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NOTES FROM THE SCIENTIFIC EDITOR

It seems that the work of Włodzimierz Burzyński was the most extensive
research in the field of failure criteria at that time. We are convinced that it
would be very useful for the international scientific community to deliver its
translation in the whole. We would like to realize this goal in the future. Adapting
however to the recent editorial requirements, which delimit the volume of the
published text, we have decided to select some passages, which, according to our
opinion, contain the most original and less known or even unknown results. At
the beginning, the table of contents is presented. The page numbers remain the
same as in the original Lwów edition. The list of references given at the end is
a collection of the bibliographic footnotes quoted in the original work. It is also
worthwhile mentioning that the biographical note of W. Burzyński was published
recently in English by Z.S. Olesiak, Włodzimierz Stanisław Trzywdar Burzyński,
Engng. Trans., 56, 4, 377–382, 2008.
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Introduction (p. 3)

The main subject of the theory of elasticity is to mathematically determine
the state of strain or stress in a solid body being under the conditions determined
by the action of a system of external forces, the specific shape of the body
and its elastic properties. The solution of this question exhausts the role of the
elasticity theory and next the theory of strength of materials comes into play.
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Its equally important task is to give the dimensions of the considered body
with determined exactness, with respect to the states unwanted regarding the
body safety on the one hand and the most advantageous economical conditions
on the other hand. This problem, very simple in the case of a uniaxial state
of stress, becomes so complicated in a general case that from the beginning of
the mentioned theories, special attention had to be paid to this question and
an intermediate chapter, being at the same time the final part of the theory
of elasticity and the introduction to the strength of materials theory, has been
introduced. This new passage deals with material effort and different hypotheses
related to this notion. The study of these hypotheses is exactly the subject of
the present work.

Material effort is of course closely related with the state of strain, or stress,
of the considered body. It is then justified to introduce first the basic relations
existing in the mentioned states.

[..., p. 25:] III. Dependence between the states of strain and stress.
Elastic energy. New relations.

[..., p. 27:] The sought function Φ (density of elastic strain energy function –
ed. note) can be calculated from the formula:

(5) 2Φ = c11ε
2
x + 2c12εxεy + 2c13εxεz + 2c14εxγx + 2c15εxγy + 2c16εxγz

+ c22ε
2
y + 2c23εyεz + 2c24εyγz + 2c25εyγy + 2c26εyγz

+ c33ε
2
z + 2c34εzγx + 2c35εzγy + 2c36εzγz

+ c44γ
2
x + 2c45γxγy + 2c46γxγz

+ c55γ
2
y + 2c56γyγz

+ c66γ
2
z

(the symbols cik denote elasticity coefficients and the symbols γα denote shear
strain in the plane with the normal α = x, y, z – ed. note).

[..., p. 27: The above formula] regards solid bodies which are anisotropic
in terms of elasticity. However, in case when certain special properties of the
body, simplifying its structure, exist – as it happens e.g. in crystals – the elastic
constants become related in a particular way and their number becomes lower 12).

For example, if there exist in the body three perpendicular planes of struc-
tural symmetry and the coordinate axes coincide with these three planes, the
function simplifies to the following form with 9 elasticity coefficients:

(7) 2Φ = 2c11ε
2
x + 2c12εxεy + 2c13εxεz + c22ε

2
y + 2c23εyεz

+ c33ε
2
z + c44γ

2
x + c55γ

2
y + c66γ

2
z .
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The mentioned conditions occur with a very good approximation for a timber
cube cut out in the particular way.

For materials in which the elastic properties in the three mentioned perpen-
dicular directions are additionally identical, the function Φ simplifies further to
the following form:

(8) 2Φ = c11

(
ε2
x + ε2

y + ε2
z

)
+ 2c12 (εxεy + εxεz + εyεz) + c44

(
γ2

x + γ2
y + γ2

z

)
.

Further reduction leads to two elastic constants; [. . . ] this last case is possible
for an isotropic body.

[..., p. 30:] As it is known, for components of the state of strain or stress
it is allowed to apply arbitrary superposition of two (or more) subcomponents,
according to the scheme:

ε = ε′ + ε′′,
1
2
γ =

1
2
γ′ +

1
2
γ′′

or relatively:
σ = σ′ + σ′′, τ = τ ′ + τ ′′.

[. . . ] Let us pose now the question whether it is possible to do such a de-
composition for the function Φ in the sense of the equation Φ(ε, γ) = Φ(ε′, γ′) +
Φ(ε′′, γ′′). In other words, whether it is possible to apply an arbitrary superpo-
sition for the function of elastic energy. The answer in a general case, that is
for all cik 6= 0 and for arbitrarily taken ε and γ, must be negative, since Φ is
a quadratic function. Nevertheless, such a decomposition may turn out to be
possible for a particularly assumed decomposition of ε and γ and for a material
with certain specific elastic constants cik. [. . . ]

To all intents and purposes, there are no physical reasons for the strain energy
not to be decomposable into a sum of two other energies, that is into: the energy
of volume change and the energy of distortion. [. . . ] This assumption is the
essence of the whole reasoning – certainly not quite a theoretical one – and leads
to five new relations of the following form:

(12)

3 relations:





c14 + c24 + c34 = 0
c15 + c25 + c35 = 0
c16 + c26 + c36 = 0

2 relations:





c11 − c22 = c23 − c13

c22 − c33 = c31 − c21

c33 − c11 = c12 − c32

The number of elastic coefficients would be limited in this case to the number
of 21 − 5 = 16. For a body characterized by the Eq. (7), the number of 9 co-
efficients would be reduced to 7; and for a model described by the Eq. (8), the
number of elastic constants remains the same, i.e. 3.
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[..., p. 31:] Let us consider what form takes the function Φ, expressed by the
Eq. (5), assuming that the relations (12) are true and that the decomposition of
the components [. . . , of the strain state into a deviatoric and a spherical part]
holds. For this purpose, let us replace the coefficients c14, c25 and c36, appearing
[in (5)] in the terms 2c14εxγx, 2c25εyγy and 2c36εzγz, with three pairs of other
coefficients, resulting from the first three relations [in (12)]. Then, the nine mixed
terms with could be expressed in the form:

−(c24γx − c15γy)(εx − εy)− (c35γy − c26γz)(εy − εz)− (c16γz − c34γx)(εz − εx).

Next, let us change the position of the axes of the coordinate system to a
certain characteristic orientation – let us call it the basic one [. . . ] – namely, in
such a way to have:

(13)

c24γx − c15γy = 0,

c35γy − c26γz = 0,

c16γz − c34γx = 0.

In such a case [. . . ], the considered terms will disappear and – leaving the
names of the coefficients in the new system unchanged without fear of confusion,
or denoting additionally:

(14)

P = c44 + 2c45
c24

c15
,

Q = c55 + 2c56
c35

c26
,

R = c66 + 2c64
c16

c34

– the last six terms in (5) will transform into:

Pγ2
x + Qγ2

y + Rγ2
z .

The constants P , Q, R can be called the reduced elastic moduli of distortion
(shear), analogously to the shear modulus G, for the reasons which are to be
revealed later. Each of the constants contains four elastic coefficients.

Continuing, it remains now to take care of the rest of the terms in Eq. (5), i.e.
the six terms depending solely on the components and the six elastic constants,
which also require certain transformation. A glance at the unused until now
equations in (12) is sufficient to observe their particular property. By rearranging
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them and adding the equations: c12 = c21, c23 = c32, c13 = c31 to both sides, we
obtain the system:

c11 + c12 + c13 = c21 + c22 + c23,

c21 + c22 + c23 = c31 + c32 + c33,

c31 + c32 + c33 = c11 + c12 + c13,

or in general:

(15) ci1 + ci2 + ci3 = c1k + c2k + c3k = 3B, (i, k = 1, 2, 3).

From the last relation and the three initial relations it results that the sum of
three normal stresses:

(16) 3p = σx + σy + σz = σ1 + σ2 + σ3 = 3B(εx + εy + εz) = 3Be

is noticeably dependent on the sum of three longitudinal strains along the axes
x, y, z; that is: on volume change and one coefficient of elasticity B. Then [the
coefficient B] will be further called modulus of elastic volume change.

