ENGINEERING TRANSACTIONS e Enging. Trans. e 39, 2, 221-239, 1991
Polish Academy of Sciences o Institute of Fundamental Technological Research

ON A CERTAIN IDENTIFICATION METHOD FOR STAND
SIMULATION TESTS

W. GIERULSKI and 2. SEN D ER (KIELCE)

In the paper the identification method, called the averaging method, is presented.
Information on the tested object is obtained from a number of experiments made under
similar conditions. The possibility of applying this method in stand simulation tests
securing the conditions for the necessary experiments is pointed out. The method of
forming the input signals for simulation tests appropriate for the presented identification
method is described. An example of synthesis the input signals in the tests of a single-
bucket excavator, real experiments being replaced with the computer ones, is discussed.

1. INTRODUCTION

In stand simulation tests efforts are made to reproduce in the laboratory
the same working conditions as those to which a tested object would be sub-
ject in real operation [2, 6]. Reproduction of these conditions is understood
here as securing the similarity of signals measured in the chosen points of the
object on the test stand to those occuring in normal service. The similarity
measure of the signals, i.e.: stresses, strains, displacements or accelerations,
is the simulation error which is a function of differences between signals.

At the preliminary stage of the tests the aim is to form the input signals
z1(t) in the stand so that the output signals y;(¢) would be sufficiently similar
to the reference signals, Fig.1. Assessment of the input signals is equivalent
to solving the classical problem of dynamics where, on the basis of the known
effects (output signals), the corresponding causes (input signals) are sought.
To this end it is necessary to identifity the object properties. Identification
is carried out on the grounds of information obtained during the stand tests.
Full identification of structure, masses, elasticity and damping coefficients
is not necessary; it is only important to find the relation between the input
and output signals. :

The method of forming the input signals depends on the information
on the object obtained during identification. Many methods of solving this
problem are known. One of them is the identification of frequency char-
acteristics and the corresponding synthesis of the input signals carried out
in the frequency domain [3, 6]. Anocther one is the identification carried
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FIG. 1. Signals under service conditions (a), and on ihe test stand (b).

out with functions in the time domain. The examples are: identification
of a hysteresis Joop [1], identification of a transfer function with the use of
isoperimetric conditions [9], or identification of impulse characteristics, use
being made of the isoperimetric conditions [8].

Although a number of methods of forming the signals necessary for sim-
ulation tests already exist, a new and different identification method will
now be proposed. This new method results from the possibility of repeating
the experiments to collect more information usefu! for identification, what is
characteristic for stand testing. The method proposed in this paper, called
the averaging method, is a method of this kind. Also the corresponding
method of input signals synthesis is presented.

2. TFORMATION OF THE INPUT SIGNALS BY THE METHOD OF SYNTHESIS
IN THE TIME DOMAIN

Let us imagine an object during the stand test as a system in which
input signals are the forcing signals and output signals are the response ones
(Fig.2). Let us introduce the transfer function ¢ir(t); the relation between
signals can be written down as follows:

. Tt
i (t) Obyect Yi (I )
! gult)

k=1..m =1.n

FiG. 2. ;{elation between signals on the test stand.
N m
(2.1) gi(t) = Y gu(® ee(t),  i=L..m.
k=1 :

The forcing signals zx(¢) should be chosen so as to minimize the simu-
lation error; therefore, they are calculated from the condition of minimum
of this error. We shall understand the absolute simulation error as a func-
tion of squares of differences between the reference signals and the output
signals:

02 =3 - s,

=1
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or, taking into account the relation between signals (2.1),

{3

(2.3} . §(t) = [?If(t) - i 9ix(t) wk(t)]
k=1

i=1

The relative error can be obtained by averaging in the time interval (¢1,%2),

(24) €= ] 8(t) dt

Eo tz— 1

where the reference function has the form

(2.5) 0k

Using the Euler-Lagrange conditions [9] for the simulation error minimum
we obtain the system of equations

d [ 86(t) as(t)
(2.6) _[3ik(t)]_3:ck(t)_0’ k=1,..

From this system we can find the functions z4(t) which are the extremals
yielding the minimum of the simulation error

mn

27 > [yé‘(t) - iy;k(t) :r:k(t)] g(t)=0, wv=1,.,m.

i=1 k=1

Solution of the system (2.7), which is linear with respect to the sought signals
zx(t), written in a matrix form is as follows:

(2.8) [zx(t)] = [i 95u(t) gjk(t)] [gin (" w5 (0)],
kv=1,..,m, i=1,..,n

The input signals found in this way ensure the minimum simulation error
in the time domain. The presented method of finding the input signals is
convenient when their number is smaller than the number of the reproduced
output signals: m < n.

