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STRESS CONCENTRATIONS IN NON-HOMOGENEOUS ELASTIC LAYER
WEAKENED BY CRACKS

M. MATCZYNSKI (WARSZAWA)

The paper presents the statical problem of stress concentrations around the tips of two semi-
-infinite cracks situated within an infinite, non-homogenous elastic layer. The conditions of antiplane
state of strain are assumed to be satisfied. The outer boundaries of the layer arve rigidly clamped,
while the crack surfaces are loaded by presciribed forces, -

The application of the complex exponential Fourier transform reduces the problem of determin-
ing the stress intensity factors at the crack tips to the solution of a corresponding system of Wiener-
-Hopf equations, By assuming the cracks to be located symmetrically with respect to the interface
between the two elastic materials, the sysiem of equations splits up into two separate Wiener-Hopf
equations; their exact solutions are derived.

Stress intensity factors at the two crack tips are determined and several particular cases are
discussed. The solution is illustrated by an example in which the displacements are prescribed
along the boundaries of the layer, the crack surfaces being free from loading. '

1. FORMULATION OF THE PROBLEM

Let us ccusider an Infinite elastic layer of thickress 2h, its midd'e surface sepa-
rating two infinite and homegencous layers characterized by different elastic prop-
erties. Assume each of these  layers .
to contain a semi-infindie crack, both ‘ T
cracks being located symmetrically - )

= —— — o figbe e ] !
woe dr (3 v ‘\}(Z) o

with respect to the interface between

the layers (Fig. 1). I ]}(3! |
Tt is additionally assumed that R 1T Attales RSO

the system is subject to an antiplane . " e e

state of strain. This means that the id

displacerment w (x, ) is the only Fi. 1.

identically non-vanishing component .

of the displacemen: vector expressed in the iectangular coordinate system (x,
¥, z). In the absence of body forces the Lamé equilibrinm equaticns reduce to the
single equation

(1.1 V2 wix, y)=0.

The identically non-vanishing stress components are expressed in the form
ow ow

(1.2 O (X, ¥)=p— ——

(1.2) (x, ») Bors 0% 9) S

4 being the Lamé constant,
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The paper is aimed at determining the o,, stress intensity factors at the tips of
the cracks under the assumpticn that the layer boundaries y= th are rigidly clamp-
ed, and the crack surfaces are loaded by arbitrary forces (Fig. 1).

The boundary conditions of the problem considered are the following:

w(x,+h)=0 for |xl<oo,
(1.3) Oy (% hyy=p, () for  x <0,
Gy, (X, — hy)=p, (x) for x <0.

The preblem will be solved by means of the complex integral Fourier transform [1]

1 > o
Fu))= = [ reeyy e as,
(1.4) : I

w+ity

1
X, ¥) = —— F(a, ¥y e” ™ du.
S )= mf @ e

Here o=q-}ir, the region of regularity of F(x, ) is a certain strip {'c_ <Imo<71,,
|Reat.|<00}, and the path of integration in Eq. (1.4), is situated in the region of
regularity of F(x, ¥), i.e. 7_ <79 <74. Account will also be taken of the fact that
the function F{e, y) expressed by Eq. (1.4), may be represented, within its regularity
" region, in the form [2]

(1.5) Fo, p)=F (o, W+ F" (2, ),
where
1 Li]
F )= [ sy e a,

=0

(1.6)

1 (el
F* (oc,y)=]‘/7-—n"f Sflx, y) e dx.
4]

The funtctions F~ (a, ) and F* («, ¥} are analytic functicns of the complex variable
e in the respective half-planes Ima <z, and Ime>7_.