Lastly, let us substitute:

c11 = B +
2
3
(M + N), c22 =

2
3
(N + L), c33 = B + (L + M),

therefore:

c12 = B − 2
3
N, c33 = B − 2

3
L, c32 = B − 2

3
M

and let us insert these values into the six discussed terms of the function Φ (7).
Then it will turn out that after the rearrangement, they will assume the following
form:

B(εx + εy + εz)2 +
2
3

[
N(εx − εy)2 + L(εy − εz)2 + M(εz − εx)2

]
,

where the coefficients

(17) L =
2
3
(B − c23), M =

2
3
(B − c31), N =

2
3
(B − c12),

can be called the general elastic moduli of distortion.
Finally then, after dividing the Eq. (5) by 2, we obtain:

(18) Φ =
1
2
B(εx + εy + εz)2 +

1
3

[
N(εx − εy)2 + L(εy − εz)2 + M(εz − εx)2

]

+
1
2
(Pγ2

x + Qγ2
y + Rγ2

z )
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as a general normal form of elastic strain energy of an anisotropic solid, in the
basic orientation determined by the Eqs. (13). The first part of the function
denotes the energy of volume change Φv and the remaining one – the energy of
distortion Φf . The total energy then reads:

(19) Φ = Φv + Φf .

[..., p. 33:] The use of principal components simplifies (18) to the following special
form of strain energy:

(20) Φ =
1
2
B(ε1 + ε2 + ε3)2 +

1
3
[N(ε1 − ε2)2 + L(ε2 − ε3)2 + M(ε3 − ε1)2].

[..., p. 34:] It is not difficult to observe that the whole foregoing reasoning can be
easily reversed and applied to the states determined by stress components. The
respective relations take the form:

(25)

C14 + C24 + C34 = 0,

C15 + C25 + C35 = 0,

C16 + C26 + C36 = 0,

C11 − C22 = C23 − C13,

C22 − C33 = C31 − C21,

C33 − C11 = C12 − C32.

The generalized elastic constants are expressed by the equations [...]:

3B∗ = Ci1 + Ci2 + Ci3 = C1k + C2k + C3k,

(26)

L∗ =
3
2
(B∗ − C23), 4P ∗ = C44 + 2C45

C24

C15
,

M∗ =
3
2
(B∗ − C31), 4Q∗ = C55 + 2C56

C35

c26
,

N∗ =
3
2
(B∗ − C12), 4R∗ = C66 + 2C64

C16

C34
,

where the additional relation reads:

(27) e = εx + εy + εz = e1 + e2 + e3 = 3B∗(σ1 + σ2 + σ3)

= 3B∗(σx + σy + σz) = 9B∗p.



192 W. BURZYŃSKI

The formulae for elastic energy will take the [following] forms – a general one
in the basic system:

(28) Φ =
1
2
B∗(σx+σy+σz)2+

1
3

[
N∗(σx− σy)2+L∗(σy− σz)2+M∗(σz− σx)2

]

+ 2(P ∗τ2
x + Q∗τ2

y + R∗τ2
z )

(the symbols τα denote the shear stress in the lane with the normal α = x, y, z
– ed. note) and a particular one in the principal system:

(29) Φ =
1
2
B∗(σ1 + σ2 + σ3)2

+
1
3

[
N∗(σ1 − σ2)2 + L∗(σ2 − σ3)2 + M∗(σ3 − σ1)2

]
.

[..., p. 38:] As the conclusion of this chapter there will be given a group of formulae
[. . . ], assuming certain special states. These include: the case of uniaxial tension
or relative compression and the case of simple torsion [. . . ]. The first one is
characterized by the components:

σx = σ0, σy = σz = 0, τx = τy = τz = 0

and the second one by:

σx = τ0, σy = 0, σz = −τ0, τx = τy = τz = 0,

or
σx = σy = σz = 0, τx = 0, τy = τ0, τz = 0.

From the respective relations of the present chapter we obtain for the first case:

(49) Φf =
1

6G
σ2

0, Φ =
1

2E
σ2

0, ε0 =
1
E

σ0

and similarly for the second case:

(50) Φf =
1

2G
τ2
0 , Φ =

1
2G

τ2
0 , γ0 =

1
G

τ0.

[..., p. 39:] IV. Material effort

[..., p. 40:] Generally, under the notion material effort we understand a phys-
ical state of a body, comprehended in the sense of elasticity or plasticity or
material strength, generated by a system of stresses, and related with them
strains, in the body. This brief qualitative definition will become – I suppose –
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completely clear after looking through the discussion in this and next chapters.
[. . . ] Generally then, the new notion material effort depends on the manner in
which external forces act, on the body shape and on individual properties of the
body. These notions deserve a few words of explanation.

Under the manner in which external forces act, one should understand not
only the distribution of loading but also its variability in time. The recent state
of the strength theories does not allow to consider this important factor in cal-
culations, except for a few particular cases.

The body shape is one of the reasons for the dependence of the stress state
components on the position of the considered point in the body. It is clear that
the uniformity or non-uniformity of the state of stress strongly influences the
quality of the physical state of the whole body15). One has the impression that
authors of various hypotheses overlooked this fact; however, the ways of con-
ducting experiments contradict that. Furthermore, it is not known whether the
local grouping of stress components leading to the limiting numerical value of
material effort accounts for unwanted changes exclusively in this particular point
of the body, or influences the physical behaviour of the whole body in general.
Similarly, it is unknown whether the experimental observation of the existence
of certain planes of unwanted states (planes of shear, etc.) is a proof that the
corresponding to this planes components [of the state of stress] are the reasons
for creation of internal disorders.

These remarks fall out if a uniform state of stress is ascertained in the whole
body. For this reason, the results obtained in following chapters should be limited
to the case of a uniform state of stress or, otherwise, they should be limited
exclusively to a point.

[..., p. 41:] Regarding the structure, two kinds of solid bodies are distin-
guished: crystalline and amorphous ones, depending whether the particles of the
body are distributed in space regularly or irregularly. The majority of techni-
cal materials (metals) are continuous macroscopic conglomerates of both types
of structure. For this reason such bodies behave as isotropic ones, since the
anisotropy of particular crystals cannot be shown individually at the macro-
scopic level. Such bodies are called quasi-isotropic. However, secondary circum-
stances can trigger, even in such a conglomerate, some remarkable differences
in the material behaviour along certain directions – e.g. the influence of rolling
[. . . ] etc. and the respective differences should be accounted for. There are no
such attempts in a general sense; the hypotheses discussed in following chapters
assume isotropy of materials without any explanation.

Elastic properties of a body are determined by the so-called elastic mod-
uli or elastic constants, which were discussed in the previous chapter. For a
large group of materials these coefficients are constant, so they ascertain that
the generalized Hooke’s law remains valid. A series of recent precise experi-
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ments show irrefutably that the range of solids undergoing the Hooke’s law is
pretty large (e.g. concrete)16). The limit of validity of Hooke’s law is called the
limit of proportionality. If additionally, the strains induced within such limits
are ideally – at least in the technical meaning – elastic, we obtain a model of
a body, to which all equations from the foregoing chapter are applicable. How-
ever, these equations are valid only up to the elasticity limit. By the existence
of both limits, they ascertain, in general, proximity of these limits. Therefore,
confusing both the terms in the vast technical literature does not implicate too
serious mistakes. The proportionality limit plays the role of a mathematical con-
dition rather than a physical one – whereas it is opposite for the limit of elas-
ticity.

Bodies which do not have the limit of proportionality show more or less
distinct limits of elasticity; thus the relations of the foregoing chapter have the
character of the first approximation only.

[..., p. 42:] Beyond the elastic range, the elasticity coefficients should be con-
sidered to be variable or generally, they should not be used in the meaning they
were referred to until now. Instead, they should be replaced by certain constants
specific not only for the body but also for the considered stress process itself.

To such ranges belongs, first of all, the range of plastic strains, which begins
from the so-called limit of plasticity [. . . ].

