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DEFORMATIONS OF ANISOTROPIC LAYERED MATERIALS

DL CLEMENTS, D.L. HILL and . MAZUMD AR (ADELAIDE)
]
The problem of determining the stress and displacement fields in a.'n'inhomogeneous material

consisting of three bounded anisotropic layers is considered, Numerical values for the stress on the
inferface are obtained and the effect of a crack on the stress field is examined,

1. INTRODUCTION

“In’a previous paper CLeMents [1] considered the problem of determining the
stress field round a crack in an infinite’ layered anisotropic material. The problem
was reduced to ‘three simulancous Fredholm integral equations which were solved
numerlcally in order to determine the crack energy for some particular materials.

‘In’ the present paper the problem of determining the dtsp]acement and stress
fields in an anisotropic layered matérial® of finite width is considered. "The mateilal
is made up of three layers with the central layer containing a crack of finite width
(Fig. 1). Also ihe pi‘bb]eih_ of 'a'three-layered mater_ia’i without a crack undergoing
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flexure due to applied loads is-considered (Fig. 2). The flexure problem is' reduced
to solving linear simultaneous algebraic equations and evaluating definite integrals
for the displacement and stress. The crack problem is an extension of this work
- and reduoces to the solutlon of mmultaneous Fredholm 1ntegral equations which
“are solvéd thiough a numerical iferation procedure. Numgrical values for the
siress at points in the layered materlal are given and the ‘crack energy is determined
.1n some particular cases. PR
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2. STATEMENT OF PROBLEMS AND BASIC EQUATIONS

Referring to the Cartesian coordinates x;, x;, x; consider the anisotropic
elastic layered material depicted in Fig. 1. The layers —k<x,<—h, —h<x,<h
and h<x,<k are occupied by different materials. The stress and displacement
fields are required for specified loadings and/or displacements on the boundarics
X, = +k. A second problem to be considered concerns finding the stress and displace-
ment in the same layered material with a crack in the plane x;==0 in the region
|x1|<a 00 < X3 <00,

It is assumed that the stress and dlsplaoement are independent of the Cartesian
coordinate x, so that the basic equations for the displacements u, and stresses
;; can be written (see CLEMENTS [2]) as

@2 =20 3 A ta (22,
@2 =28 D Liju 74 (@,

where # denotes the real part of a complex number, the x, (z) (z=1, 2, 3) are
analytic functions of the complex variable z,=x;+7,x, and the primes denote
derivatives with respect to the argument in question, Also, in Eq. (2.1) the A4,
" satisfy the equations

(2.3) (CinrF T Cimez + T Cizma +“~'; Cizxz) {1::«:0:

where the convention of summing over a repeated Latin suffix is used and the 7,
are the roots with a positive imaginary part of the sextic equation

(2.4 leima + TCumz + 1Ci2k1+ T2 €1202| =0,

where the C, s are the elastic constants. Finally, the L,;, occurring in Eq. (2.2)
are related to the 4, by the equation

(2 5) Lyja=(Cs5 €474 Cippa) Ara -
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In order to distinguish between the equations for the three layers, the superscripts
L and R will be used to denote the regions —k <x, < —h and h<x, <k respectively.
Thus the basic equations for A<x,<k are

k=29 2 AL AE D), | o= 2 IE (D)

with the same expressions with the superscript L replaced by R for the region
~k<x,<~h.

3. SOLUTION OF THE FIRST PROBLEM

It is convenient to choose the following representations for the siress and
displacement:
In the region A<x,<k let’

| R -
@1 1e @) =5 | {E; (0) exp (ipza)+ Fy (p) exp(~ipza)} dp.

Hence Egs. (2.1) and (2.2) yield

G2 —f% f ZA {E7 (p) exp (ipz) + FL (p) oxp (= ipz)} dp,

03 of=— ~ 2 J ZL,M{Ei () oxp (ipz)— F (p) exp (—ipz,)} ip dp,

where the functions EX (p) and FE (p) will be determined from boundary conditions.
The expressions for the displacement », and stress oy; in the central layer are just
Eqs. (3.2) and (3.3) with the superscipt L removed. Similarly, in —k<x,<-—h
the expressions are BEgs. (3.2) and (3.3) with the superscipt L replaced by R. The
stresses ¢;, and displacements #, must be continuous across the interfaces x,= : /.
This condition will be satisfied if the E, and F, are constrained by the equations

(3.4) 2 (L e (p) €5 (it 1)+ Loas P () €xp (T, W] =
= Z (4, B (5) exp (pet B)+ Ly, FE exp (ip7E ),
(35 D) Ln B (P exp (=ipt, )+ Lizy Fy () exp (—ipF, B)] =
= Y U P @ o (it WL exp (— 78 )L,

(3.8 D) i B (p) exp (ipre )+ Aia Fo (p) exp (07, B =

= 3" [4%, EX (p) exp (iptt h)+ A% F= (p) exp (ip%e )],
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(BN ) B () exp (—ipta B+ A Fu (p) exp (= ip?, h)] =

= X VL EZ () oxp (=inE WAL 1) oxp (=it ).

