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A DIRECT APPROACH TO SHAPE OPTIMISATION OF STRUCTURES

Z. K. LESNIAXK (BIALYSTOK)

Shape optimisation of structures constituies — mathematically — a non-standard problem of
the calculus of variations consisting in searching for the conditional extremum of a functional which
does not possess, as a rule, a “localization property”. The solution of this problem using classical
methods of the calculus of variations, as well as dynamic programing methods, creates some diffi-
cultics. The paper presenis a direct method of solving such problems — analogous to the Ritz-me-
thod in the calculus of variations — by assuming that the function constituting the solution i
expressed in an analytical form (e.g. a polynomial) and by finding the coefficients of this expression
using the methods of nonlinear programming.

1. INTRODUCTION

The optimisation of structural dimensions when the topology and shape are
fixed is, in mathematical terms, the finding of the conditional extremum of the
objective function. Shape optimisation of structures constitutes a problem of higher
order of difficulty; it results, however, in higher savings. It consists in finding the
conditional extremum of a functional, which is a far more complicated task than
finding the extremum of a function.

The paper presents a direct method of solving such problems by assuming that
the function describing the shape is expressed in an analytical form (c.g. a polynomial)
and by finding the coefficients of this expression using the methods of nonlinear
programming,

To illustrate the problem, we shall consider examples of structures, to which the
method can be applied.

As a first example let ue consider a roof con31st1ng of so-called shell-beams of
an arc-shaped cross section (Fig. 1), which can be used to cover factory sheds,
stores, ctc. Assuming that roof shells are supported on longitudinal beams {e.g.
along the line BC on Fig. 2} and stiffened at the ends by perpendicular webs, they
may be considered as parts of these beams by carrying loads to the supporting pla-
nes 4B and CD (F'g. 2). Such structures, called shell-beams, work therefore as beams
in bending which have a span L (F'g. 2) and not as shells. A question can be asked,
how can the optimum shape of the roof be found and, first of all, how is the arc-
-shaped cross-section of the shell-beam formed. This problem consists in finding
the shape of a plane curve, that i is in finding the formula for the funct’on of a single
variable

y=y(x).
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Fig. 3. Shape of indusirial chimney —gurface of
revolution. penerated by a plane curve.

[518]
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Another example of seeking the shape of a plane curve generating a surface of re-
volution, is the optimisation of the shape of an industrial chimney (Fig. 3) [4].
A further example is provided by the optlmlsatlon of the shape of a shell of double
curvature constituting the roof of a build-
ing (Fig, 4). The optimisation of the shape
mvolves in this case finding the function
of two variables z=z(x, ) defining the
shape of the shell.

Economy criteria are mostly used as
objective functions in problems of this
kind. They represent construction costs,
(less often maintenance costs) expressed,
among others, as a function of the form
of the structure. In every case strength, F16. 4. Shell of double curvature.
construction-, erection-, maintenance- and
other constraints must be fulfifled assuring that the produced design can be erected.
The optimisation problems specified in this manner consist in optimising functionals.

z

zﬂz(x,g)

In mathematical terms the problem can be formulated as follows:

max {F(»)ly e M},

(1.1)
M:={yg(»)=0, ye X},

where F(y) —the functional whose conditional extremum is sought, y=y (x,),
the function sought for which the functional F(y) reaches maximum value and
which constitutes the solution to the problem, x; € [a,, 8,], i=1, ..., #

g1 (»
g=|  {,
gm (y)

where m is the dimension of the vector of the functionals of the variable >

The functionals g (y) constitute the constraints which must be adhered to by
the admissible solution; M — domain (set) of admissible solution, X - normed
linear space.

The problem, expressed mathematically by the formula (1.1), can be verbally
formulated as follows: To find such an element of normed, linear space X (i.c. such
- afunction y (x), x € [a, b]) for which the functional F (») attains conditional maximum
while M is a set of admissible solutions, i.e. a set of functions y within the constraints
g (). ,

The optimum shape design problems presented above can be reckoned among
the class of the calculus of variations for conditional extrema. These are. as a rule
non-standard problems of the calculus of variations. As we shall see later (see Sects. 2
and 3 below) in the detailed formulation of the numerical example 1, nonlocal
functionals [1] occur.
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It is known as yet that there exist no general methods for the solution of tasks
of the calculus of varjations. Taking into account the fact that shape optimisation
problems represent one of the more difficult tasks of finding conditional exirema
of functionals (worse still the functionals are often nonlocal), the number of problem
that can be solved using the methods of the caloulus of variations is severely restric-
ted. Dynamic programming, which is rather a computing technique and is limited
practically to the function of a single variable, is not an advantageous method for
this type of problems. The amount of computations is large, even for fast computers.
A direct method for the solution of shape optimisation problems is presenied in
this paper. It consists in reducing the calculus of the variations problem to the
nonlinear programming problem.