[..., p. 43:] A few words should be said also about the third process connected
with a particular body. To the phenomena accompanying permanent strains is
related the third stage – belonging, undisputably, to the strength of materials
theory – that is the range of material cracking, ending with the limit of strength
(in a technical sense). Conditions of failure are usually very complicated and,
up till now, also not too much theoretically explained20). Uniformity or rather,
on the opposite, non-uniformity of the state of stress, which is – as a matter
of fact – difficult to be analysed in connetcion with the shape of a body, plays
a considerable role in this region. Disregarding the surface energy15, 21) can be
a reason of serious errors, even in preliminary calculations. Apart from that, it
is not known whether the specific for given materials constants reflect satisfac-
torily the essence of the phenomenon of failure, as it is assumed by some au-
thors. Qualitative diversity in different strength processes persuaded researches
[. . . ] to divide failure surfaces into two categories, i.e. the surfaces of shear and
tear22).

Under the stress properties we understand the behaviour of a body in certain
special states; these properties reveal themselves as numerical values of stress in
the above-described limit ranges. We know a whole series of such states and,
because of obvious benefits and applications in the following chapters, let us set
them schematically by means of normal principal stresses, under the assumption
σ1 > σ2 > σ3, as follows:
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I. Uniaxial tension: σ1 = kr, σ2 = 0, σ3 = 0;
II. Uniaxial compression: σ1 = 0, σ2 = 0, σ3 = −kc;
III. Simple torsion (shear): σ1 = ks, σ2 = 0, σ3 = −ks.
Only few metals are characterized by the equality kr = kc = k; in principle,

these constants are different, namely kc > kr. The discussed states are accounted
as the simplest – the fundamental ones – for the study of material effort.

[..., p. 44:] To the similar, simplest states of stress should be added also
the following ones, though more complex indeed, yet in the present state of
our knowledge on material effort they can not be omitted. These are in se-
quence:
IV. Biaxial uniform tension: σ1 = krr, σ2 = krr, σ3 = 0;
V. Biaxial uniform compression: σ1 = 0, σ2 = −kcc, σ3 = −kcc;
VI. Triaxial uniform tension: σ1 = krrr, σ2 = krrr, σ3 = krrr;
VII. Triaxial uniform compression: σ1 = −kccc, σ2 = −kccc, σ3 = −kccc.

Any other experimental states can be of course put between the ones given
above. The aforementioned values k refer to the states lying on the elasticity
limit (or proportionality limit), the limit of plasticity and the strength limit. [...]

[..., p. 48:] V. Analytical and graphical methods of presentation
of material effort. Classification of hypotheses.

[..., p. 51:] In the present work, the following classification is assumed as
the best illustration of the contents of the [material effort] hypotheses29) and
at the same time, as it partly corresponds to chronological relations of these
theories.
A. The hypotheses of limit stresses.
B. The hypotheses of limit strains.
C. The hypotheses of limit energies. [. . . ]

[..., p. 96:] VIII. The hypotheses of limit energies.
The author’s hypothesis.

C1. The hypothesis of constant limit energy of strain

The mentioned in the title hypothesis is known since the times of Bel-
trami54), who for the first time suggested the use of strain energy for calculation
of material effort. Independently of Beltrami54), Huber56) stated an identical
theory; already then, however, emphasizing certain additional thought resulting
in the change of the contents of (C1) into (C2), which will be discussed in the
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next paragraph. Finally, in recent time Haigh32), an Englishman, repeated the
suggestion of Beltrami, not having known – like Huber – Beltrami’s publication.

[..., p. 97: Formula of the hypothesis reads:]

(C10) σ2
x+σ2

y+σ2
z− 2µ(σxσy+σyσz+σzσx)+2(1+µ)(τ2

x +τ2
y +τ2

z )=k2,

where: k = kc = kr.
With the use of the principal components [of stress], the hypothesis takes

a shorter form [...]:

(C1) σ2
1 + σ2

2 + σ2
3 − 2µ(σ1σ2 + σ2σ3 + σ3σ1) = k2.

[. . . , p. 99:] The above equation represents a rotationally symmetric ellipsoid
of the axis oriented at equal angles to the axes of the system σ1, σ2, σ3, with
lengths of the half-axes:

b1 = b3 =
k√

1 + µ
,

b2 =
k√

1− 2µ
.

[..., p. 100:] C2. The hypothesis of constant limit energy
of volume change and distortion

As it was mentioned before, independently of Beltrami, Huber brought for-
ward a similar proposition. He used his hypothesis for limit states of strength
supposing however, that the theory would be valid also for elastic ranges. Bas-
ing on certain facts related experimentally to exceeding the strength limit, he
observed that in the case of the states with three negative normal components
[of stress], one should consider rather the energy of distortion Φf than the total
Φ as a measure of material effort.

About his final, mathematically precisely stated position [on this matter] we
learn from the letter to Föppl8) and the following statement contained there:
“Material effort is measured by the sum of these parts of density of strain energy,
which result from the distortion and increase of volume”. The measure of mater-
ial effort is then Φ = Φv +Φf if the above assumption is fulfilled, i.e. when e > 0
or σx +σy +σz > 0; in the opposite case, i.e. when e < 0 or σx +σy +σz < 0, the
assessment of material effort is given by Φf exclusively. In this way, a discontin-
uous hypothesis is created; the states I, IV, and VI belong to the first group of
phenomena, while the states II, V and VII belong to the latter one; the state III
is proved in both ranges.



STUDY ON MATERIAL EFFORT HYPOTHESES 197

This last state fits best to express the Huber hypothesis; comparing then
respectively the complete or partial formula (37) with the pertinent ones (49)
and (50), from the Chapter III we obtain:

(C20)

1
2(1 + µ)

(σ2
x + σ2

y + σ2
z)−

µ

1 + µ
(σxσy + σyσz + σzσx)

+(τ2
x + τ2

y + τ2
z ) = k2

s

for: σx + σy + σz ≥ 0, furthermore:

1
3
(σ2

x + σ2
y + σ2

z − σxσy − σyσz − σzσx) + (τ2
x + τ2

y + τ2
z ) = k2

s

for: σx + σy + σz ≤ 0,

as a mathematical formula of Huber’s hypothesis in a general case. The particular
form [for principal stress components] reads of course:

(C2)

1
2(1 + µ)

(σ2
1 + σ2

2 + σ2
3)−

µ

1 + µ
(σ1σ2 + σ2σ3 + σ3σ1) = k2

s

for: σ1 + σ2 + σ3 ≥ 0, and

1
3
(σ2

1 + σ2
2 + σ2

3 − σ1σ2 − σ2σ3 − σ3σ1) = k2
s ,

for: σ1 + σ2 + σ3 ≤ 0.

[..., p. 103:] C3. The hypothesis of limit energy of distortion

The decomposition of elastic energy into two characteristic parts, applied for
the first time for the assessment of material effort by Huber, has earned in the
process of time a well-deserved experimental and theoretical confirmation and
created the foundation of unusually fine and mathematically simple hypothe-
sis (C3).

According to this new theory, the measure of material effort is exclusively the
energy of distortion Φf . The hypothesis was for the first time proposed, it seems,
by Mises59). Having drawn the attention to the fact that the spatial picture of
the hypothesis (A3) [related with the criterion of Tresca] in the orthogonal system
of axes [of the principal shear stresses] τI , τII, τIII shows a cube of the edge k,
Mises expressed a conviction, that this rather should be the sphere:

τ2
I + τ2

II + τ2
III =

k2

2
.
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The second author who raised the mathematical formula (C3) to the rank of the
fundamental equation of the theory of plasticity was Hencky19),60).

[..., p. 104:] The mathematical form of the hypothesis (C3) [. . . ] in a general
case reads:

σ2
x + σ2

y + σ2
z − σxσy − σyσz − σzσx + 3(τ2

x + τ2
y + τ2

z ) = k2

or in particular [for principal stresses]:

σ2
1 + σ2

2 + σ2
3 − σ1σ2 − σ2σ3 − σ3σ1 = k2.

[..., p. 106:] C4. The hypothesis of variable limit energy of strain

In such a way one could name the hypothesis which was – as it appears –
presented during one of Mises’s lectures in 1925 and published by Schleicher50)

in 1925/1926.
According to Schleicher’s theory, the “equivalent” stress, expressed by the

left-hand side of (C1) – let us denote it shortly: σvf =
√

2EΦ – is in the limit
state a variable value depending on the state of stress, that is on:

p =
σx + σy + σz

3
=

σ1 + σ2 + σ3

3
.