In the case when the numbers of these signals are equal, m = n, the
condition for minimum error is vanishing of all components of the sum (2.3),
what leads to the system of equations

L,.,n.

(2.9) G- ead) =0, i
k=1
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Iis solution in the matrix form is the following:

(2.10) [ze(D)] = g WE@)],  i=Lesm,
k=1.,m. (m=n).

In the case of m > n, i.e. when the number of input signals is greater than
the number of the reproduced output signals, the condition of minimum error
is also Fq.(2.9), where some of the input signals zx(t) for k = n +1,...,m
have been arbitrarily chosen, and the remaining ones are ‘

1) @] = Ol [0 - 3 m® ),

k=n+1
v=1,..,n, i=1,..,n.

Tt is possible to use the presented method of synthesis of the input signals M
after identification of the transfer functions which appear in the equations
of the method.

3. IDENTIFICATION BY THE AVERAGING METHOD

TIdentification of the transfer function g;x(t) is carried out with the use
of information obtained in the experiments made at the test stand. This
information consists of the measured and recorded time functions, z4(#) and
y(t). The transfer functions should be chosen so as to ensure the similarity’
between the signals in the model relation (2.1) and in the real relations
during the stand experiments. The measure of similarity can be the error
which is the function of differences between signals in the model and in the
experiment. :

It is not possible to find the transfer functions which yield the minimum of
this error from the results of a single experiment. A single experiment gives
too little information. The problem, however, may be solved with the use of
the condition of minimalization of the error averaged for a greater number
of experiments. This is the essence of the method of averaging. Averaging is
carried out in the set of realizations on the grounds of the results of a number
of experiments carried out on the test stand. The averaged absolute error
for ¢ = 1,..., s realizations of the signals is the following:

s n m 2
(3.) XOEES N IFOEPIACENOI
k=1

9=11i=1

()The method of syntesis in the time domain is analogous to the method of synthesis
in the frequency domain presented in [3].
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where y;9(t), zro(t) are the signals measured during the experiment 9. The
relative error averaged in the time interval < 1,1, > is

ty
' 1 1
. - = 8,(1) dt,
(32) =g amn /0
1

where the reference function has the form

(53) o=t [ 3 Y et

t2—h i ¥=1i=1

By using the Euler-Lagrange conditions for minimum error

(3.4) i=1,..,n, k=1,...m,

d [Bés(t)] 98,1
dt 13gi(t)]  Bgan(t)

the system of equations with unknown transfer functions g;;(¢) is obtained
foreach i =1,...,n:

8

(3.5) z [y,',g(t) — f: Gie(t) zrs(t)] z,0(8) = 0, v=1,..m.
k=1

d=1

The solutions of the equations system (3.5) are the sought transfer func-
tions. The equations are linear with respect to g;(f). If the equations
are not linearly dependent, the system will have a unique solution. Linear
independence of the equations results from the influence of nonlinear prop-
erties of the object during experiments, and from the fact that the input
signals are not fully repeatable. The differences between the input signals
in subsequent realizations of the experiment are random or can be intro-
duced intentionally [2]. This lack of full repeatibility of the input signals in
time during the experiments is a necessary condition for application of the
averaging method in the identification process. For the same reasons, appli-
cation of the results of only one experiment does not give positive effects,
but leads to an indeterminate set of equations and makes it impossible to
find the unknown transfer functions.

Let us introduce a symbolic notation for the operation of averaging and
substitute

S wiolt) malt) = E{yi(t) 2.(0)}

d=1

(3.6) ] |
S an(®) 3alt) = E{ar(t) su()) -
d=1
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Equations (3.5) for each i = 1,...,n will be have the form
(3.7) E{y;(t) :B,,(t)} - Z gik(t) E{wk(t) z,()} =0, v=1,..m.
k=1

The solution can be written in a matrix form. The column matrix of the
transfer functions gix(t) for each i =1,..,n is as follows:

(3.8) [k (®)] = [E{zx(t) 2 (O} [E{y:t) z.(D}]
k=1,....m, v=1,...m.

