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A NOTE ON THE PERTURBATION APPROACH TO NONLINEAR STATIC
ANALYSIS OF ELASTIC PLANE TRUSSES

M. SARAN and M. KLEIBER (WARSZAWA)

A perturbation procedure for the incremental finite element analysis of large deformation
problems is presented. The proposed approach takes info account the nonlinearity of kinematics
at the incremental step. Bxplicit forms of the finite element “higher-order™ matrices for truss element
and numerical examples are given. Comparison of the results obtained by the perturbation approach,
tangential stiffness method and closed-form solution are carried out. The appropriate computational
cost analyses are prf_:sented implying conditions for the economical use of the msthod.

1. INTRODUCTION

The applications of the perturbation approach to computational nonlinear
mechanics have been discussed in a number of papers over the last decade [1-10].
In spite of a formal elegance and theoretical attractivity of the approach, no such
compuiational gains have been achieved that could compensate for the increased
numerical effor. However, due to the limited experiences with the method no final
conclusion on its applicability can be drawn yet and some further studies scem
desirable. Such an effort has been undertaken and its preliminary resulis are re-
ported in this note. In particular we give explicit forms of the finite element ,higher
order” matrices for a truss element. A simple two-bar truss plays a central role
in the numerical evaluation of the approach discussed. The formulation can be
understood as an alternative to the routinely used incremental Newton-Raphson
iteration schemes.

2. PROBLEM FORMULATION

The fundamental matrix equation describing the continuing equilibrium of any
finite element under large displacements can be written as [10, 11]

(2.1) (l)ki_i Auj—|-(2)km¢ AUJ AHR“I"{S)]QJ-“ AIJJ' Aﬁk AM;=AU;, ll,j, k, l=1, 2, A

whete Mk, =kQ -k +kUD is the “first-order” stiffness matrix, k{9 the constitut-

ive stiffness matrix, k{7 the initial stress stiffness matrix, k{;” the initial displacement
matrix, ¥k, and Pk;,, are the “second”- and “third-order™ stiffuess matrices
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respectively, du; is the incremental generalized displacement vector and n stands
for the number of the degrees of freedom for the element. In the traditional approach,
Eq. (2.1) is linearized, i.e. only the first term on the left-hand side is retained. In the
present paper a perturbation procedure for solving the nonlinear equalibrium
equation (2.1) is used as follows. Let us assume all the variables in Eq. (2.1} to-be
functions of an arbitrary single parameter ¢, which has its origin at the known point
on the equilibrium path, i.e.

(2.2) Aty (Dlemo=0, AU, (Ol,=0=0.
The physical meaning of the parameter ¢ is not yet delineated. It is to be chosen

in a form most suitable for the numerical computation.

The incremental displacements and nodal forces are each approximated by
_a Taylor series expansion in ¢ about the known configuration at which ¢=0

© (1 L 2 o A
(2.3) Aug (8= A (0)+ AufD (0) -+ Auf ©) 2. = > pt
m=1
and -
U(m)
(2.4) AU, ()= AU(O)(O)+AU(‘)(O)t+ AU (0) 17+ ... “Z A

m=

In deriving Eqgs. (2.3) and (2.4) it was assumed that the functions Au; (£), AU; ()
are single-valued analytical functions of # for a finite (even if small) range 0<r<r*.

Under the same assumption we write

1 kij(m)
Wy (t)=kij(o)+ktf(l)t+§ ki 2= 2 PR

m=0
ki _k(m)
(2.5 @, (D= ng‘; M_;_ﬂ_ o,
K™
O i (1) = m;; m'!"‘*f ,
Substitution of Eqs. (2.3)-(2.5) into Eq. (2.1) furnishes ~
e (s6) Aqq l5— s v—l @, =0} Ay (1) gyt
2 2 il A ts-+ Z Z Lik 4 [ 54
(S_i)‘ I'! s=2 p=2 r=1 (S 7))' ('U—I‘)! f'!