These equations may be written in the form

(3.8) _ NE-+ RF=N* E*4-R* Ft,
(3.9) RE+NF==RR EX 4 R F®,
(3.10) - UE+VF=UYER+ PR F.,
(3.11) | VE+UF=V® E*4 % I,
vx-fhere' | '

N=[Lj, exp (ipt, A} R=[L;, EXP (~ipz, )],
U=l oxplpr D], V=l exp (—ipr ],
VE=[EJ}1 - F=lF)] |

with similar definitions for the superscripted matrices. Also let -
G L NENE =,
G613y @tER TR R=3, '
B4 o . %’LE’“+VLFL My

(3.15) | Y RER L YR FR=g,

W]-{E:-l‘f:.: " o

| N ‘_.={sz§. exp (.I'P.T; k)]_, _ H=[L;sy eXp {—ip, k)}_,'
U =[Ag exp (ipr. )], ¥ =[A exp (—ip, 'k)]

with appropr;ate superscmpts mserted "The P, 2, # and # are column mamces
whose elements will be determined by the boundary conditions on x,= +k. In
general, only two of these four column matricés will be known corresponding to
either the stress or displacement being, specified on the boundaries x, = + k. Equations
(3.8)~(3.15) thus provide six equations.for E, F, EL, F¥, E* and F*. Once these
equations have been solved Egs. (3.2) and (3.3) (and the similar equations for the
other two regions) provide the stress and displacement throughout the material.

As a specific example consider the case when the laveled material is loaded as
shown in Fig, 2. In this. case the matrices # and 2 are known while .# and 3¢ are
not known. Use of the inversion formula for Fourier transforms shows that 2
and 2 adopt the forms

0
P =] 2N, sin 2ph)/p? },
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0
D==| 2iN, [sin (2.1ph) —sin (1.9ph)]/p?
0

Thus, in this case, Eqs. (3.8)~(3.11) together with Egs. (3.12) and (3.13) provide
six equalions from which E, F, E, F', E® and F® may be determined. '

4. SOLUTION OF THE CRACK PROBIEM

In this case it is convenient to use the representations (3.2) and (3.3) for the
displacement and stress in the layer h<x,<k with similar expressions with L
replaced by R for these quantities in the layer —k < x, < —#. For the layer —ii<x, </
we consider the regions — /A< x, <0 and 0<x, </ separately, Guided by the analysis
in CLeMENTS [1] we obtain the following expressions for the displacement and
stress in these two regions.

In 0<x,<h:
4 e R 3 A {[E. j
@n w=— Dj ; ra LFa (P)+ My V/i(fj);l.exp(lpza)'i'

+ o (p) exp (—ipz,)} dp,

PR E > .
@2 o= J 2 Luso (B (p)+ My wi (5)) exp (ipz,)
—F, (.P) eXp (_ipza)} ip dP-
in —h<x,<0:
LIS . .
“3  w=ra[ ) v (B (P) 5D (2 + M0 1 9) +
+Fy ()] exp (—ipz,)} dp,
@.é)_( oA f Z Lise {Ef () exp (ipz,) — 1M i, (p) +
N ' +F ()l exp (—ipz)) ip dp,
where the M,; are defined by

4.5 ‘ Z Lizy Moj=6s;.

In these equations the unknown functions E, (p), F, (p) and v, ( ) w;ll be determined
from the boundary conditions on x,==A.

From Eqgs. (4.2) and (4.4) it follows that o,, is conitinuous across x,=0. The
difference in displacement across x; =0 is, from Eqgs. (4.1) and (4.3),

. S 1 s :
: (46) - Auy= . R By~ Byz) f w; (p) exp (ipx,) dp,
R L . _ P
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Biy= Z A Moy,

Now Au, must be zero outside the crack and this condition together with the stress
boundary conditions on the crack face oy (x,, 0)=—F; (x,) for lx;|<a yield

(4.7) A (By,—Byy) f y; (p) exp (ipx,) dp==0 for |x;[>a,
(0]

1
48 —a f [+ X {L 20 Ea(p)+ Lz B0} i 30 ip5s) dp=
=—P,(x,) for [|x}i<a.