Applying the integral F-transform (1.4) to the relations (1.1) and (1.2) we
obtain

d*Wia,y)
0 —&* W{e, ¥)=0,
. (1'7) g e, y)= —ipeW(a, )
W (e, y)
Lol Y)mpp—.

ay
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The solutions of Eq. (1.7); is now writien in terms of hyperbolic functions to yicld
the following expressions for the F-tiansforms of the displacement w and stresses
Trezy T ‘

Wilw, y)=A o) shay-Bfa) chay,

(1.8) Xy (@ Y)=—iua[4 (o) shoy+ B(e) chay],
2z (e, Y=o 14 (&) chay+ B («) shoey].

The unknown functions A («) and B (%) occurring in these formulae must be deter-
mined from the corresponding beundary conditions.

2. SOLUTION OF THE BOUNDARY VALUE PROBLEM

In order to sclve the problem of a layer with clamped edges formulated above,
let us cut layer along the plane separating the two different materials and impose
the condition of equal (as vet unknown) displacements w (x)==w (x) at the newly-cre-
ated surfaces (Fig. 1).

The solution of the initial problem may now be composed of sclutions of the
problems I and I concerning homaogenecus lavers contaiping single cracks.

The boundary conditions cof the problems I and II are now complemented by
the corresponding conditions of continuity of the displacement and stress vectors:

Problem I

w(x, =0 for jx|<eo,

wix, )=w(x; for |x|<oo,
(2.1) oy (%, By)=p, (x) for x <0,
[w(x, hy)=0 fer x>0,

{7,z (x, £2)]==0 for  [x] <o,
Problem I
i {x, —A)=0 for  |x|<oo,
wix, 0)=w(x) for |x|<co,
2.2) O X, —ha)=p, (x) for x <0,
Tw (x,— ) ]=0 for x>0,
{[Gs’z (xa—hz)]}mo for IX} < oo,

in addition, at the intereference between the layers the condition of continuity
of the stress vector must be satisfied,

{2.3} [o,.(x, 0}[[=0 for |x!<oo.
The symbol [ F(x, )] derotes the jump of f(x, y) at the plane (x, ¥} defined as follows:
[/ (x, Ml=lim f(x, y}—lim f(x, y).

y—ht LY
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Applying the standard method of solution of such problems, let us cut the layers
corresponding to the problems I and II along the planes containing the cracks.
In view of the conditions (2.1)~(2.3) we obtain the following boundary conditions
for the two problems considered:

Problem 1

1
wx, F)=0 for ix|<oo,
W (x, 0= () for  |x|<eo,
2
24 3’,,, (x, ha)=0,,(x, B)=pi (x) for x <0,
1 2 .
wix, h)y=w{x, k) for x>0,
1
a,.{x, hz)=c2r3,z (x, hy) for x>0.
Problem I . '
w{x, 0)=w(x) for |x|<too,
W, —h)=0 for  |x|<oo,
3 4 )
(2'5) Ty (x5 —hl)zo-yz (x5 _..hz)=p2 (x) for x <05
3 4
wx, —h)=w(x, —hs) for x>0,
3 4
6y, (%, — h)=0,, (x, —h2) for x>0
and
@6) 5e (5, 0)=0,, (5, 0)  for  |xl<oo,

the upper indices m=1, 2, 3, 4 denoting the displacement and stress o, in the re-
spective layers 1-4 (Fig. 1).

Performing the F-transforms (1.4) on the functions (2.4)~(2.5) and using the
necessary relations (1.8), the first three boundary conditions (2.4)-(2.5) yield the
following results:

Problem I
’ 1 thah, 1
W(OC, kz): - 'ﬂi o 2}’2(0:7 hz),
2.7
=" 5 by W@
W(OC, 2)_ P yz(oca 2.) Ckotkz &).
Problem II
3 thah, 3 B+ 1 i
W(“’ '“hz)_ - uy o Zyz (Gt, - 2) C]lodiz (0(.),
(2.3)

thukl +

4
W (a, ““th=7;27 Zyz (o —hy).
!
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Here
2 1 2 R
2.!'2 (30, O)E DT Zyz (OC: hZ)_ My & W(G-) thahz ]
chah,
(2.9)

3 3
Eyz (aﬂ 0) = Zyz ({X, '"“hz) +an o W(OC) tho&kz .