(26) 71T
soWSteol 3y W) gy (00 Ay 070 4y ) AU
jkI g (] I i
E g 2 § IAEEN S I L
+ w)' w-9)l @-rt ! s!

§=3 w=3 v=2 r= g=1

Arranging the terms according to each power of ¢ and noting that Egs. (2.8) must
hold for any re [0, %], we can write
(m) AUi(m)

m! m!

2.7 W, @ - — AT
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where
Aﬁl(l}zo
Aﬁi"“)—mz; “)k (m=s) Au (2) 5’, vl ) IR PR A ')
(2.8) = (m—9! ;;';s 1 (m*v)!- (p—5)1 !

m w—1v—1 (a)ki' (m—w) Au_(wuv) Au (v—=s) Aul{s)

+ 2 Z 2 (mJi[w)! (w]_fu)g (@is)!

w=3p=2 s=1

for mz2.

5!
For m=1, 2,3 the first three equations for each element take the form
W, 0 A= AT,
O, 1O A2, 0 A0 42Pe 1,00 AV AV =AU,
(2.9) W, 0 A3 J 0 Au® 4300, 3 Auf 0433 Jpl0 A Au D+
16 Dy ) A A O3 k100 gy (0 Auk(z);;_
16 Dk AufD A Au D= A0S,

For any explicit dependence of the stiffness matrices ki, ki, Gl iy upon
their arguments the terms of the expansions (2.5) can be found as functions of the
corresponding lower-order terms of the argument expansions. If we write, for
instance,

O, .=(1)k! {(u, o),
(2.10) Bl = ()kuk (“ o),

(a)kiﬁct=(')kijm (u, o),

where u is the displacement vector and @ is & stress vector, then with the expansions

(2“{}) o : m=0

the following relations hold:

KO =Kk, .=k @, 6},

k(l)=ﬂ{_

(2.12) dt j1=0’
L ' e @k

- di? |t=0’

As these relations hold for the “first- second- and third-order™ stiffness matrices,
the appropriate left-hand side subscripts are omitted.

Having decribed the element we pass to the relations for the whole assembly
of elements following the standard finite element derivation. To this aim we replace
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in Eqgs. (2.9) 4u for 4r, AU for AR and. define an incremental load parameter 44
by the relation

(2.13) ARa=AIR,,
where R, is a given reference load.

Noting the relations

A3
A= Y i,

(214 w=t
( ) . Z Art(m) .
Ar, (H)= ) i ",

we choose the load increment as the path parameter so that Ai (f)=t, 4AM=1,
AX®=0. Using the relations (2.9) the following sequence of equations is easily
obtained:

MK O Ar, V=R,
(DR O Jp, (e —2WK O Ap, 0 —2PVK (O Ar {0 Ar D),
(2.15) WK, © A, 3= _3WE D fp 0 30K, 2 ArD — 3K (O Ap (D) gy ()
—3@K, O fr (D) ApfD — 6K, ) Ar (1) Ar (D
63 Ky 0 Ary® Ar 0 Ar D),
where the global matrices K are assembled using the corresponding elemental mat-
rices. Thus, instead of the one matrix nonlinear equilibrium equation we arrived
at a sequence of three matrix linear equations to be solved in succession using sub- -
sequent results to built the right-hand sides of the equations to follow. Another
point to be noted is that once the inverse matrix [DK 9]+ is calculated in the

process of solution it.can be used for obtaining the higher derivatives of Ary in
succession, which may save a lot of effort.