In other words, [the equation] σvf = f(p) is a mathematical form of the
hypothesis of variable limit energy.

Schleicher relates his theory to elastic and plastic states and recommends to
seek for the shape of the function f experimentally, similarly as it was advised
by Mohr in the case of the shape of envelope.

[..., p. 107] It is possible to approximate the experimental curve, according
to Schleicher, by means of

(C4∗) a parabola σ2
vf = s2 − 3mp,

(C4∗∗) or a line σvf = t− 3mp.

In the first case it is: s2 = kckr, m = kc − kr, and in the second one:

t =
2kckr

kc + kr

and the already known

n =
kc − kr

kc + kr
;

in other words, the hypothesis is dependent on two parameters kc and kr. [...]
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Expressing p and σvf by means of the components of stress, we get (from
(C4∗) and (C4∗∗)) the following relations:

(C4′) σ2
x + σ2

y + σ2
z − 2µ(σxσy + σzσy + σxσz) + 2(1 + µ)(τ2

x + τ2
y + τ2

z )

+ (kc − kr)(σx + σy + σz) = kckr

and

(C4′′) σ2
x + σ2

y + σ2
z − 2µ′′(σxσy + σzσy + σxσz) + 2(1 + µ′′)(τ2

x + τ2
y + τ2

z )

+ (kc − kr)(σx + σy + σz) = kckr,

or with use of principal stresses:

(C41) σ2
1 + σ2

2 + σ2
3 − 2µ(σ1σ2 + σ2σ3 + σ1σ3)

+ (kc − kr)(σ1 + σ2 + σ3) = kckr

as well as:

(C42) σ2
1 + σ2

2 + σ2
3 − 2µ′′(σ1σ2 + σ2σ3 + σ1σ3)

+ (kc − kr)(σ1 + σ2 + σ3) = kckr,

whereas:

µ′′ =
µ + n2

1− n2
=

µ(kc + kr)2 + (kc − kr)2

4kckr
.

For kc = kr, the Schleicher hypothesis expressed either by (C4′) and (C4′′)
or by (C41) and (C42), transforms in the hypothesis of Beltrami.

[..., p. 111:] C5. The hypothesis of variable limit energy
of volume change and distortion

The review of enormous theoretical material, which was presented in the
previous chapters, together with an equally extensive set of experiments, allows
judging discerningly the merits and drawbacks of the discussed hypotheses. This
assessment leads to the rejection of the theories A and B and compels to accept
the theories C, which are more consistent mathematically and therefore more
flexible for experiments.

Individual properties of the studied bodies suggest that basing the theories on
one or two experimental data does not in general render faithfully the phenom-
enon of material effort and demands to introduce more parameters into account,
as it was suggested by Schleicher. Controlling the phenomena by the modulus of
elasticity causes many problems and the only rarely returns reliable services.
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For this reason I have tried to state a hypothesis as general as (C4) which
would be, however, free of these additions which seemed for me inadequate in the
study of material effort. The starting point is the attitude similar to what Huber
stated in (C2); however, much more general and continuous. It is the following
conviction: The measure of local material effort in elastic and plastic ranges is
the sum of density of quasi-energy of distortion and a certain part – dependent
on the state of stress and individual properties of a body – of the density of the
pseudo-energy of volume change.

By adding “quasi” – or “pseudo” – we try to emphasize that the analytic
expressions used in continuation, quoted in the third chapter, do not mean –
for a certain group of bodies or relatively in certain experimental fields – elastic
energy in the sense discussed in this chapter.

The mathematical formula for the hypothesis is the equation:

Φf + ηΦv = K.

Expansions of the functions Φf and Φv are very well known to us. Determi-
nation of constant K does not present difficulties; it is the value of the left-hand
side of the equation, determined for one of the basic states, the simplest ones,
that is: I, II or III. The remaining to be discussed η is – as it results from the
assumption – a function of individual material properties as parameters and of
the state of stress as an independent variable. The individual properties should
be expressed also by the moduli of the simplest states. To the latter one should
apply several magnitudes created from the components of state of stress; be-
cause of the proved minor significance of the component τ , one should express
the independent variable of the function η by the component σ. From possible
expressions, due to the mathematical character of the energies Φf and Φv, there
suggests itself the invariant which does not privilege any of the three components,
namely

p =
σx + σy + σz

3
=

σ1 + σ2 + σ3

3
.

In general then, we assume that: η ≡ η(p). Considering series of correct ex-
periments seems to suggest generally that the influence of Φv decreases with
the algebraic increase of the mean stress p; this leads to a very well applicable
function:

η = ω +
δ

3p
.

The written [above] type [of function] does not always stand in ideal agree-
ment with experimental facts, but increasing of the number of the introduced
parameters K, ω, δ leads to a very complicated hypothesis, so this was aban-
doned and the sometimes unavoidable shortcomings [of the expression] were
compensated in continuation in a more – as it will appear – appropriate manner.
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On this occasion, it should be remarked that the role of experiment is not to
determine directly the constants K, ω, δ, as it would seem at the first moment,
but three other data which will be discussed now.

Anticipating what will follow, let us put here:

1− 2µ

1 + µ
ω =

1− 2ν

1 + ν
, 12GK =

2kckr

1 + ν
,

1− 2µ

1 + µ
δ =

2(kc − kr)
1 + ν

.

Moreover, let us substitute for shortening: 12GΦf = σ2
f . And [now] let us

insert the complete set of the mentioned transformations into the main equation.
After a simple transformation we obtain:

1 + ν

3
σ2

f + 3(1− 2ν)p2 + 3(kc − kr)p− kckr = 0.

The introduction of the parameters kr and kc into the last equation is justi-
fied, since it is easy to demonstrate that it is identically fulfilled for the states I
and II. By assuming, additionally, the state III, we obtain the relation:

ν =
kckr

2k2
s

− 1.

From the last reasoning it follows that the hypothesis (C5) is a theory based
on the three constants: kr, kc, ks or relatively: kr, kc, ν. Let us hold the last
group for later consideration because of vital mathematical benefits which will
appear in the course of time. The coefficient ν – as it will also appear – very
strongly determines individual properties of an examined body in the range of its
brittle or – opposite – plastic behaviour. It could be advantageous to call it the
“plasticity coefficient”, because it turns out that for tough and brittle materials

there is: ν <
1
2
, for tough and plastic materials there is: ν =

1
2
, and for soft

(plastic) bodies: ν >
1
2
. There is no way to the state the limits within which ν

ranges; the possible excess over
1
2

grows not so high, the matter of decreasing
the value presents itself similarly. There arises a supposition that the interval
where ν ranges fits between 0 and 1. With the course of the discussion it will
turn out that in the main we need to do this kind of assumption out of necessity.
After the above remarks, there arises the question whether the coefficient ν,
or another approximate one, could be – by instance – used for determining the
extent of [a magnitude] quite close to plasticity, i.e. hardness, with mathematical
description of which theoretical researchers have been bothering for so many
years.
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Returning, however, to the recently written equation, let us transform it into
the following formula:

(C5′)
1 + ν

3
σ2

f + 3(1− 2ν)(p + σ′)2 = k′2

where:

σ′ =
kc − kr

2(1− 2ν)
,

k′2 = kckr +
3
4

(kc − kr)2

1− 2ν
=

3k2
s(kc + kr)2 − 4k2

ck
2
r

4(3k2
s − kckr)

= −k2
1.

In the system of axes (p, σf ), the equation (C5′) represents – similarly to the
system of the axes (p, σvf ) by Schleicher – curves of the second degree, the type
of which should be now considered.

Of course there occur to mind the [three] cases: ν >
1
2
; ν =

1
2
; ν <

1
2
.

Due to the dependent on that algebraic value of k′2 or k2
1, one detail should be

emphasized here. Namely, from some later discussion it will follow that within the

sphere of experimental facts there should be: ks ≥ 2√
3

kckr

kc + kr
. The lower limit

of this inequality seems to be quite convincing, since it is enough to assume:

kc = kr = k to obtain: ks =
k√
3
, that is the relation well known to us from

(C3) and currently strongly emphasized in a series of publications. While for:

kr 6= kc

[
κ =

kc

kr
6= 1

]
this inequality would indicate that for technically possible

materials in the group of ν >
1
2
, there has to be ν < 3.5 (κ ∼= 8). However, one

can be assured that ν will not reach such a value, because: as kc increases in
comparison to kr, at the same time ks begins to significantly more strongly exceed

the given [above] limit
2√
3

kckr

kc + kr
, which results in the fact that ν considerably

lowers its limiting value. In any case, a bound on ks is followed by a bound on
ν; in the especially important case kr = kc, that is: κ = 1, we obtain – as it

was mentioned – ks ≥ k√
3
and consequently: ν ≤ 1

2
. After such bounds on the

magnitude ks, we can start the promised discussion.