Chotk ]

The expressions (2.7) and (2.8) are now subtracted from each other, and the
function W {e) in Eq. (2.9) is found by means of Egs. (2.6 writing the z-transforms
in the form (1.5, and using the conditions of continuity of the displacement and
stress vectors between the individual layers, we obtain the system of equations

5 = hshz ” Pf_f(z)
W= k)= #y zchzh* chz(1 —h*) L0, 1%) chzi*’

hshz W (2}

v — — hFy= — —— —h*
(2_1()) 14 (Z, h*) £ zchzh* chz (l —ﬁ*) 21':(2, h )+ chza*’

i = #y_ —hE
Wiz) (pt1 + j1) 2 shak* [Eyz{zah ) 2yelz,—h o,
Here
% 1 2 .
W=z, A=W~ (2, i)~ W~ (z, h¥),
- 3 4
2.1D) Wz, -h")=W-(z, ~B¥)— W (z, —h¥),

Z=ka, k*-_—'hzlh, h"'—"hl +h2~

The system (2.10) represents a system of Wienei-Hopf integral equations; after
certain algebraic transformations and by eliminating W («) from the first two equa-
© tions, the system may be decomposed into two single Wiener-Hopf equations:

P {=—-H(2) [¢" i2)+ 5] ()],

(2.12)
_9'* ()= — K@) [¥* (2)+55 (2)].
Here
_ shz
H(z)= z ch zh* ch z1 —-h*)’
@.13) |
: chz
K(2)=

zsh zh* ch z (1 —h*)
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The unknown functions & (z), ¥+ (z) are determined as fcilows:

&= (@)= W G B W (o =,

1 * &
¥ (Z)z_h_ [.ul W_ (Z, hgg)‘”-aZ w- (Z> —h*)]s
2.14) '

1 1
b (Z)"—;E;;(Z, h¥)+ ;;E;; (z, —h*),
1

D™ ()= Z (2, h*)— I, (2. k%),

and the known, functions S, (z), (m=1, 2), are represented in the form

i i
Sy (2= u-lZ,;(Z,k*)“!‘ ;‘;E,}(z, —h*),

2.15)
S; @=Z,(z, h*)-Z,. (s —h%).

In order to determine the regions of regularity of Eqgs. (2.12) let us observe tl at
H(z) is regular in the strip {{Im z| <o, [Re z|< oo}, and the function K(z) is regular
in the strip {—y<Jm z<0, |Re z| <oo} or {0<Im z<y, |Re z| <co},
where

i 0<h* i |~ for 0 h*<2
—— & [ —
s 211 for  0<i™<7- ) Iz(l—k*) or UsEST
e ekt 1% e Zanra
e er S <l1; Ih* or IS <1.

The criteria of applicability of the F-transforms (1.4) and certain physical con-
siderations yield the conclusion that there exists such a non-negative real number
7, <& that the functions = (2), ¥~ (z), S, (z) and &7 (z) ¥+ (2) possess common
regions of regnlarity and, namely, the respective half-planes Im z <0 and Imi z> —134.
This result and also the earlier siatement cencerning the regularity regions of
H(z) and K(2) enable us to determine the common strip of regularity of both
Egs. (2.12), :

Q:{-d<—1,<Imz<0, |Re z]<ecol.

Lei us now pass to the standard method of solution for egs. (2.2) by means
of factorization [2] and observe that the functions (2.13) may be represented in the
form 1

H(z)=;z—5H’(z) Ht (2,
(2.16)

K@= K0 K ().