3. TrRUSS ELEMENT

In the present chapter the explicit form of the matrices for a truss element are
developed. We assume the truss element shown in Fig. 1 to be a bar of the uniform
cross-section and uniform properties along its Iength with two nodes at the ends.
The displacement field is described by the relation

(3.1) u(r) [NiN]ll

where N;=1—r{l and N,=r[lare the shape functlons of the element We also assume
the updated Lagiangian formalism and the linear elastic material response.
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Fic. L.
Let us specify the forms of matrices (k;y, e e, Pl 2nd their expansion
terms as follows. The nonlinear incremental strain-displacement relation reads
(3.2) Aﬁamdt‘l;‘—l- ASf=B§i AU,-_“;‘“B‘I:'U Aui Auj,

where Ask, BL refer to the lineax part of the strain increment, and 4sf, B);, to its
nonlinear part. The matrix ¢, is obtained as

(3.3) k9= [ Cu BB AV, =12
which, by uniform cross-section assumption, leads to

1 -1
(3.4 _ (1)14?:51 .|

Adding the known form of the initial stress matrix k@ (see Appendix) we obtain
the full form of the “first-order” matrix Mk;;.

Similary we define the “’second-order’” matrix as

(3.5) k= [ Cop (B Byt Bin B AV, 6J, k=1,2,
and the “third-order” matrix as
(3.6) ©eiga= | Cus B, BYy AV, idik, =12,

The explicit forms of the matrices (l)lcg, (S P O, 4, are given in Appendix.
Let us now focus our interest on the calculation of the particular terms in the

expansions (2.6)-(2.8). According to the linear elastic material assumption and the

updated Lagrangian description we obtain

E@®=FE=const, FV=0,

3.7 K=k (I(), N ().
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In general, the actual length of the element and the actual axial force can be written as

{3.8) I=lp+41, N=N,+4N,
so that '

(3.9) D[ ATV NO=N L ANWV ¢
and

1
1= Ty A1 - A1) 12,
(3.10) '

1
NO=Not AN 45 AN 2.

Substituting Egs. (3.7)-(3.10) into Eq. (2.12) leads to
k(O):k|t10=k (1(0) s N(O))’

i dk k' " It -
KO="% lewo™ @ A g AN
(3.11) , &k PERO RO . Y
KO=G v = a1 g A7 A g5 ey AN AN
82 ko @ @k(O) @ Jk© @
+2 gy g AND A MO o AN,

Finally, using explicit forms of the matrices shown In Appendlx the relations (3.11)
take the following form:

for terms of the “first-order” matrix:

N© EA
1 0} _ t .
4 )k”( }— O] { )W?j—i— 0 ( ]W?j’

Al A 1
(3.12) (i)lk”(l)x“ (1)]€?j+ Sy W':J:
Af A1) : AN
Wi =2 1@ W, — J(® (”ktjm)“-“"' J(©) ki)W?JQ
for terms of the “second-order’” matrix
=
| Oheia® =z @ Wik
(3.13) ' .
Al o i o
Phip V=2 1@ Pkl
for terms of the “third-order” matrix
(3.14) = qays W
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where (OW, (OW, (OW are given in Appendix. Values of A1, AI*) are calculated
using Egs. (3.9); and (3.10), after arriving at I, IV, I® from current values of
nodal coordinates at each level of the perturbation expansion. The values AN,
AN are obtained by transforming the terms. of the expansions of the nodal force
increments to the axial force. The matrix of the transformation is updated at each
level of the perturbation expansion. '

4. RESULTS
On the basis of the derivation discussed above an algorithm has been worked

out and numerical calculations carried out. As an example, the simple problem
of a two-bar truss (Fig 2) is chosen due to its simplicity and the existence of the

Fic. 2.

closed-form solution. Input data are: initial lenght /=100, coordinates xT==|0963.97
187.97, y¥=]034.20|, Young’s modulus E=50=const, reference load P=1, cross-
-sectional area A==1=const.

First, a series of numerical calculations for a different number of incremental
steps is carried out. For the sake of comparison the perturbation approach (PA)
and the tangential stiffness method (TS) are used. The exact closed-form solution
* yields the maximum force Pp=0.8535. For this value of P from PA we obtain

in two incremental steps vertical displacement #=10.71 represented by point B in
Fig. 3.