9. THE APPROACH PROPOSED

The shape optimisation problem formulated in Sect. 1 or, in mathematical
terms, the problem of finding the conditional extremum of a functional was ap-
pro ached in 1967 by the author [2, 3] analogously to the Ritz method in the calculus
of variation in the following way: It is assumed that the function constituting the
solution of the problem can be represented analytically (e.g. by a polynomial with
unknown coefficients). For the purpose of finding the optimum shape of a plane
curve, it is assumed that this function can be represented by

(2.1) y= Z a; x*

. - i=0
and for finding the optimum shape of a surface (see Fig. 4), which is the function ‘
of the two independent variables x, y, the equation of this surface can be assumed
to be represented by the following polynomial:
(2.2} Z= 2 aij xi yj .

: i, j=0

The unknowns in the above functions y and z are the coefficients of the polynomial,
i.e. ¢ or a,;, respectively. These unknowns are treated as decision variables in the
following optimisation problem:

2.3) max {f(a)lac 4},
a
ay o0
where a=]: | in case of one-dimensional problems, a=| : "in case of two-
an . a:m

-dimensional problems, where f is the objective function (replacing the functional
Fin the original formulation (L.1)). Next, the optimum values of the decision varia-
bles are sought, for which the objective function f reaches a conditional extremum
(denoted here as a maximum). In this manner, the problem’of finding the conditional
extremum of a functional has been reduced to the much simpler problem of finding
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the conditional extremum of a function. Thus reduced, the problem can be solved
be using the methods of mathematical programming.

The way to solve this problem can be presented best by the example {2, 3] men-
tioned in Sect. 1 above. The problem consists in finding the optimum shape of the
cross-section of shell-beams which constitute the roof of a building (Fig. 1). As
mentioned in Sect. 1, these beams are considered as elements in bending which
have a span L, supported in planes A8 and CD (Fig. 2). The task for the optimisa-
tion of the shell-beam can be formulated in various ways, depending on the choice
of the optimisation criterion. For example, one can minimize the weight of the
beam keeping its strength at the required level, or one can search for the maximum
strentth using no more than the specified amount of material. This second criterion
will be used below.

In order to formulate mathematically the probl:m, let us consider the cross-sec-
tion of one element, that is an arc of the width 2p and height y,., (Fig. 5). Let us
assume the thickness of element to be constant and small in comparison with its
width. In further considerations we shall therefore restrict our attention to the
neutral axis of the arc. The strength of the shell-beam is proportional to the moment
of inertia of its cross-section. We can therefore assume that the moment of inertia
stands for the strength of the shell-beam. The moment of inertia is a functional
of the function expressing the cross-section shape. We seek such a function defining
the shape of the arc so that the functional reaches the maximum, while complying
with the constraints, namely that the arc length I, and the arc height y___ are not
exceeded. Taking symmetry into account, only half of the cross-section needs to
be considered (Fig. 6). :
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F1G. 5. Arc-shaped cross-section of a shell-beam [2]. Fia. 6, Optimised arc [2],

The mathematical model of the problem has therefore the following form:

(2.4) max {J(y) | y e M}, ,

M:m{yl I(y)slrl: ygymaxs J’ EX}y

where y=y (x), 0= x< p, 7 () denotes the moment of inertia of the arc cross-section
about its own centroidal axis, [, — the legnth of the arc, /, — the adopted constraints
on arc length, .., -— the adopted constraints on arc height and X — normed linear
space. ' : :

In accordance with the approach presented above, the solution of the problem
will be as follows: ‘
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Let us assume that the equation of arc shape has the form of a polynomial (see
formula (2.1))

{2.5) y=ap+a, X+ay x>ty x4, x

and let us assume that the coefficients g;, i=0, 1, ..., # are decision variables and
finding their values is the aim of optimisation inquiry.

The mathematical model of optimisation assumes for this particular example
the following form (compare with the formula (2.4)):

(2.6) max {H{)(@)<ls YD Y max)s
where
o
u=|: |, xel0,p]
tn

The solution of the problem will therefore be the vector a, whose coordinates a;
(i.e. the coefficients of the polynomial), /=01, .., n, constitute decision variables.
After having computed explicit values for J and I, we finally obtain

2

P ——
» [ yVi+pdx
2.7 max | |y— H5——— V1+y*dx,
LA f ]/1+j)2dx

[

y=yx), x€l0,p]
with the constraints

) .