STRESS CONCENTRATIONS IN NON-HOMOGENEOUS ELASTIC LAYER... 565
Here F( i fzh*)r[ 1 iz(1 -—h*)] 18z
— —
2 2 i
H+(Z)=

iz ’
r(i-7)
n

izh*\ [1  iz(l—p%)] =
r{i- rl—- —|e=

i 2 i
1’( 1 iz) 7
2 x

H™(2y=H"(~2), K (2)=—% K*(-z),

2.17)

1

z

f=In [(h*)"* {(1—h*)t -h*] .
The functions H*(z) are regular and non-zerc in the tespeciive half-planes
Im z> —4 and Im z <4d; the functivn K —(2) is regular and non-zero in the half-plane
Im z<0, and the functicn K*(z) is non-zero in the half-plane lm z> -~y amd is

regular within it except the peint at infinity which is the branchpoint.
The func*ions (2.16) are substituted in Eqs. (2.12) to yield for ze

2 ol (z)_‘ + +¢
- H_(Z)wH (2} B* (2)+E, (2),
18
N —h*glm(Z)=K+(z)‘P+(z)+E (2)
Here K@) o
(2.19) Ei@=H* (@) S (), E,(@O=K*{5; (z).

. The functicns £, (z) are regulai within the common stiip Q, {-d<Imz<r,,
|Re z| <o}, 7, being so selected as to satisfy the conditions or existence cf the Foirans-
forms of p, (x), p, (x). The functions E,, (z} determined in this manner may be
represented in the region {~d<e. <Imz<e, <1, [Rez|<w} in the form 2]

(2.20) E,(2)=E (z)~E, (2),

where the functions

wtie— o+ iey

i Em (O — 1
(2‘21) E’;:- (z)z 5;{-; f ?;_ dga Em (Z) = 2; f

o+ iE ~+tieg.

En(Q)
A,

are regular in the respective half-planes Im z> — & and Im Z<1y.
On using Eq. (2.20), the relations (2.18) may be written in the form

D (z) .
~# B Q=) 0 4 (),
. ¥-(z)

K~ (2)

_h +Ey ()=K* (@) ¥* ()+E7 ().
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whence, on the basis of the generalized Liouville theorem, the solution of the Wisner-
-Hopf equations (2.12) is obtained:

! . Ef (@)
PR O T gy
(2.22) )
1 ao—E; ()
Y@= —m K @le—E @, PTET e

The functions ®7(z), ¥~(z) and @7 (z), ¥*¥(z) aic regular in the respective
half-planes Im z <0 and Tm z> —7, and & is a certain constant to be determined
from the condition of equalibrivm of external forces,

In the considered case of a layer with rigidly clamped edges (y= £ #) the equili-
brium of external loads requires that

[£a]

(2.23) [ oo iydx— [ oulx,—=h)dx=0,

and in view of the F-transform (1.4) this condition may be replaced with
(2.24) 2 (0, )= Z,.{0, —h)=0.
On the ether hand, Egs. (1.8) may be used to prove that
(o, )

Zalos W= G Ty

and then the relation (2.24) may be written in the form
Z,2(0, h*¥)— 2,40, - h*)=0.

Thus, by means of Egs. (2.14), and (2.15), the finai form of the equilibriuvm conditicn
(2.23) is obtained.:

(2.25) P+ (0)+5; 10)=0.

1f the loading of the crack surfaces is such that the point z=0 belongs tc the strip
£, representing the regularity region of E, (2), i.e. when 7,>0, then, in view cf
regularity of the functions W*(z) and §7(z) in the region 2,, the expressions in
Eq. (2.25) make sease and no additional assumpﬂous concerning the loads applied
to the &dges are necessary. :

On the contrary, if the ioadings are such that the potat z=0 does not beloag to
the regicn £, i.e. when 7,,=0, then the expressions in Eq. (2.25} exist only under
the condition that S (z) assumes a finite value at z==0. This requirement leads, due
{o the F-transform definition (1.4), to an additional cendition on the crack boundary
loading and, namely, 1o the condition of convergence of the integral

0

(2.26) f Fay, (X, Bo) 60, (x, —12)] dx

—a
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Makmg use of Egs. (2.22), and of the fact that £ *(0)=1, we obtain from Eg.
{2.25) in the general case the relation

(2.27) ao=E; ()= S; (0) (z,>0).

