem

P
W) = ]/——2— + 5 K1 (transversally isotropic layers); the three-dimensional axially-

-syminetric problem o'V=(h")/R) x, J, (x,}=0 and the plane problem (orthotroplc
layers) M= k{11,

In Figs. 3 and 4 the relations are displayed between the parameters of the critical
shortening and the parameter of wave excitation (‘"= zh!1)/I --- for a plane prob-

T
{(ﬂ l‘; \

96 |—\\ | 1.

a4 >,
v,
NG
N
[\ NG
~

AN J
: \\\ . \\\\

N
3 - _:Z"/f/

g
Tﬂ. 50 100 200 1600 ajo0

£

Fic., 5. ’ . Fia. 6.

lem, W=, (AV/R) for a three-dimensional axially-symuetric problem)
the case of finite inifial deformations (the clastic potential was chosen in the form
of Treloar and Muyni).

Fibrous materials

We consider the stability loss of a hollow (continuous) fibre having a circular
cross-section, placed in an infinite elastic medium, under compression of intensity g
acting along the fibre. For a composite with a low volume-percentage of fibres the
assumed model is fully valid and the results obtained below present first approxi-
mation. These results describe completely enough the mechanisms of stability loss
of a fibre material when the concentration of the filler is small and the wavelength
of the form of the instability loss is substantially smaller than the distance between
the fibres.

Assuming that a full coupling between a fibre and the filler is achieved on the
cylindrical interfaces between the fibre and the filler and on the free internal surface
" of the fibre, we set the following conditions in terms of strain and displacements:.

Pr]r=R=P:1)ir=R= PGIr:R__'Pgl)'r:R: Pl R=P(1 |r R>

“.2) r]r=R=u$1}|r Rs Ugjr= R=u§’?lr=n, 3= R""u |r R>
1
PS }ir—-R=O= Ps Jr= =x=0, Pg”]r:ll""'o-
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. 4 i
In Fig. 5 the dependence of the quantity -~ - 10* on the wave excitation para-
E p

meter mR/l is displayed for various ratios EV/E at $9==0.05 (S and S’ — concen-
trations of the bond and the filler respectively) and y=v(==0.3 in the case an iso-
tropic filler and continuous fibre. In Fig. 6 the dependence of the value of critical
deformation pIE! (0%M=—p5*") and of the wave excitation parameter mR//
on the ratio EM/E is given for v=vM=0.4 (a logarithmic scale is assumed for the
abscissa). The curves drawn in dashed lines were taken from the paper by M. A.
Savovsky, S. L. Pu, M. A. HUSSAIN (Buckling of microfibres, J. Appl. Mech., 34,
4, 1967). For the dash-point curve the value v=1y"=0.3 was assumed.

Figure 7 shows in a logarithmic scale the relations between the wavelength of
buckling waves and the diameter of a fibres which is situated in an elastic matrix
and is subjected to compression at different ratios E/E and v=v"=0.4. Also,
experimental points are indicated there for various diameters of the glass fibre.
Those points were obtained at the setting of the epoxy matrix. The experimental
data was obtained from works of the Institute of Mechanics of the Ukrainian SSR

25600
| A
0.500 T l F
i 't
Q445 !
460
25800
0300
121
250 i
0100 H
25 gt . ; _
25 . 25 22;0 G.05 20% 405 505 805
.4
FiG, 7. Fua. 8.

and from a paper by B. Rosen. A linear dependence between the wavelength and the
fibre diameter follows from the cited results. The coincidence of theoretical and
experimental data allows us to interpret the appearance of wave-like shapes of
fibres at cuts of composites as a result of an elastic stability loss at a high temperature.