For example, for m = 2 the transfer functions found according to Eq.(3.8)
are

ga(t) = 7= [B{ra(t) 22O} EL() 21(8)
~E{aa(t) s1 (0} B (0) 22
giat) = 7= [- B (8) w2} B ) 21(1)
ORI IOEONE

where the following notation has been used:
(3.10)  Wo = E{a(D)es(t)} E{z2(t)e2()} — E{ma(t)z2(t)} E{za(t)z1(D)}-

Assuming 8 = 2, i.e. averaging the resulis of two experiments, the transfer
functions (3.9} will be obtained in the following form:

yin(t) z22(t) — via(2) ()
mli(t) mgg(t) — wlz(t) :Ugl(t) ’
Yi2(t) z11(2) — ya (1) 212(?t)
mll(t) $22(t) - mlz(t) wgl(t) :
The special case of the process of forming the input signals for m = =,
i.e. when the number of the formed input signals is equal to the number of

the reproduced output signals, creates conditions for direct identification of
clements of the inverse matrix. After substitution in the relation (2.10)

(3.9)

ga(t)

(3.11)

gia(t) =

(3.12) ()] = Lo ()]
it will take the form
(3.13) 2] = Gl pr @),  i=L.,m, k=1.,m,

where gi;(t) are the transfer functions of the new inverse model (Fig.3), in
which the forcing signals are the output signals and the resulting, forced
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signals are the input ones. These functions, found by means of the method
of averaging for each k = 1,...,n are

(3.14) [:(®)] = [E{m(®) v (ON 7' [B{ze(®) 0(0)}] . v =1,0m

u; (1) Object X 1)
G lt)
i=1..n k=1...m [m=n)

FiG. 3. Relation between signals in the inverse model.

In this manner, synthesis of the signals does not necessitate inversion
of the matrix, what reduces the number of necessary calculations. Never-
theless, the necessity of inverting the matrix in the process of identification
(3.14) still remains. This is a different matzix, however, what sometimes
may simplify the procedure,

4. CONDITIONS OF FORMING THE INPUT SIGNALS

A substantial problem in the processes of forming the input signals and
identification of the transfer functions is the possibility of obtaining singular
matrices. Vanishing of denominators of certain expressions makes them
indeterminate and, consequently, the transfer functions and input signals are
impossible to assess for those time values for which the matrix singularity
occurs. In such a case the corresponding transfer functions and input signals
may be evaluated by extrapolation from the neighbouring intervals.

Xpq (1) ()
_k_“'_(m_u = Experiment -1- Yit

Input signals
for {-th
iteration  Xe(t) Cxperiment -2- Yiat)
- (T
X (1) €9 Experiment -s- islt)
Identification
G (1)
Reference Y1 (E) - %) paput signals
signals ' Syrthesis ™ for lieration

i+
FiG. 4. Scheme of input signal generation (for a single iteration step).

The majority of real mechanical systems for which input signals forming
is carried out exhibit nonlinear properties. The presented methods of syn-
thesis and identification are, however, applicable to linear systems only. To
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make their application to nonlinear systems possible it is assumed that in
some neighbourhood of the signals used for identification the system is lin-
ear, i.e. the superposition rule is valid. However, due to nonlinear properties
of objects, the accurate solution of the problem of forming the input signals
necessitates the iteration procedures [6]. In each iteration step, on the basis
of signals measured during the experiment made in this step, identification
of properties of an object is carried out. The criterion for assuming the
proper number of iteration steps is that the solution of the problem should
remain in the assumed range of linearity of the object properties. This is a
drawback of the method of averaging, since it may require a large number
of experiments (Fig.4).

Another inconvenience in the application of the presented method is the
necessity of simultaneous recording of all the input and output signals in the
system, Even small phase shifts, resulting from inaccurate measurement,
recording or processing of signals, can significantly influence the results. It
seems, however, that the present measuring technology makes it possible to
satisfy the required precision conditions.

5. EXAMPLE OF APPLICATION OF THE AVERAGING METHOD IN
SIMULATION TESTS

In the presented example the object of simulation tests is a hydraulic
single-bucket excavator. The program of simulation tests consists in repro-
ducing in the stand the time functions of forces acting on the bucket tip'in
the soil excavation process. Hence, these forces measured in the excavation
process, Py(t) and Py(t), are the reference signals (Fig.5).

FiG. 5. Excavator under service conditions.