The displacement u, and stresses g, must be continuous across X, = xh. This
requirement will be satisfied if

@9) 3 Wi (e (0)+ May s () 03 o7 )+ Lise Fo (p) exp (i 1=

= Z [LE,, EE(p) exp (ipte M+ Ly, Fr(p)exp (ipit )],

(410) Z [Li2s1 Ea (P) exp ('—{pta h) +Li2a {F_'a (P)J"Mai W (P)} exp (_ipfa h)] =

o

= )j R, EX (p) exp (—iprs b)+Liy, FY exp (— i B,

(41 l) 2 [Aku {Eo& (.p) +Maj L (p)} eXp (fpfm h) + A_koc Fa (P) exp (ipfz h)] =

= Z [AL, EL (p) exp (ipr 1)+ Ay FL (p) exp (pTy B,

(4.12) Z [Ara B (p) exp (—ipt, h)+Am {0+ Moy v, ()} exp (— ipf, W=

= 2 AR ER (p) exp (—iptR W)+ A5 FX exp (- ipte B).

Let ¥=[y,] so that, using the notation of the previous section, these equations
may be written in the matrix form: '

(4.13) NE+ RE+NMy=N*" EL+RL Fr,

@14 RE+NF+ Ny =R? ER+NR F®,
(4.15) UE+ VF+ UMy =U" L*+V* F",
(4.16) VE+ UF+ Oy =VR ER+ U* FR,

In addition, Eqs. (3.12)-(3.15) provide constraints on the matrices E*, F, E® an
FR® through the conditions on the boundaries x,= +k. Equations (4.13)-(4. 16) :
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together with two equations of the set (3.12)-(3.15) (depending on the precise form
of the boundary conditions on x, = +k) provide six equations which may be used
to express E, F, E", FL, E® and FE in terms of . Specifically, it is possible to obtain
two equations of the form

@17 E=0Wy+X,
{4.18) F=Q@ Py,

where the exact form for @0, 02), X and ¥ depends on which of the equations
of the set (3.12}-(3.15) are applicable.
Now Eq. (4.7) will be satisfied if w, (p) is taken in the form

(4.19) wi ()= [ 5, @) Iy (pyde+i [ r, () Ty (pi)

where r; (¢) and s; (f) for j=1, 2, 3 are real functions to be determined and J, and
Jy are Bessel functions of orders zero and one respectively.
Substitution of Egs. (4.16) and (4.18) into Eq. (4.8) yields

4.20) # f s (P T (p) v (p)] ip exp (ipx,) dp =2, (x;) for  [x/[<a,
1]

where

@2D) 2, )=, (x) =R [ 3] [Lya Xo (D) Lyna Ve ()] ip exp Gips) dp
. 0 o

and o _

“.22) T (Py= D) Lyne O )+ D) L1209 ().

Use of Eq. (4.19) in Eq. (4.20) yields

{4.23) f pcos (px,) dp f r () Jo (pt)de+ f T (p) p cos (px,) dp«
0 0 4]

o

[ re@Joton) dt+ [ TQ(0) peos(px) dp [ 5T, (pr) dt=
L] ]

[}

1
= “?[yj (e +2 (—-x9)],

“24) [ psin(prdp [ 5,001 (o) di+ [ TS (p) p sin(px,) dp

« [ 5O (pydt— [ TR () psin (px) dp [ 1 (6) o (pt) dt=
o] 0' _ W]

H
= _y [Z; (x)—2; (—x1)],

where T =T'D+iT% with T§) and T real.
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These Abel integral equations may be inverted to yield

a

Ty f T (1) p cos (pu) dp [ 13, (@) Jo(pa) dg-+

@25 - f (zz

@

2 [ p— f'o 2 (0) p cos (p) dp f 5 (@), (pg) dg=
R e Wi W (8) 1P &

t F P (w)du R O
f(tz__u ),j or  0<t<a;

| 2 udu
(4.26)  s5;(O)F— f o

& f T4 (p) p sin (pxy) dp f @), (09) da—

Y oudu

f G f 7% (7 sin () dp [ 1ta) 7o (pa) dg=

P uPy (1) du :
f - 2) for O<i<a.
Interchangmg the order of integration and usmg the results
' ! cos (pu) du
@27 — f o =Jo (pt),
! usm(pu)du '
(4.28) — f Gy "0,

it follows that
4.29) ¥, (t)+t f K®.9 (u, t) rk () du+t f Kﬁ‘,’;l) (u, 1) 8y (u) du';.—_

t' rp, (u)du
= e (tz——uz)’f for O<i<a.