In Figs. 8 to 10 numerical results are given for the Treloar potential &= (I, —3)
in the case of finite subcritical deformations (the materials of the matrix and the
fibre are assumed to be incompressible and isotropic). In Fig. 8 the relation between
critical shortening 1 and the wave-excitation parameter w=nR// is displayed. The
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cuwrves 1, 2, ..., 6 are related to the following values of the parameter f=C"/C=
=0; 0,05; 5; 10; 20; 500, respectively. Ue note that the curve “1” corresponds
to the problem of surface instability of a cylindrical cavity and for rx--»o0 the critical
extension A tends to its asymptotic value 1*=0.44, No internal loss of stability was
discovered within a wide range of change of parameters § (0< #<500) and # (0.005<
£r<10.2).
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In Figs. 9 to 10 some results are given for the case of a non-axially-symmetric
form of loss of stability. For <1 (Fig. 9) no internal loss of stability is observed
(indices 1, 2, 3 and 4 correspond to £=0.00005; 0.05; 0.1; 0.5). At f>1 (Fig. 10)
the loss of stability occurs in the structure of the material in a non-axially-symmetric
form and the wavelength of the form of loss of étabi]ity grows with £ growing (in-
dices [, 2, ..., 5 correspond to f=35, 10, 50, 500, 5000) and the results obtained in
the cases of bendmg and torsion coincide. ;

5. STABILITY OF BARS, PLATES AND.CYLINDRICAL SHELLS

We consider first the stability of a transversally isotropic bar of a circular cross-
-section, which is compressed along its axis by stresses of intensity p. In Fig. 11
relations are given between the parameter p¥=p../p, (p.— critical stress obtained
basing on the hypothesis of plane cross-sections) and the quaniity a=nR//. The
indices 1, 2, 3, ..., 7 correspond to the values E,/G=86, 10, 20, 30, 40, 60, 100, respec-
tively. The dotted curves were obtained in accordance with the theory of Timoshenko.
Figure 12 presents results on the stability of a glass-plastic bar which was reinforced
mostly in the 10ng1tudmal direction.

As can be seen from the diagram, the theorehcal curve agrees well with the
experimental data.
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In Fig. 13 relations between the non-dimensional parameter p* and the wave-
-excitation parameter o are presented. The indices 1,2,3 and 4 correspond to
E5/G=>5, 20, 50, 100, respectively. The results given in Fig. 13 are valid for a long
orthotropic plate (w=nh/l) and also for plates which are rectangular transver-
sally-isotropic  @?= ((nmfa)*+(zxn/6>}) h, circular (w=rw; (B/R)) Jo (i y=0) or
annular J; () Ny (5 RIRo)=J,, (ke (R) N, ()==0. '
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Figures 14 to 19 show results on the stability of cylindrical transversally-isotropic
and orthotropic shells. For the case of axially-symmetric deformations, resulis are
given in Figs. 14 to 16 p*=p_./p., p. critical loading calculated using the Kirchhoff-
-Laval hypothesis k=m=R/l. In Figs. 14 to 15, the indices 1,2, ...,9 correspond
to £,/G=E,[G\,=E,/G,3=4, 10, 20, 30, 40, 50, 60, 80, 100, and E,/Ey=E,/E,=1,
Viz=vy =03 v 3=v,;3:=0.2. In Fig. 16 the indices 1,2,3 and 4 correspond to
2R/ R=1/150, 1/160, 1/75, 1/50 and E,/E,=0.3, E,[E;=0.5, v,,==0.25, v,3=0.30,
Va2 =0.10.

For non-axially-symmetric deformations, numerical results were obtained using
the method of power series (1,7). In Fig, 17 relations are given between the non-di-
mensional parameter of loading p* and the quantity R/2k, which were obtained




THREE-DIMENSIONAL STABILITY PROBLEMS OF COMPOSITE MATERIALS 627

* .~ =
g / \\'lfs_____’/}\ \"‘-——__I‘.‘—.‘i—-—-‘/)‘\ﬂ
4 e
< A -
! PN Rt WL D S
7
}Lf’=5 //
a0 T b //
! A R NN e
09 /v x /"“‘-—-'l‘i R /I
/
Py 5 e
&/ o % = - /
AR NI B el . i
‘: ! - 7‘\ rd ‘/
I:Q/ ;L_if_rfj - .,7/\\"—- L n:ﬂ.—’// 'Ji
& o
17 4 & - e VL PO o Y

28

oF
a7 / e /
h [
2 & / '
) 5
<

) 4 4 |4
< -
VA B 22
3&\:‘/! 'f

|t

04 :
1 2 3 /R

Fia, 18,

from the three-dimensional linearized equations (solid lines) and in accordance
with a corrected kinematic theory of the Timoshenko type (dashed lines) in the case
of an axial compression of a cylindrically-orthotropic shell, the ma.erial of which
is characterized by the following mechanical parameters: E,/[E,=0.10, E,/E,=1.00,
Ey[G53==2.50, v, ,==1,3,=0.20, v,3=0.25.