H7,>0, Bgs. 2.19) and (2.20) may be used te write the constant dg in a simpler
folm

(2.28) ao=E; (0) (r,>0).

Once the solution of the Wiener-Hopf Eqs. (2.12) is known, we may proceed
to determine the F-transforms of the displacement jumps at the crack surfaces,
and also cf the suresses o,, along the crack exiensioas. In the general case, on the
basis of Eqs. (2.14) and (2.15), they are expressed by the formulae

B (2 ey =12 [qs rly
z, = e—— “{z - - .
b= @ )
W=, = [qb () R J
L’ Lyt - 2|
(2.29)
)= L [t + !
Zhz )= t1+;2[¢ Gyt (z)]
e hty= [@+(z)-i'w—(~)]
}'z(\"’ . £!2+,L(2 . My “f

the functions @™ (z} and ¥* (z) being defined by Egs. (2.22).
if the cracks are loaded identically, i.e. if o,, (x, I)=0,, {x, —h,), the expressions
(2.29) are considerably simplified in view of ¥ * (2)=0.

W=z, y=— &~ (2}, W {z, —Fz*)”—‘&W"(z, h®),
J131 Ha

(2.30)
25z Lh*)=0+ ().

Here
- i B o (2)
@"(Z)=;iz'ff‘(z)x‘(z), &t (z)= _;T(%’

(231) N B i Foofieg (g) ) ) *
D=5 (;— &, @=H*(2) 5 (2 h").

“‘73Tl§$

From Egs. (2.30) it follows that in the case of identical loading of both cracks,
the stresses o,, along their extensions are also identical and do not depend
on the material constants, i.e. they are the same as in the case of a homogeneous
layer.
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3. STRESS INTENSITY FACTORS

The application of the inverse F-transforms to the formulae (2.29) leads to
a purely formal solution of the problem since, due to a rather complex form of the
integrands, the integrations prescribed cannot be perforimed analytically. However,
use can be made of the Abel theorem [3] which enables us to predict the behaviour
of the function f(x) at x40 and x-»-o00 once the behaviour of the transform
F£ () at |e)—oco and {«|-0 is known. Applying this procedure to Egs. (2.29), we
determine the values which are of principal interest from the point of view of the
crack stability theory and, namely, the stress intensity factors at the crack tips
and the crack displacements at the tips.

First of all let us observe that the functions EX (2) given by Egs. (2.20) may, in
view of regularity of £, (z) in £2,, be represented in the form

. ! 1 T LE.O ]
(31) E;;; (Z)_ “_-Z— [Bm - % ) ;—[\ i _C—-;Zmdc »
where
1 @+ 1e
(32) B,= E?E—t ) J; E, (C) dc

Returning in Eqgs. (2.29) to the variables a=z/h and using the corresponding
formulac (2.17), (2.22) and (3.1), the first terms of expansion of the function (2.29)
into a power series in the neighbourhood of the point |al==co are

' %N, 1 " V2N, 1
W= (o, h%)=— Vo, 1 == L
. 1y 17,]/06 FI G"]/DL
@3 N, 1 N, 1
5F (ot h¥)= == =, I (o —BY) = =
S I S Ve
Here
N = __ML_FE{___“O_\
(3.4) ISR L
- N, = ..,.A__“_“u_zhg[,i_B_i_f__aﬁ_ﬁ]
: I/u];(ﬂi +w}l = lfll/ﬁ )

The application of the Abel theorem mentioned earlier and of Egs. (3.3) makes it
possible to derive the formulae for the crack tip displacements and the stress distri-
bution at the tips

4N, ' AN, —
Iw(x, A¥)]= - V=%, [{w(x,—h*)]F—‘Lfl/—x for x—(—0),
(3.5 .
e (6, B¥)= I/%’ Oyz (x —h*) = T/% for x—(+0)
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According to the generally accepted definition, the stress intensity factors at
the upper and lower tips of the cracks are the values