JI{,

@30y 5O+ f KGe® @, 1) 5 () du—t f K (1) 7, () die=

1 L uP; (u)ydu .
= _n—:! @) fm. 0<t§a,
where )
(4.31) Kﬁf,N) (i, r):;J' (N+1)JN (pu) dp
o

Equations (4.29) and (4.30) constitute six simultaneous integral equations for the
v, (#) and s, (¢}, j=1, 2, 3. These equations may be solved numerically by iteration.
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Once this has been done Eqs. (4.17)-(4.19) yield w, (p), E, (p) and F,(p). Lquations
(4.1)~(4.4) and- equations of the type (3.2) and (3.3) may then be used to calculate
the stress and displacement throughout the material.

5. NUMERICAY, RESULTS

For the purpose of calculating specific numerical values it will be convenient
to consider the class of anisotropic materials which are transversely isotropic. Such
materials may be characterized by five elastic constants which will be denoted by
A, N, F, C and L. The relationship between these constants and the ¢, jxe 18 given
in detail in CLEMENTS [1].

Consider a composite made up of material I, say, with constants 4 =596, N==
=257, ¥=2.14, C=6.14 and L=1.64 in the middle layer and material II, say,

2 05 10 15 28 x/
| - N

; :
xp=10{boundaryj //
'_XL::?,,_/

Fio. 3.
b agp
3= P ‘
|
t
!
?
i a5 1
g ] ;? 771.{5 2.0 x,/g-

xp=5 {interface)

@=mjz
=0

Fic. 4,
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with constants A=16_.'2, N=9.2, F=6.9, C=18.1 and L=4.67 for the upper and
lower layers. If each of these constants is multiplied by 10'1, then the units for the
constants are dynesfcm? '

f as 19 15 g X1/a
s T I =
e e, s oo
Xp=5{tnterfoee)
z\’z;—S ) emrri®
e - -
-z E
£
B=mf?
o={
—3 —
rc%x'iﬂz

FiG, §,

Figures 3-6 show plots of 6,,/P, and 6,,/P, for the case of a layered material
with a crack with the applied tractions P, and P; over the crack face both zero.
They are plotted at various values of x,/h; x,/h==5 being the interface value and
x,/h =10 being the boundary value. All the results given in these figures were calcu-
lated for @==n/2 and «=0 where these angles are defined in CLEMENTS [1].

Figures 7 and 8 show plots of o,/ P, for different values of « and @ in the middle
slab (the values o==0 and @=7x/2 being maintained for the outer slab).

The effect on the crack energy of making the middle stronger was also ‘consid-
ered (see CLEMENTS [1[ for an expression for the crack energy). The constant C was
increased while all the other constants and the angles o and @ were held at their
original values. The results are given in Table 1.



0 a5 10 15 26 X1/a
T y T B A

Xp=5 {interface)
o =T/

Xp=5(inferface)

¥R . Fua.8.
Table 1
Cc 10 20 30 .40 50 60 70 80 90 100
Crack Energy 0.332 0.206 0.161 ©.136 0,119 0.107 0.098 0.0_91 0.086 0.81
T2y
L xp=§

{rnterfoce)

04 -

Fig, 9.
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Finally, Figs. 9 and 10 contain plots of 01,/No and ¢5,/No along the inter-
faces of the uncreacked layered slab loaded as in Fig. 2, and Figs. 11 and 12 shows
the plots of the displacements u, /A and u,/h respectively.

6‘ .
Bh s
g6~ (inferfoce)
ga
0z [~
a 1 kL 3 4 Xﬂ"h
Fie. 10,
¢ 4 7z 3 X 4 X'!/h
| * 5 ' .
-4 . X?"E
i finterface)
-08
-12
-16
2 [
Fic. 11,
41—

Xg—‘-E
{fnterface)
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STRESZCZRENILE

ODKSZTALCENIE ANIZOTROPOWYCH MATERTALOW UWARSTWIONYCH

Rozwaiono problem okreslenia pol naprezen i przemieszezen w ciele niejednorodnym zozonym
z trzech polgezonych warstw anizotropowych. Otrzymane wartodei liczbowe naprezen na powierzch-
niach rozdziatu i okreflono wplyw szczeliny na pole naprezenia.

Peawome

AEPOPMALINA AHMZOTPOITHLIX CIIOMCTLIX MATEPUAJIOB

Paccmorpena npobiaema onpemeieRns woneH BANpAACHUN ¥ MepeMelleHRil B HEOAHOPOOHOR
TEAS, COCTOAHIEM M3 TPeX COCAHHCHHBI aMM3IOTPOIHBIK CocB. IIONYy4eHRH YHCIIOBHIE 3HAYCHHA
BAUpmKCHAHE Fa WOBEPXROCTAA Dasfena W ONPeAesNeHo BINTAME TIE/d Ha [OJE HADDKEHMH.
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