And so, in the case when ν <
1
2
, which means ks >

√
kckr

3
, there is: 1−2ν > 0

and moreover k′2 > 0, and the equation (C5′) represents in the mentioned system
[of coordinate axes] an ellipse, or relatively a circle, whose centres lie on the
negative direction of p (Fig. 64) – or in the special case: kr = kc i.e. κ = 1 –
they coincide with the origin of the coordinate system (Fig. 65).
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Fig. 64. Fig. 65.

In the case of ν =
1
2
, the equation (C5′) turns into a parabola of the second

degree for χ > 1 (Fig. 66), or into two lines parallel to the axis p for κ = 1
(Fig. 67).

Fig. 66. Fig. 67.

In the case of ν >
1
2
, that is

2√
3

kckr

kc + kr
< ks <

√
kckr

3
, there is [both]

1 − 2ν > 0 as well as k′2 > 0 (which means also that k2
1 > 0) and the equation

(C5′) represents a hyperbola, whose one branch only, of course, comes into play

(Fig. 68). In the case when: ks =
2√
3

kckr

kc + kr
the hyperbola degenerates into

two crossing lines [only one of lines is depicted due to the symmetry] (Fig. 69).
Because of the already mentioned bound on the lower limit of ks, the case of
a hyperbola rotated by the angle

π

2
from the formerly discussed position is

excluded.
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Fig. 68. Fig. 69.

In the enclosed schemes are shown only halves of the considered curves rel-
evant for σf > 0. Besides, there are added lines for the states I and II, III, IV
and V, VI, and VII, similarly as it was performed in the discussed Schleicher’s

theory. The equations for these lines read: σf = ±3
√

2p, p = 0, σf = ±3
2
√

2p

and finally, for the last two ones: σf = 0. Positions of intersections of those lines
with the referred curves characterize very well the category of the investigated
material.

The given discussion, together with the set graphs allows – under the as-
sumption of the truthfulness of the theory (C5) – judging certain phenomena,
and especially it graphically explains changes of the limit value of quasi-energy
of distortion in the critical range. Uniformity of this study demands, however, to
expand the formula (C5′) into the types used in the present work. With this aim
let us expand σf according to (C30), with p – as above; then we obtain directly:

(C50)
σ2

x + σ2
y + σ2

z − 2ν(σxσy + σyσz + σzσx) + 2(1 + ν)(τ2
x + τ2

y + τ2
z )

+(kc − kr)(σx + σy + σz) = kckr

or in a simpler form:

(C5) σ2
1+σ2

2+σ2
3−2ν(σ1σ2+σ2σ3+σ3σ1) + (kc−kr)(σ1+σ2+σ3) = kckr.

At first sight, the new hypothesis – apart from the change of the notation
µ or µ′′ into ν – does not differ from Schleicher’s theory and therefore from the
equations (C4′) and (C4′′) or relatively (C41) and (C42); however, exactly this
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subtle difference in notation constitutes the fundamental superiority of (C5) over
(C4). Since while µ or µ′′ are elastic constants in direct or relatively – let us say
– reduced meaning, ν does not have – with advantage to the hypothesis – this
property at all.

It could seem that the discussed superiority is ostensible as Schleicher’s the-
ory employs only two constants in the quoted equations and the hypothesis
(C5) uses three of them. However, it should be reminded that Schleicher doubts
the possibility of sufficient representation of the material effort phenomenon by
two parameters and, as I mentioned, by examining some experiments, he as-
sumed four of those parameters using independently both equations quoted in
the section (C5) for one research series. Finally, regardless of the number of these
coefficients, the hypothesis (C4) cannot free itself from the disturbing influence
of the constant µ, the lack of which is particularly advantageous in (C5).

That there is some distinguishing generality in employing [the plasticity co-
efficient] ν into the range of the theory (C5), can be proved by the following

facts. For ν <
1
2
the hypothesis can transform in a special case into Schleicher’s

theory; namely, if there is: ν = µ or ν = µ′′. Similarly for ν = µ and κ = 1, the
theory (C5) transforms directly into Beltrami’s hypothesis (C1), or partly into

Huber’s theory (C2). In the case of ν =
1
2
we create a new eventuality: namely

for κ = 1 the theory (C5) becomes identical to (C3). For ν >
1
2

and in both
previous cases, the hypothesis contains a whole series of eventualities, which are
not considered in other theories.

[. . . , p. 127:] There arises the question if and how the current formula takes
into account the influences of – often inevitable – anisotropy of material. Com-
parison of the expressions for Φv and Φf for isotropic and anisotropic bodies in
the Eqs. (28) and (31), or relatively (29) and (32), in the Chapter III indicates a
distinct difference only in the expressions for Φf . Therefore one should suppose
that also in the discussed hypothesis, this elusive anisotropy must become visible
through an analogous change.

The use of the word “elusive” is deeply grounded. Indisputably, creation of
hypotheses of material effort for anisotropic bodies is the distant future. Al-
though, even today it can be supposed that the measure of material effort of
some bodies, indicating certain simplified properties in three directions, can be
pretty well [expressed by] the energy Φf – as it was ascertained in the theory
(C3) regarding certain isotropic materials. However, the currently discussed task
consists in catching the influences of slight anisotropy, [being] difficult to state
in terms of quantity but to some extent visible in terms of quality.

For this purpose, the best suitable will be certainly the general [form of
the] function Φf (Chapter III). However, [it should be] appropriately simplified,
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since introducing it in the complete form with six elasticity constants would give
as a result a hypothesis with eight constants. So, in the first place, not being
interested in introducing approximate relations between groups L∗, M∗, N∗ and
P ∗, Q∗, R∗ at the cost of losing the energy-based character of the functions, let
us rather at the start give up on expressing the theory in the basic system – as
it was called in the Chapter III – and let us refer it from now on to the system
of principal directions. In this manner we obtain a hypothesis of five constants
instead of three, as it was until now.

However, even this number could turn out to be too large for the approxi-
mate assessment of the symptoms of anisotropy and – even though such a kind
of increase would introduce into the account two new mutually supplementing
parameters krr and kcc – one should rather give up on this symmetry and try
to continue the reduction of the number of constants down to four. Successful
solution of this question presents itself obvious after the provided till now di-
rect reasoning. Let us assume, beforehand, that the general type of the equation
linking the variables p and σf – presented in the beginning of this section – will
not receive any external change after the present remarks.

This equation is obtained analogically as previously. Namely, let us substitute
into the main equation: Φf + ηΦv = K the complete expressions for Φf , Φv from
the formula (29) in the Sec. III. Let us multiply both sides of the equation by
3M∗

L∗N∗ and put for reduction the replacements:

1− 2ν∗

1 + ν∗
=

3B∗M∗

2L∗N∗ ω,
3(kc − kr)

1 + ν∗
=

3B∗M∗

2L∗N∗ δ,
3kckr

1 + ν∗
=

3KM∗

L∗N∗

and furthermore:
M∗2

L∗N∗ = 2λ.

By multiplying both sides of the equation transformed in such a way by
1 + ν∗

3
,

we will obtain:

1 + ν∗

3
σ∗2f + 3(1− 2ν∗)p2 + 3(kc − kr)p− kckr = 0,

where:

σ∗2f =
M∗

N∗ (σ2 − σ3)2 + 2λ(σ3 − σ1)2 +
M∗

N∗ (σ1 − σ2)2 and p =
σ1 + σ2 + σ3

3

are variables of the function written above. Instead of the variable p it would be
more rational to use in this case a slightly different one, namely:

p∗ =
λσ1 + (1− λ)σ2 + λσ3

1 + λ
.
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The reasons for such a remark, significantly changing the energy-based sense of
the hypothesis, will appear in the Chapter X.