(3.6) K=V2z N, (m=1,2),

N, are given by Eqs. (3.4) and the index III refers to the antiplane state of strain
{(Mode III). Using that definition and Eqs. (3.4), we determine the sum and difference
of the stress intensity factors at the crack tips:

(3.7) o 1 2 1 #2
K-Kp=1/ 2"

hh* %0

It follows that the difference of the stress intensity factors is a function of crack
loadings and of the distance between them, and is independent of the material
constants. '

In the case of a homogeneous layer (y==g;==yu,), the sum and difference of the
stress intensity factors are calculated from Egs. (3.7):

R+ u——]/"‘“ iB,,
b4
1) 2
'KI(H K;:II)"""' ]/hh*

0 +ig—

B.= H* Q) S;© e,
3.9) 2mi _.,,JL_

ST @=Z,(z, k9 +2,.(z, —h").

(3.8)

with the notations

It follows that in the case of a homogeneous layer the stress intensity factors are
independent of the Lam¢ constant g, and its difference is the same as in the case of
a non-homogeneous layer.

The results obtained here and concerning both the homogeneous and non-homo-
geneous layers indicate that it should be possible to select the crack loadings so as
to obtain any prescribed value of the ratio of the stress intensity factors produced
by the loadings.

1. In the case of crack surface loadings which Iead to

(3.10) _ tg=0,

in both cases of non-homogeneous and homogeneous layers the stress mtensity
factors at both tips are equal to each other; in a non-homogeneous layer

2 i,
—— §
Th b

1>

@11) K=K =K =
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and in a homogeneous layer

Vanh

This is also true in the case when both cracks are loaded identically since then S, (z)=

=0 what, in view of Eqs. (2.21), is a sufficient condition for the constant a, to vanish.
On assaming o, (X, h,)=0,. (x,—h;) for x<0 we obtain from Egs. (3.11) and

(3.12) the stress intensity factor K, independent from the material constants u,,

T
i, and equal to the factor K,;, corresponding to a homogeneous layer,

(3.13) | K= ]/

(3.12) B =RP=K@=~

where
1 o die -
: = PR LTS
(3.14) B f HY Q25 k) dl
—tie—

2, If the crack loads are such that
(3.15) B, =0,

then the stress intensity factors in a non-homogeneous layer are equal to

(3.16) K= ]/

hh* py +,u ode i Kin=—p Ko

while in a homogeneous layer

T " _
(3.17) K= VEPF o, Kif)=—KF.

The condition (3.15) is satisfied also in the case when the crack surface loadings
are such that g, a,, (x, hy)=—p, 0, (x,—h,).
3. If the crack loads are such that

(3.18) O

then in the case of a non-homogeneous layer the stress intensity factors are equal to

7
(3.19) K“)"‘Vihh—* a,, KFR=-Kf.

4. If the crack loads are such that

(3.20) e o B
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then one of the stress intensity factors vanishes and either

_ 2
(3.21) K=0, K=-] e %o
or
(3.22) K“)m]/hk*ao, K@ =0.

4, PARTICULAR CASES

To illustrate the results obtained et us assume the crack surfaces to be loaded
‘by the following stresses:

(%, o y=piexp (A, x)  for x<0,

4.1
G X, —h)=pexp{ly x) for x<0,

with p,=const., 4,>0 m=1], 2.
The F-transforms applied to the functions (4.1) yield the results

hpy 1 hp, i
— T ks P 1 ~h¥)= =t
11/273 Z*”: s ) i.'}/Qn z—ily’

Iz, k)=

whence, in view of Egs. (2.15),

h i 1
e [t e 1)
'/27[ Hy 2 ”’1 Ha Z— HIZ

2y 45
gt
eyl Py T §
with the notation A =k2,.
In the case considered here 1, =min (i}, 23)>0 and so, due to Bgs. (2.21),