In Fig. 18 diagrams are presented for the dependence of the non-dimensional
parameter of pressure ¢* on the quantities //R. Solid lines are drawn for a “‘dead”
and “dash-dot” lines for a “traciag” uniform side loading, and dashed lines corres-

2
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pond to the kinematic theory of the Timoshenko type. In Fig. 19 the solid curves
are obtained in accordance with a static theory and the dashed curves in accordance
with a kinematic theory of the Timoshenko type. Results are displayed for the
following mechanical and geometrical characteristics 1 By [E3 =0.1, B, [Ey =1, E3[G 3=
=2.5, V1,=v,,=0.2, v,3,=0.25, 2h/R=0.04.

In afl the figures 17 to 19 the curves with' the indices 1, 2, 3 and 4 correspond o
E3[G=E4/G,,=E,[G,;=5, 20, 50, 100; # — pumber of waves in the circular direc-
tion; the number of half-waves along the generatrix is given in parenthesis.
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STRESZCZENIE

TROIWYMIAROWE ZAGADNIENIA STATECZNOSCI MATER[ALOW KOMPOZYTO-
WYCH T WYKONANYCH Z NICH ELEMENTOW KONSTRUKCIT

Sformutowano trojwymiarowe statyczoe i dynamiczne zlinearyzowane zagadnienia stabilnogci
scisliwych i niescifliwych cial, a w przypadku jednorodnych podkrytycanych deformacji zbudowano
ich ogélne rozwigzania. Sformutowano i udowodniono odpowiednie zasady wariacyjne. W ramach
trojwymiarowej zlinearyzowanej teorii zbadano plaskie i prrzestrzenne zagadnienia o niestatecz-
nosci deformacii warstwowych i wibknistych materialow przy malych i duzych sprezystych defor-
macjach. Zbadano spreZysty statecznosé pretéw, plyt i walcowych powlok, wykonanych z materia-
16w kompozytowych oraz okrelono obszary stosowalnoéci klasyeznych i usci$lonych stosowanych
teorii,

Pesome

TPEXMEPHBIE 3AAYH YCTOHYMBOCTH KOHIO3SMTHEIX MATEPVATIOR
¥ DIEMEHTOB KOHCTPYEKLIMIT ¥3 HUX

Jlara NOCTAHOBER TPEXMEPHBIX CTATHICCKEX H JBHAMAYCCKHX JHHCADHIEPOBAHNEIX 33734
CHEMAEMEIX H HECKAMAEMBIX TEC H, B ClyYae OTHOPOIEEIX TOKPHTHYeCKHX medopManyii, rocTpo-
€Hb BX 00mue pementd. CHOPMYIMPOBAREI B JOKA3AHE COOTREYCTBYIOMING BAPHATIHONHEIC IPRH-
umitkl. B paMgax TPEXMEPHOH NHHCAPESHPOBANTOH TEOPRE MCCNEHOBAHL! IITOCKHE M MPOCTPAH-
CTEEHHEIE 3A0AYH O HEYCIOHYRBOCTH AcHODPMHPOBAHHA CHOHCTHIX ¥ BONOXHHECTEIX MATEPHAJIOB
UpH Maneix H BRICOKOIMACTHYECKAX Aedopmammiax., M3ywena ynpyras yCToiMEBOCTL CTepiieti,
DAcTHH A WHIHANDEYECTRS. 060I0%CK, BHIOILTHCHEIX B3 KOMIIO3HTHEIX MATEPHAANOB, M ONPENE/ICHE]
COARCTYH OPAMEHHMOCTE KAACCHIECKMX B YTOUHEHHIX IPHEKNAIRLIN TEOPHIL
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