The obtained equation ostensibly does not differ in its structure from the
previous one. [Nevertheless,] the essential difference lies, first of all, in the plas-
ticity coefficient ν∗, whose numerical value can be now quite seriously modified
by the anisotropy. Besides, the difference can possibly be in p∗ but mainly in
σ∗2f , which is currently remarkably different from σ2

f involving – at least for this
moment – three parameters. These last ones – needless to say – are not treated as
representations of the ratio of elasticity constants but as coefficients particularly
connected with the experimental essence of material effort. It seems, apparently,
that σ∗2f involves three such parameters, but assuming such a special structure
of the equation entails certain consequences. We find about them by assuming
States I and II; there occur from that the following results:

M∗

L∗
=

M∗

N∗ = 2(1− λ),

in which case, finally, [the following]:

σ∗2f = 2(1− λ)(σ2 − σ3)2 + 2λ(σ3 − σ1)2 + 2(1− λ)(σ1 − σ2)2

is a function of one parameter λ only, and the whole hypothesis will now belong
to the category of theories of the four constants kr, kc, ν, and λ, or other four if
convenience would demand to introduce them.

For λ =
1
2

there is σ∗2f = σ2
f and p∗ = p and the hypothesis as a whole

transforms into the previous, comprehensively discussed one. If one assumes that
accidental influences of anisotropy are quite strongly limited, it seems reasonable
to expect that the interval within which λ varies is quite modest, and so that it
ranges e.g. from 0 to 1. The significance of the parameter λ will come out from
the assumption of the State III for the previously written equation; namely, after
the auxiliary substitution:

ϕ =

√
2(1 + λ)

3
we will obtain the relation:

ν∗ =
1
ϕ2

kckr

2k2
s

− 1,

very strongly reminding the previous formula expressing ν.
The “coefficient of anisotropy” ϕ modifies then quite significantly the “plastic-

ity coefficient” ν to the value ν∗. The last one then will not be contained within
the limits from 0 to 1, but within a little more extended ones. If we assume
the conditions 0 ≤ λ ≤ 1 and 0 ≤ ν ≤ 1, the interval of changes of ν∗ will
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be described by the inequality −1
4
≤ ν ≤ 2; similarly, the coefficient ϕ will be

limited within the interval
√

2
3
≤ ϕ ≤ 2√

3
. However – similarly as it was previ-

ously considered – going up or down from the value ν∗ =
1
2
will be distinctively

reflected in the contents of the theory.
The mutual dependence of the discussed coefficients is described by the ex-

pression:

ν =
2λ(1 + ν∗)− (1− 2ν∗)

3
.

The difference: δ∗ = ν∗ − ν =
1 + ν∗

3
(1 − 2λ) can be δ∗ > 0 or δ∗ = 0

or δ∗ < 0, depending on λ >
1
2

or λ =
1
2

or λ <
1
2
. Now, the use of the

parameter δ∗ instead of the parameter λ =
1 + ν∗ − 3δ∗

2(1 + ν∗)
can turn out to be

more advantageous. For the assumptions made, the parameter δ∗ is described by

the interval: −1 + ν∗

3
≤ δ∗ ≤ 1 + ν∗

3
.

Nevertheless, first let us notice also what follows: the previously written equa-
tion can be transformed, analogously to the initial reasoning, into the following
form:

(C5)′∗
1 + ν∗

3
σ∗2f + 3(1− 2ν∗)(p + σ′∗)2 = k′∗2,

where:

σ′∗ =
kc − kr

2(1 + ν∗)
,

k′∗2 = kckr +
3
4

(kc − kr)2

1− 2ν∗
=

3ϕ2k2
s(kc + kr)2 − 4k2

ck
2
r

4(3ϕ2k2
s − kckr)

= −k∗21 .

In the system (p, σ∗f ) or (p
∗, σ∗f ) the Eq. (C5)

′∗ represents figures analogous to
the ones given before – of course with certain subtle differences, the presence of

which is obvious for λ 6= 1
2
that is ϕ 6= 1 or ν∗ 6= ν i.e. δ∗ 6= 0. These differences

mean that everywhere instead of ks we will write ϕks, and instead of ν we will
insert ν∗ and finally, we will replace σf for σ∗f .

The present discussion has only a sketchy character; for this reason we omit
discussion of these new details. Let us notice, however, that the current and
continued mathematical argument is in the present conditions valid only with
the assumption of inequality σ1 > σ2 > σ3 or relatively σ1 < σ2 < σ3, without
which we managed in the previous part of the section (C5).
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By expanding the last equation we come to the fundamental formula of the
author’s hypothesis for quasi-isotropic bodies, as below:

(C5)∗
σ2

1 + (1 + 2δ∗)σ2
2 + σ2

3 − 2(ν∗ + δ∗)
(

σ2σ3 +
ν∗ − δ∗

ν∗ + δ∗
σ3σ1 + σ1σ2

)

+(kc − kr)(σ1 + σ2 + σ3) = kckr.

The equation (C5)∗ represents – with omission of certain slight changes which
would result from the introduction of p∗ – the final form of the improved hypoth-
esis, and so we should devote next a few comments to it. With the assumption
that ν∗ = ν, which means δ∗ = 0, [the formula] (C5)∗ transforms, of course, into
(C5), i.e. into the form involving – depending on the values of ν and κ – various
special cases, [including] among others all hypotheses of the group C, which were
already extensively commented. [...]

As for the special cases of the formula (C5)∗, these arise, before all, in the

case of ν∗ =
1
2
; then the hypothesis transforms into the equation:

(1−λ)(σ2−σ3)2+λ(σ3−σ1)2+(1−λ)(σ1−σ2)2+(kc−kr)(σ1+σ2+σ3) = kckr.

The assumption λ = 0 leads now to one special form, unknown to us until

now. The assumption λ =
1
2
gives one of the forms of (C5) already discussed for

ν =
1
2
. Finally, putting λ = 1, we obtain an equation which for plane states (i.e.

for σ2 = 0) becomes identical to the corresponding one in Mohr’s [theory] (A5). If
for an arbitrary λ we assume kc = kr = k, we will obtain the correct theory (C3),
namely:

(1− λ)(σ2 − σ3)2 + λ(σ3 − σ1)2 + (1− λ)(σ1 − σ2)2 = k2.

The simplicity of the last equation, hiding in itself the theories (C3) and (A3),
deserves special emphasizes and attention; let us devote some time to it at the
end of this section.

Coming back to the general form (C5)∗, let us try to show it graphically. For
this purpose, let us – similarly to previous considerations – ascertain that the
discussed equation can be transformed to the form:

(C5′)∗ σ′∗21 + (1 + 2δ∗)σ′∗22 + σ′∗23 − 2(ν∗ + δ∗)

·
(

σ′∗2 σ′∗3 +
ν∗ − δ∗

ν∗ + δ∗
σ′∗3 σ′∗1 + σ′∗1 σ′∗2

)
= k′∗2 = −k∗21 ,
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where: σ′∗i = σi + σ′∗ and the meanings of the expressions σ′∗i and k′∗2 = −k∗21

remain unchanged. The equation (C5)∗ is valid for arbitrary κ and ν∗ 6= 1
2
. In

the case of ν∗ =
1
2
and κ > 1, the transformation leads to the function:

(C5′′)∗ σ′′∗21 + (1 + 2δ∗)σ′′∗22 + σ′′∗23 − 2(1 + 2δ∗)σ′′∗2 σ′′∗3 − 2(1− 2δ∗)σ′′∗3 σ′′∗1
− (1 + 2δ∗)σ′′∗1 σ′′∗2 + (kc − kr)(σ′′∗1 + σ′′∗2 + σ′′∗3 ) = 0,

where: σ′′∗i = σi + σ′′∗ and σ′′∗ = − kckr

3(kc − kr)
.

Finally, for ν∗ =
1
2

and κ = 1 the hypothesis will be expressed by the
equation just written above, which – because of the currently reduced relation:

λ =
1
2
− δ∗ – will assume after rearrangement the form:

(C5′′′)∗ σ2
1 + (1 + 2δ∗)σ2

2 + σ2
3 − 2(1 + 2δ∗)σ2σ3

− 2(1− 2δ∗)σ3σ1 − (1 + 2δ∗)σ1σ3 = k2.