(2,28), (3.2) and (3.7), the stress intensity factors are given by the formulae

) K* (1)
K@) = BTy . {pl[u +@ A=, ke [V @D},
A(L+pu*) ¥ h
4.2)
. {(2)— _ +(I/11) *
K= HEYG) s {pa el -t pro )] —p, [1—w GA]}
Here ok e
oo F1 KTL) _H
N SET 1) M
@9 it VIE H (1)
I A
o= ———
2K+ (D)

In addition, 0<w (if)<1 for >0, and the functions K* (1), H* (f) are given by
Fgs. (2.17).
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In the case when the parameters p,, and 1, characterizing the boundary condi-
tion (4.1) are so selected that
Py 1-w (i43)

P2 .u* +o(idy)

or

PR B a1 (2]

P l—w@D
the condition {3.20); or (3.20), is satisfied and in view of Egs. (2.21) or (2.22) the
stress intensity factors are equal to

K{{}=0,
“9 o DK D) T 0@+t (@)
u A3 W p*+ @ (i)
o7
K= K (Ili)]/h @ (A7) + p* w(ily)
(4.5 L+p*w(iy)

KR=0.
In the case of the parameters p,, and 4, selected so that

P
=g

P2

« being defined by Eq. (4.3),, the condition (3.10) is fuifilled, and the stress iniensity
facters at both crack tips are equal to each other. These factors are obtained from Egs.
- {3.11): '

4.6 ) L
(4.6) Kn= 7:(1+ﬂ* [xH (fu)‘l'ﬂ (#A3)]-

The condition (3.10) is also fulfilled when the crack surfaces are subject to identical
loads. The assumption

0, (%, th)=pexp(Ax) for x<0, .

leads, in view of Egs, (3.13), (3.14) or (4.6), with =1, to the stress intensity factor
at both crack tips:

4.7 K= — 2 ‘/ H* (%), M=k

If both cracks are loaded uniformly by equal stresses, ie. a,, (x,+k)=p for
x <0, then 7,,=0 and from Egs. (3.13), (3.14) or (4.7), with 1*=0, we obtain
(4.8) KI[I= '*P E/};- .

This result will now be used to determine the stress intensity factors at the crack
tips in a non-homogeneous elastic layer at the edges of which constant displacements
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w(x,th)=+wy are prescribed, the crack surfaces being free from stresses
. .23l ‘

a b c
yi g4 , Yi
W=Wg W=Wy w={
- 7] .
= %"L P’1i TZh } M‘ TZh e U1] 12‘*’
= yz=p
- i 1 ¥
E‘ Gyzga Pzi l X ] ‘JZJ l i ng—p yl g l
< 1
2~y W=-w, w={

Fia. 2,

Using the superposition principle the solution sought for may be composed
of the solution corresponding to a solid layer with prescribed displacements at the
boundaries w (x, +A)== 4w, (Fig. 2b), and another solution corresponding to a layer

1

constaining two cracks loaded by stress o, (x, £F)=—0a,, (x,+h) (Fig. 2c); the
layer is rigidly clamped at the edges. .
The solution cf the problem shown in Fig. 2b has the form

© Wy (18 — i) 2wo ¥y Ju, for O<y<h,
w (x, )= -

LT o ) Myt i I . for —-h=y<0,

o
O.)IZ (‘x’ J))=O :

° e 1) iy gy Wo
Oy .X.', o '
' ) Uity R
and so .
i - A TH T U
4.9 Oy (%, L h2) = p= it R

Substitution of the function (4.9) in Eq. (4.8) yields the stiess intensity factors at the
cracks tips in the original configuration (Fig. 2a); they are equal to

K= 2“1 Wy
H1 ]/E(1+,u*) .
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STRESZCZENIE