To arrive at the similar value of the displacement the TS method requires §
incremental steps (Fig. 3. curve C, u=10.78). Point 4 (#=17.2) in Fig. 3 represents
the linear solution while the curve Cs corresponds to the closed-form nonlinear
solution. The curve C, illustrates the improvement of the results obtained by using
3 steps of PA (u==11.5) and 12 steps of TS (1=11.6). The smaller number of steps -
to achieve a comparable accuracy in PA is clearly seen also in this case. Figure 4
presents a comparison of the results obtained using the same number of the in-
cremental steps in TS as well as in PA. The TS method represented by the curve Cy
yielded for P=0.8535 the displacement u==10.6 comparing to w==13.7 resulting

- from PA (curve C,). This gives a difference of about 24 3. Curve Cy in Fig. 4 rep-
- resents the closed-form solution.
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5. OPERATION COUNTS

An operation is defined as either a multiplication or a division. Let us denote by
n and s the numbers of structural and elemental degrees of freedom, respectively,
and by p the number of elements.
_ - In order to count the number of operations of TS and PA algorithms it is con-
venient to divide it into three parts. The first part concerns the solution of the matrix
equilibrium equations. The number of operations for one incremental step for TS
in solving Eg. (2.15) is given by '

(5.1) _ 'y (ﬁ)=n3+n2
and for PA in solving Egs. (2.14), and (2.15) by
(52) P, (=m+(n)+0Gn* 4 n)-+8n°+2m)+-Gn--3)=n* +-12n* - 6n-1-3.

Tn the second part computations needed for the evaluation of the nodal forces are
considered. The number of operations for TS in Eq. (2.9), is given by

(5.3) Ty (s, p)=s5p
and for PA in (2.9) by |
(5.4) Py (s, py=(s>+125*>+65+3) p .

The third part concerns the generation of element stiffness matrices and their trans-
formation to the global coordinates. In this case the number of operations for TS
in transforming % is given by

(5.9) T (s, p)=(25%) p

and for PA in transforming (WE(0, WE) WER) (DO (D) BMA0) g given by

(5.6)  Pyls, p)=[(2)+BsD (5D + (59 (4s%)] p=(As*+-457+105) p
Using Eqs. (5.1)-(5.6) the total cost is -

(5 7) V T(ns Sgp)sz+TN+TE:
' Pn, s, p)=Pt+Pyt+Pg.

N

For n=1, s==1, p=1 we obtain
T=2+1+42=5,
(5.8) P=22421418=6!,
) ' PIT=12,

. where the components of Eq. (5.8) correspond to the cost of the three algorithm
‘. parts, respectively.
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In the case of the example presented in Sect. 4, i.e. for n=2, s=4, p==2, we have
T=121-32+64=108,
G P=T1-4381 2880=3389,
o Pir=31.

A similar ratio was obtained by comparmg the execution tiines for both TS and PA
algouthms -
‘' For a more realistic data of; say, n==102, s=4, p=102 we obtam '

T=107161211632+3264==1076508,
(5.10) P=1186671--22338-}-146880=1355889,
PIT=1.26.

The cost rafio of PA to TS methods tends to decrease with the growing complexity
of the problem.

Let us now find values of the cost parameters for which a comparable accuracy
in PA and TS can be achieved. We assume a truss with 2 nodes elements (s=4}
and p=n which, using Eq. (5.7), leads to

T (n)=n’--n*+48n,

(5.11)
P (m)=n>|12n*41665n+3.