Introduction of the parameter a into the equations (C5′)∗, (C5′′)∗ and (C5′′′)∗

leads to the types similar to (C51), (C52), (C5′1) and (C5′′2). Their discussion
leads to appropriate determination of the intervals in which Mohr’s circles have,
or relatively do not have, envelopes and for the first ones leads to the shapes
of the envelopes, picture of which is slightly different from the previous graphs.
For this reason we omit the respective illustration devoting more attention to
Haigh’s limit surfaces.

The last one, in the case of ν∗ <
1
2
, is a triaxial ellipsoid with the lengths of

the half-axes:

b∗1 =
k′∗√

1 + ν∗ + 3δ∗
, b∗2 =

k′∗√
1− 2ν∗

, b∗3 =
k′∗√

1 + ν∗ − δ∗
,

[the ellipsoid] is shifted to the centre: σ1 = σ2 = σ3 = −σ′∗. In the case of

ν∗ =
1
2
, κ > 1, we obtain an elliptical paraboloid with a vertex in the point:

σ1 = σ2 = σ3 = −σ′′∗ and the parameters:

q∗1 =
kc − kr

1 + 2δ

1√
3
, q∗3 =

kc − kr

3− 2δ∗
√

3.

Under the conditions: ν∗ =
1
2
and κ = 1 the critical surface is an elliptical

cylinder with the semi-axes:

b∗1 =
k∗1√

1 + ν∗ + 3δ∗
, b∗2 =

k∗1√
2ν∗ − 1

, b∗3 =
k∗1√

1 + ν∗ − δ∗
.
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This cylinder can degenerate into two parallel planes for δ∗ = −1
2
or relatively

λ = 1 (or even transform into a hyperboloid cylinder for λ > 1). Finally, the

assumption ν∗ >
1
2
hides in itself a two-shell triaxial hyperboloid with the centre:

σ1 = σ2 = σ3 = −σ′∗ and the semi-axes:

b∗1 =
k∗1√

ν∗ + 1 + 3δ∗
, b∗2 =

k∗1√
2ν∗ − 1

, b∗3 =
k∗1√

ν∗ + 1− δ∗
.

Here belongs also the special case determined by the assumption:

ks =
1
ϕ

2√
3

kckr

kc + kr
,

leading to an elliptical cone as the searched surface.

The contour of a plane state is shown regardless of ν∗ <
1
2
, ν∗ =

1
2
, ν∗ >

1
2

by the equation:
σ2

1∗ + σ2
3∗ − 2(ν∗ − δ∗)σ1∗σ3∗ = k2

∗,

where:

σi∗ = σi + σ∗, σ∗ = σ′∗
1− 2ν∗

1− 2ν∗ + δ∗
=

kc− kr

2(1− ν∗ + δ∗)
,

k2
∗ = k′∗ − σ′∗2

(1 + ν∗ + 3δ∗)(1− 2ν∗)
1− ν∗ + δ∗

= kckr +
kc − kr

2(1− ν∗ + δ∗)
.

Taking into account the initial assumption: ν∗ − δ∗ = ν and resulting from
this the following: 1 − ν∗ + δ∗ = 1 − ν, we recognize in the last equation the
contour known to us from the basic hypothesis (C5). It is an ellipse with the
semi-axes:

k∗√
1 + ν∗ − δ∗

and
k∗√

1 + ν∗ + δ∗
,

properly translated and rotated or relatively two parallel lines.

[..., p. 136:] IX. Overview of experimental data

[..., p. 160:] It is possible to show that the function [defining a measure of
material effort, which is] created from the components of the state of stress and
possessing an assumed characteristic property, can only be the expression build
from the differences between those [stress] components, that is in general:

f1(σ2 − σ3) + f2(σ3 − σ1) + f3(σ1 − σ2) = K.
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If we keep the restriction to a homogeneous form of the second degree, we will
obtain from the above the equation:

L∗(σ2 − σ3)2 + M∗(σ2 − σ3)2 + N∗(σ2 − σ3)2 = 3Φf ,

i.e. the formula already known to us from the Chapters III and VIII.
Finally, the demand upon the invariance of this form [with respect to arbi-

trary rotation] leads to the equation:

(σ2 − σ3)2 + (σ2 − σ3)2 + (σ2 − σ3)2 = 2k2,

i.e. directly to the hypothesis (C3); additionally, for L∗ = N∗ = 0, we obtain the
hypothesis (A3). [. . . ]

[. . . , p. 188:] Lwów, in December 1927.

[References]

1) M.T. Huber, Criteria of constancy of equilibrium (in Polish), the Academy of Technical
Sciences, Lwów, 1926.

2) H.V. Helmholtz, Dynamik continuirlich verbreiteter Massen, Lelpzig, 1902.
3) A.E.H. Love, Treatise on the theory of elasticity; in German translation of A. Timpe,

Lehrbuch der Elastizität, Leipzig u. Berlin, 1907.
4) W. Voigt, Elementare Mechanik, Leipzig, 1901.
5) W. Voigt, Göttingen Nachrichten, 1900.
6) H. Lorenz, Technische Elastizitätslehre, München u. Berlin, 1913.
7) E. Winkler, Die Lehre von Elastizität und Festigkeit, Praga, 1867.
8) A. Föppl u. L. Föppl, Drang und Zwang, I Bd., München u. Berlin, 1920.
9) K. Culmann, Graphishe Statik, Zürich, 1866.

10) O. Mohr, Über die Darstellung des Spannungszustandes und des Deformationszustandes
eines Körperelementes, Zivilingenieur, 1882.

11) O. Mohr, Technische Mechanik, Berlin, 1906.
12) W. Voigt, Annal. Phys. Chem. (Wiedemann), Bde. 31, 1887; 34 u. 35 1888, 38, 1889.
13) Todhunter and Pearson, History of the Theory of Elasticity, Vol. 1, Cambridge, 1886.
14) M. Born, Probleme der Atomdynamik, Berlin, 1926.
15) W. Voigt, Annalen der Physik, Leipzig, 1901.
16) R. Knoop, Feinmessung fur Druck u. Zug an Betonbalken mit Mikrokomparator, Dis-

sertation, Braunschweig, 1926.
17) W. Voigt, Annalen Phys. Chem., Bd. 52, Leipzig, 1894.
18) W. Voigt, Berliner Berichte, 1901.
19) H. Hencky, Zur Theorie plastischer Deformationen und der hierdurch im Material herge-

rufenen Nachspannungen, ZAMM, 1924.
20) A.A. Griffith, The Theory of Rupture, Proceedings of the First International Congress

of Applied Mechanics, Delft, 1925.



STUDY ON MATERIAL EFFORT HYPOTHESES 213

21) O.L. Von der Festigkeitsfrage, Zft. öster. Ing.-u. Arch. Ver. Wien, 1901.
22) Th. V. Kármán, Festigkeitversuche unter allseitigem Druck, Z.v.V.D.I., 1911.
23) C. Bach, Elastizität u,. Festigkeit, Berlin, 1905.
24) O. Mohr, Welche Umstande bedingen die Elastizitätsgrenze u. den Bruch eines Materi-

als, Z.d.V.D.I., 1900.
25) A. Föppl, Vorlesungen uber technische Mechanik, V. Bd, Leipzig, 1907.
26) M. Roš and A. Eichinger, Versuche zur Klarung der Frage der Bruchgefahr, Zurich,

1926.
27) H. Mierzejewski, Foundations of Mechanics of Plastic Bodies (in Polish), Warszawa,

1927.
28) B. de Saint Venant, Journal de Mathetics, 308, 373, 1871.
29) K.v. Sanden, Die Energiegrenze der Elastizitat nach Huber u. Haig him Vergleich zu

den alteren Dehnungs- u. Schubspannungs- Theorien, Zft. Werft u. Rederei, H. 8, 1921.
30) M. Mesnager, Deformation et rupture de solides, Revue de metallurgie, Nr. 6 and 7,

1922.
31) A. Föppl, Mitteilungen aus dem mech.-techn. Laboratorium der k. techn. Hochschule

in München, 1896.
32) B.T. Haigh, The strain-energy function and the elastic limit, Engineering, Vol. CIX,

1920.
33) G.D. Sandel, Festigkeitsbedingungen, Leipzig, 1925.
34) E. Pascal, Repetitorium der Hoheren Mathematik I. 1, Leipzig u. Berlin, 1910.
35) Galileo Galilei, Discorsi e dimonstrazione matematiche, Leyden, 1638.
36) G.W. Leibniz, Demonstrationes novae de resistentia solidarum, Acta Erudit., 1684.
37) B. Navier, De la résistance des corps solides, 1826, 3. éd. par Barré de St. Venant (1864),

Historique Nr. XLIV.
38) Lamé et Clapeyron, Memoire sur l’equilibre interieur des corps solides homogenes, Mem.