(2.8) { Vit dx<l,
5 =

and

(29) ’ y“<~ymax'

In the formula (2.7) a “nonlocal functional™ appears. In the above example, once
the class of function defining the shape of the arc is assumed to be the polynomial
(2.5), the integrals in the formulae (2.7) and (2.8) cannot be presented in a closed
form, nor calculated in an elementary way but must be computed approximately
using numerical methods. To obtain a numerical solution of this problem, the
anthor used the Monte Carlo method.

3. NUMERICAL SOLUTION OF THE EXAMPLE

Taking into account the symmetry of the arc in relation to the vertical axis
passing through the origin of the coordinates, it is sufficient to deal with a half-arc
only (Fig. 6). For this reason, the terms a, as well as a,x vanish. The equation of
the arc has now the form

3.0 ' Y=y X+ @y X" tan X
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In our example, let this polynomial be of the fourth degree (see Fig. 6):
{3.2) y=ax*+bx* 4 ex?,

the position of the centre of gravity:

P
[ (ax*+bx*+cx?) ¥V 1+ (4ax® + 3bx2+ Zex)? dx
0

(3'3) ’ Ys=

P
f V1+(dax® +3bx> + Zex)? dx
0

and the moment of inertia of the arc with recpect to the axis through the centre
of gravity:

P
(3.4 = f (@x*+bx®+cx? —p)? ¥V 1 +(dax® + 3bx? +2cx)* dx.
0 . .

Optimisation of the arc shape consists in finding such values of the decision variables
a. b and ¢, for which the maximum of the function 7 occurs, fulfilling simultaneously
the following arbitrarily chosen, constraints:

Constraint 1;

” .
(3.5) I= [ V1+{@ax® +3bx? + 2ex) dx<l,,
T

a quadrant of .the circle of a radius p will be adopted for 1;. Therefore, {,=np/2.
Constraint 2:

(3.6) Cy=ax* +bx* + ex? <y

let Ypax=p-
p=1will be adopted as half-span of the arc (see Fig. 6). The Monte Carlo method
was used to obtain the solution, using a random number generator which supplies
uniformly distributed numbers in the range [0,1]. Each triple of numbers chosen
by this generator and normed into the scale of the variables a, b, ¢, respectively,
was treated as a combination of the values of these variables. The constraints (the
formulae (3.5) and (3.6)) were checked for this combination of variables, Any com-
bination of the values of the variables violating one or more constraints was disre-
garded. The random, choice was repeated till 2 combination of values of the variables
a, b, ¢, was found within the consiraints. For this combination, the value of the
functional (the formula (3.4)) was calculated and compared with the one previously
* obtained. A better result was stored and the random choice was repeated. If, after
about ten thousand random choices, no improvement occured, the procedure was
stopped and the last result was taken as the approximation of the optimum solution. A
detailed description of the use of the Monte Carlo method in optimisation is given in
[3]. In this example of arc shape optimisation, the integrals could not be calculated
using closed formulae and were obtained by using numerical methods according to

the formula

P h )
J 7@y dv=— (ot 2014 2024 4 21+ 20),
Q
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where
yi=y(xi), i=0, 1, ey 71

X%o=0, x;=x,_1+h h=p/n,
ie.
Yo=f (x0)=f(0), y1=F(#), Ya=f@h), ... .

The choice of the suitable number  for the numerical integration intervals in
the range [0, p] was made experimentally. Tt was proved that smalier intervals than
h=p/40 did not improve the accuracy of the results. Nevertheless, to secure the
highest possible accuracy #=p/100 was finally used. '

Substitution of random values for the variables a, b and ¢ took place in two cases:

(a) in the range |0, 1],

(b) in the range [—6, 6]V).

Since the optimum in the range [— 6, 6] differs fro.u that in [0, 1], it is very probable
that there exist local optima in the presented example.

Calculations on a digital computer produced the following expressions for the

arc shape:
For case (a):
(B.7) y=0,6826x*+0.2141x* +0.1009x>.
For case (b):
(3.8) o p= —3xt 44
For comparison, calculations have been made for the following cross-seciion
shapes:
1) Straight, inclined line (Fig. 7) for which

Yz p

I=py2, »= Y 2

I
I= [ (x—p[2y V2 de=0.1178p%.
O

|
Tl
Ymax -

p X

FiG. 7. Inclined straight [2].