As shows in Sect. 4 TS needs four times more the incremental steps as compared to
PA. Thus we conclude that

(5.12) . o P{m=<4T ()

for 7223 which means that the PA algorlthm becomes competltlve for trusses
having more than 23 d.o.f. :

Tt should be noted that no simplifications (such as band-matrices, storing of
non-zero entries only etc.) has been accounted for yet. The inclusion of such sim-
plifications is unlikely to change the conclusions significantly, and if not so, the
benefits for the PA scheme are likely to be greater than ’Lhose 1nﬁuencmg the TS
approach. :

6. CONCLUSIONS

The paper decribes the preliminary results obtained in the course of a extensive
study on solution algorithms as applied to highly nonlinear structural problems.
The advantages of using the perturbation scheme over the conventional tangential
stiffness method are illustrated with regard to the reduced number of the incremental
steps needed to achieve the similar accuracy. The. final conclusions are drawn by
referring to the simultaneous cost comparlsons Bearmg in mind the advantages
offered by the perturbation schemesin dealing with smgular points along the equilib-
rium, path, the authors feel the need for further detailed evaluation of this method.
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APPENDIX

The explicit form of stiffness matrices are:

for the “first-order” matrix in global coordinates

N Ed
(l)k”zT (I)W?j+—[— W pgre

I, —ccT
W=
—(@;~ccT) -
€1

c= =

ey
cct

(We=

—ccT

i

—(I,—¢ce")

L
T, —cel

X3 X1
y-

Ya—M

—ceT

3

ce’

for the “second-order” matrix (in local coordinates)

@ EA .
)ktjk=“ﬁ“( )I”Vmc ’

(2)W111= -1,
®OW,1,=1,
(2)W1z1=1,
BWyp0=~1,

(2)W112=1 s
(2)W212=1’
AW ,2=—1,

OWp2n=1;

for the *third-order” matrix (in local coordinates)

. EA -
( )kum:"“ﬁg“ Wmn

GWi1=1,
(3)W2111=1 ’
OW,211=1,
(3)W2211="1 >
(3)W1121= -1,
(3)W2121=13
(3iW1221=13

{3)W2221= -1,

Rozprawy Iniynlerskle — 3

OWi1a=~1,
(3)W2112=1,
(3)W1212= ’
(E)Wulz:“‘la
(3JW1122= -1,
(3)W2122=1:
(3)W1zzz=1 »
(3)szzz'=1 .

325
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STRESZCZENIE

O ZASTOSOWANIUJ METODY PERTURBACH DO NIELINIOWE] ANALIZY
STATYCZMNE] SPREZYSTYCH KRATOWNIC

W pracy przedstawiono podejécie perturbacyine do preyrostowej skonczenie elementowej
analizy konstrukoji w zakresie duzych przemieszezed, Uwzgledniono, zwykle pomijana, nielinic-
woéé geometryezng wewnaliz kazdego kroku przyrostowego. Podano jawna postaé fmacierzy
sztywnoSci pierwszego i wyZszych rzedow. Przeprowadzono porownanic wynikéw otrzymanych
metods, perturbacyjna, metoda zimiennéj: sztywnoscl i 2 rozwiqzania analitycznego.

Peswme

O TIPUMEHELUHA TIEPTYPBALOHHOTO TIOAXOIA K HEJIVHEAHOMY
. CTATHYECKOMY AHAJIV3Y ®EPM

B pafoTe TpeacTaBICH mepTypGanEoRasT TOAXOMN K AHATMY B KOHOYHBSX DACMEHTAX B NpH-
POCTAX EORCTPYKUEN 3 0DXAcTH Gospirmx TepeMeltentif, B NOuXome yureHa, oOBIYED IIpeHe-
GperacMas, TeOMETPUYECKAR ReTAHCHHOCTE BHYTDH KaXIOTo INara B IPHpOCTaX. IIpHBeacH SBLETH
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BHI MaTpHIl KECTKOCTH DepBor0 ¥ BRICMHX NOPAAKOR. HpOBG}IBHO CpaBHCHAS POIYILTATOB HO-

JIYMeHABTX TepTYPOAIHOMREIM TOAXOMOM METOOM SIEPEMEHHOH JKECTKOCTH C AHATATIICCKHM
PEIICHAEM.
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