Par divers savants, t. 4, Paris, 1833.
39) W.J.M. Rankine, Applied Mechanics, London, 1856.
40) A. Clebsch, Theorie der Elastizität fester Körper, Leipzig, 1862.
41) C.A. Coulomb, Essai sur une application des régles de Maximis et Minimis à quelque

problémes . . . , Mem. par divers savants, Paris, 1776.
42) H. Tresca, Memoire sur l’eculement des corps solides. Memoires par divers savants, Paris,

tt. XVIII, 1868 and XX, 1872.
43) G.H. Darwin, On the stresses produced in the interior of the Earth by the weigth of

Continente and Mountains, Phil Trans. Roy. Soc., Vol. 173, 1882.
44) J. Guest, Strength of ductile materials under combined stress, Phil. Mag., Vol. 50, 1900.
45) Ch. Duguet, Limite d’elasticite et resistance a la rupture. Statique generale, 1885.
46) J. Perry, Applied Mechanics, London, 1907 or in German: Angewandte Mechanik,

Leipzig u. Berlin, 1908.P. Roth, Die Festigkeitstheorien und die von ihnen abhängigen
Formeln, Zft. F. Math. U. Phys., Leipzig, 1902.

47) P. Roth, Die Festigkeitstheorien u. die von ihnen abhängingen Formeln des Maschinen-
baues, Zft. f. Math. u.Phys., Leipzig, 1902.

48) B. de Saint Venant, Leçons de Navier, Historique Abrégé, 1837.
49) F. Grashof, Elastizitäts u. Festigkeit, Berlin, 1878.
50) F. Schleicher, Der Spannungszustand an der Fliessgrenze, ZAMM, Bd. 6, 1926.



214 W. BURZYŃSKI

51) J. Becker, The Strength and Stiffness of Steel under Biaxial Loading, Univ. of Illinois
Bull., 13, 1916.

52) H.M. Westergaard, On the Resistance of Ductile Materials to Combined Stresses in two
or three directions perpendicular to one another, J. Franklin Inst., 189, 627, 1920.

53) G.D. Sandel, Über die Festigkeitsbedingungen, Dissertation, T.H. Stuttgart, 1919.
54) E. Beltrami, Sulle condizioni di resistenza dei corpi elastici, Opere matematiche, Rend.

Ist. Lomb. ser. Vol. LXXXI, 1885.
55) M.T. Huber, About the foundations of the strength theory (in Polish), Prace mat.-fiz.,

T. XV, Warszawa, 1904.
56) M.T. Huber, Właściwa praca odkształcenia jako miara wytężenia materjału, Czasopismo

Techniczne, Lwów, 1904 (see also the recent edition of the English translation in the
centennial of original Polish publication: Specific work of strain as a measure of material
effort, Arch. Mech., 56, 173-190, 2004).

57) Girtler, Über das Potential der Spannungskräfte in elastischen Körpern als Mass der
Bruchgefahr, Sitzungsberichte der Wiener Akad. Bd. CXVI, 1907.

58) H. Wehage, Die zulässige Anstrengung eines Materials bei Belastung nach mehreren
Richtungen, Z.d.V.D.I., 1905.

59) R. v. Mises, Mechanik der festen Körper im plastisch-deformablen Zustand, Göttingen
Nachrichten, Math. phys. Klasse, Z. 4 (1), 582–592, 1913.

60) H. Hencky, Über langsame stationäre Strömungen in plastischen Massen mit Rücksicht
auf die Vorgänge beim Walzen, Pressen und Ziehen von Metallen, ZAMM, Bd. 5, 1925.

61) P.W. Bridgman, The compressibility of thirty metals, Proc. Amer. Acad., Vol. 58, Nr.
5, 1923.

63) P. Ludwik, Elemente der technologische Mechanik, Berlin, 1909.
64) J. Barba, Etude sur la resistance des materiaux, experiences a la traction, Paris, 1880.
65) Grübler, Versuche über die Festigkeit an Schleifsteinen, V. d. J., 1899.
66) A. Föppl, Vorlesungen über technischen Mechanik, B.G. Teubner-Verlag, Leipzig, 1920.
67) Coker, Engineering, 1912.
68) J. Bauschinger, Civilingenieur, Leipzig, 1879.
69) J. Bauschinger, Zft. f. Baumaterialkunde, 1879.
70) A. Föppl, Mitteilungen aus dem mech.-techn. Laboratorium der k. techn. Hochschule

in München, H. 27, 1900.
71) A. Pomp, Mitteil. D. K.-W.-Inst. F. Eisenforsch., Die Ermitllung der Formänderungs-

festigkeit von Metallen durch den Stauchversuch, Düsseldorf, Bd. 9, 1927.
72) E. Siebel, Grundlagen zur Berechnung des Kraft.- und Arbeitsbedarfes beim Schmieden

und Walzen, Dissertation, Berlin, 1923.
73) R. Scheu, Vergleichende Zug-Druck-Dreh- und Walzenversuche, Stahl. U. Eisen, bd. 45,

1925.
74) Th. V. Kármán, Festigkeitsversuche unter allseitigem Druck, Z. d. V. D.I., 1911.
75) A. Nádai, Der bildsame Zustand der Werkstoffe, Berlin, 1927.
76) J. Bauschinger, Mitteil. A. d. mechan.-techn. Labor., München, H. 3, 1874.
77) E.L. Hanckock, Philosophical Magazine, T. 12, 1906.
78) W. Scoble, Philosophical Magazine, T. 12, 1906.
79) W. Mason, Institution of mechanical engineers, Proceedings, 1909.
80) W. Wehage, Mitteilungen der techn. Versuchsanstalten zu Berlin, 1888.



STUDY ON MATERIAL EFFORT HYPOTHESES 215

81) H. Bonte, V. D. I., Bd. 64, Nr. 51.
82) W. Voigt, Wiedamanns Annalen d. Phys., Bd. 53, 1894; Bd. 67, 1899.
83) Th. V. Kármán, Festigkeitsversuche unter allseitigen Druck., Mitteil uber Forschungsar-

beiten V. D. J. H., 118, 1912.
84) R. Böcker, Die Mechanik der bleibenden Formänderung in kristallinisch aufgebauten

Körpern, Forschungsarbeiten, H. 176/176, Berlin, 1915.
85) J. Meyer, Zur Kentniss des negative Druckes in Flüssigkeiten, Abhandl. d. deutsch.

Runsen-Ges., T. III, Nr. 1, Halle, 1911.
86) Z. Fuchs, Phenomen of negative pressure in fluids (in Polish), Czasop. Techn., Lwów,

1925.
87) A. Joffe u. M. Levitsky, über die Kohäsionsfestigkeit von Steinsalz, Zeit.f. Phys., 35, Nr.

6, 1926.
88) P.W. Bridgman, Proc. An. Acad., Vol. 61, 1926.
89) C.A.M. Smith, Institution of mechanical engineers, Proceedings, 1910.
90) Cook u. Robertson, Engineering, 1911.
91) R. Boker, Versuche, die Grenzkurve der Umschlingungsversuche und der Druckversuche

zur Deckung zu bringen, Dissertation, Aachen, 1914.
92) W. Lode, Versuche uber den Einfluss der mittleren Hauptspannung auf die Fliessgrenze,

Zft. F. Ang. Math. u. Mech., Bd. 5, 1925.
93) Dinglers Journal, 1860.
94) A. Martens- E. Heyn, handbuch der Materialkunde, Berlin, 1912.
95) L. Hartmann, Distribution des deformations dans les métaux soumis a des efforts, Paris,

1896.

Received June 17, 2010.