(*) The author wishes to express his thanks to Professor Z. Kaczrowskl for calling attention
to this range of values of variables. i
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2) A quadrant of a circle (Fig. 8) for which

Y v T SR
y=P_]/P2'—x2’- Yy _'I/E);:;E’ I= 2

f( Vi o7 xz) o _p(a-2)

Y= /2 7

Y (p2-2 —X2+p?—x2 —2py 4+ 20, VP>~ X2+
_f(p 0 VPP —x2+p P+ 2, VP~ 4p)p 014385

Vo=

Q

|
i
[
]
|
i
I
I
)

Fro. 8. Quadrant of a eitcle [2].

3) A parabola of the 2nd degree
y=x2.

Table 1 shows the optimum results for all cases presented above. They are pre-
sented in the following order:

1) An inclined straight line.

2) A quadrant of a circle.

3) 2nd degree parabola.

4) 4th degree parabola for which two cases were investigated:
a) for positive values of the coefficients in the range (a, b, ¢, € [0, 1])
b) for values of coeficients in a larger range (g, b, ¢, € [-6, 6)).

Table 1. Values of the moment of inertia for half-width of cross-sections (p=1)

‘ ax’+ bxdepx?
= __]
A ! I :/_ ] {
P p
1 2
Yomr=p=1 0.1178 0,1488 0.1415 =)o.159 °)

(79) (100) 95 (107 110
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Among arc shapes proper, the 2nd degree parabola gives the worst result. The best
result is obtained by using the 4th degree parabola, case (b). Figure 9 shows the
comparison of four arc shapes. To facilitate the comparison, percentage values

i

g b
08 -
et -
o4

02

g a2z

FiG. 9. Comparison of arc shapes.

of the moments of inertia are given in Table 1, taking the value obtained for the
quadrant of a circle as 100. The best result is indicated by drawing a border around
it and the second best one — by underlining it.

4. CONCLUSIONS

The direct approach to shape optimisation of structures presented above has the
advantage of being extremely simple. Because of this, it lends itself to practical appli-
cation of engineering structures. When using this method, the design engineer will
not be frightened away by complicated mathematics and will be able to concentrate
on building the mathematical model of the optimised structure that would represent
the real structure adequately.

This is precisely the area of work where no one can replace him.
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STRESZCZENIE

BEZPOSREDNIA METODA OPTYMALIZACIf KSZTAETU KONSTRUKCIL

Optymalizacja ksztatin konstrukcji stanowi matematycznie nietypowy problem rachunku wa-
riacyjnego polegajacy na znajdowaniu warunkowego extremum funkcjonatu, przy czym funkcjonal
z reguly nie ma wlasnodcl lokalne$el. Rozwigzanie tego problemu metodami rachunku wariacyj-
nego lub programowania dynamicznego przedstawia duze trudnodci,

Artykut opisuje bezpodrednig metodg rozwigzania, analogiczna do metody Ritza w rachunku
wariacyjnym, polegajaca na dobraniu analityczmego wyrazenia na poszukiwaana funkcje (np.
w postaci wielomianu) i na znalezieniu wartosci wspdlczynnikow tego wielomianu metodami pro-
gramowania nieliniowego,

\

PezioMme

HEITOCPEACTBEHHLIA METO]T OIITHMU3ALIAN
®OPMBLI KOHCTPYKITUI

Opravazams $opMb! KORCTPYRUHE COCTABNAET MATEMATHYECKE HETHURYEYIO 3aiady BapHa-
IHOHHOI0 HCUKCACHMA, 3AKIIOMAIOHIVIOCH B HAXKOCHHA YCNOBHOTO SKCTpeMyMa (yHKLHOHANA,
Tpp¥eM QYHKHHORAN, KaK HPABHNIO, HE WMeeT CBOHCTE JIOKAIBHOCTH. PemenHe aTol 3amavd, upw
HCIOMBIOBAREH METOHOB BAPHALHOHHOIO WCHHCNCHEN HAR IEHAMAYECKOIO IPOTPaMMEPOBALKS,

 upepcraBmeT DonbmiKe TPyAHOCTH. CraThs OMUCHIBAET HETOCPEACTBEHHLIH METOT PELICHHT — ana-
TOTHYHBLH MeTony PHTIA B BaPRAUAOHHOM MCYHCICHAHR — 3aXTCYAIOHIMACH B OPSNACNKCHHR
AHATMTHYECKOTO BRIPAXKCHHS I HOKOMOH (yuximn (Hanpumep B BA[e MEOTOYIEHA) H B HaX0X-
JICHRHE 3EaveHH Ko3hGEIREHTOR S5TOTC BLIPAKEHWS METOIAMH HETHHEEHHOTO OPOTPAMMEDOBABES.
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