KONCENTRACIA NAPREZEN W NIEJEDNORODNE] WARSTWIE SPREZYSTE]
OSEABIONES SZCZELINAMI

W pracy rozwaza si¢ statyczne zagadnienie koncentracii naprezen wokol wierzchotkow dwoch
polnieskoficzonych szezelin znajdujacych sie w nieskonczonej 1 niejednorodnej warstwie sprezystej.
Zaklada sig, ze spelnione sy warunki antyplaskiego stanu odksztalcenia. Poza tym przyjeto, e
brzegi warstwy sa sztywno zamocowane, na powierzchniach za§ obu szczelin dane sa roine ob-
cigzenia, B

Stosujac zespolong transformacie callkowa Fouriera, problem poszukiwania wspdlezynnikdow
intensywnodci naprezenia w wierzcholkach szezelin sprowadza sie do rozwiazania odpowiedniego
ukladu rownan typu Wienera-Hopfa. Zakladajac, 7e szezeliny sg usytuowane symetrycznie wzglg-
dem plaszczyzny rozdrielajacej dwa rézne maierialy spreZyste, rozdziela sig ukiad réwnaf na dwa
niezaleine rdwnania Wienera-Hopfa, dia ktorych podano Scisle rozwigzania,

Wyznaczono wspdlczynniki intensywnosci naprezenia w obu wierzcholkach szezelin oraz prze-
dyskatowano szereg przypadkéw szezegoinych, Dla ilustracii otrzymanyeh wynikow rozwigzano
przykiad, w ktérym przyjeto, e na brzegach szezelin dane jest przemieszezenie, powierzehnie zas
obu szezelin wolne s3 od obcigzen.

PeszonMe

KOHIEHTPANMST HATIPAXKEHWA B HEOIHOPCHHOM VIIPYIOM CIIOE
OCJIIABJIEHHOM HEJAMNA

B pabore paccMATDHBACTCH CTATRYECKAN 3204YA KOHUSHTPAIEA HANDOKCHE! BOKPYT BEpIURH
HBYX HONYOeCKOHeMHBIX uIene, Haxonanmsca B GeCKOHeUHOM H HEOIBOPONACM YHPYTOM Choe.
Hpegmonoraeyes, YTO YHOBRETBODEHLI YCAOBHAs AHTHIDIOCKOTO MNeQOPMAIROBROTO COCTOSHHA.
Kpome 3T0T0 IIPHEATO, YT0 IPARKIBL CIEOS SKeCTKO BAKPENICHE, HA TOBEPXHOCTSX Ke 0GOmY Imeneit
BAHBI pa3Rsle HATDYIKH, '

Hpumessis RoMEneRcEOe HETErPAnbEoe Opeobpasopanue ®ypee, 30484 HAXORICHAA Koshdn-
ACHT OB HHTCHCUBHOCTH HATPMAKCHASN B BEDIIHAAX WENel CROANTCS X DEMICHRIO COOTBETCTBYIOMEH
CACTEMEL YpasHen®i Tena Bamepa-Xowda. Hpeagronaras, 4To IIehy DOMEAIEHL] CHMMETDHTIHIM
o0pasoM 10 OTHOINEHWIO K IJOCKOCTHE pA3JCIsoMEeH B2 PA3ELR YIPYTHEX MaTepHAla, CUCTeMa
YPRBHERHH DA3ACIACTCA HA APA ACIARRCAMBIX YpasaenMd BmHepa-Xonda, AN KOTOPHIX ORIOTCS
TOUREIE DENeRA, :

Onpejtenessl X053 ¢KIMEHTH HHTEECHBEOCTH HANPAKESHNS B 000UX BepmAHax Luenell, a TAOKe
oOCyRACH PAN YACTHEX Coyyaep. U HIDHOCTPANEH IONYYEHHLIX DE3YNBTATOB pPElUeH LpEMep,
B KOTOPOM OPHEEMACTCH, ¥TO HA TPANANAX HISNCH JaHo NEPEMENISHES, NOBEPXBOCTH ke 0BOmX
eneit croGONHEEI OT HATPY30K.
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