During the real work of an excavator the elements of its attachment
boom, arm, bucket change their mutual positions in a broad range, according
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to the operation cycle. On the stand, however, the bucket tip is fixed, and
the displacements of the attachment elements are possible only within a
small rarige resulting from their deformations (Fig.6).

iy
& e — S — ~
D7 i N e

77 T

Fi1G. 6. Excavator on the simulation test stand,

It has been assumed that the input signals are the forces F3(t), Fy(t}
exerted by the hydraulic cylinders of the arm and the bucket, and the output
signals are the forces Pi(t) and P;(t). Then, the mathematical model of the
excavator on the stand is a system with two input signals (m = 2) and two
output signals (rn = 2, Fig.7), governed by the following equations (2.1):

Excaovalor E——

.

|13 (t), G2 (), Gl Gy ()} ——— =

FiG. 7. Inpui and output signals for mathematical model of the éxcavator.

| Pi(t) = gu3(t) F5(2) + g1a(t) Ful?),
Po(t) = ga23(t) Fa(t) + gaa(t) Fu(t),

or, taking into account Eqs.(3.13), in the inverse form
F3(t) = gn(t) A(t) + gaa(t) Pa(2),
Fa(t) = ga(t) Ai(2) + Gaa(t) P2(1)-

Using the averaging method for the results of two experiments (s = 2)
carried out on the test stand we can find the transfer functions of the model
according to Eq.(3.14). This leads to

(5.1)

(5.2)
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Fnlt) = - Falt) Pa(®) — Faa(®) Pu0)],
Flt) = g Walt) Pu(®) = Fa(®) Pa(o)],
S - - [Fin(t) Pa(t) = Falt) Pu(8)],
k) = - [Fa(®) Pu() — Fa(t) Pa(),
where
(5.4) Wo = P(t) Paa(t) - Pya(t) Palt).

The sought forcing signals which yield the minimum simulation errors are
calculated according to formulae (2.10) which now will have the form

Fi(t) = gn(t) PY(t)+ g(t) P2(1),
Fy(t) = ga(t) Pr(t) + Fa2(t) P5(2).

Having measured the output signals Pi(t) and Py(t) obtained on the
stand for the input signals (5.5), we can find the simulation error according
to Fq.(2.4), which takes now the form

(5.5)

s - PP+ 1P - BOF) a

(5.6) €= r
Jarior - o)

During the tests the hydraulic cylinders which drive the arm and bucket
of the excavator are replaced with the electro-hydraulic actuators [6] equip-
ped with control system suitable for simulation. It is also possible to use
the standard cylinders of the excavator and apply special electro-hydraulic
values in their alimentation circuits. A suitable control system should be
provided then; this can be a digital control system equipped with a universal
computer [5, 7).

In the considered example real experiments have been replaced with the
computer ones, in which dynamic equations of the mathematic model of the
excavator in the digging process and on the test stand have been solved.

The model of the excavator (Fig.8), which has been reduced to the me-
chanical part, is a system of four stiff masses coupled by articulated joints.
The masses are: undercarriage with an operator cab, arm and bucket with
the excavated soil. In the model, six reduced flexible elements with elastic-
damping properties have been introduced. Planar movement of masses-has
been assumed and six independent coordinates have been assumed to de-
scribe it [4, 5]. Three of them: 2o, Yo, 1 describe the undercarriage displace-

ments. Their values change in narrow intervals resulting from deformations
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of the flexible elements. Thiee coordinates: 2, ¢3, a4 describe the relative
motions of the boom, arm and bucket. Their values vary in large ranges
which result from the desired motion of the excavator attachment and from
the deformations of the flexible elements which connect the hydraulic cylin-
ders with the boom, arm and bucket.

Aclualors
u (cuytinders)
iib 3
ji
5 AN
C.
Cyfinder &
\y 1 %
A - .
1t Y & o N ST\, Fexitie
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S .,’%%‘J’ P £ =
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A
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FiG. 8. Model of mechanical elements of the excavator.
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F1a. 9. Signals in the excavation soil experiment.

In the computer experiment which replaces the soil excavation process
the input signals are the displacements ug, us, us4 of the cylinder pistons
(kinematic input} and the forces Py, P, of the excavated soil reaction. The
output gignals are zq, Yo, ¥1, %2, Y3, @4 and the forces Fy, F5 and Fy of cylin-
der reactions., Forces P; and P; and the coeflicient 9 which describes the
bucket filling ratio are the output signals of the model of excavated soil(?)[5].
The output signals of the latter model are the coordinates 4,4 and 5 which
describe the bucket position as a function of the coordinates zg, yg, ¢1, ¢2, ©3
and g, (Fig.9). |

In the equations of the model the motion is decomposed into the principal
motion and perturbation motion. The principal motion is the desired part of
displacements of the system, whereas the perturbation motion consists of the
vibrations resulting from the flexibility of the object elements. Motion of the

(*)The model of the soil excavation process was described in more detail in [5].
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excavator elements without flexible elements deformations is understood as
the principal motion, therefore, only three coordinates will have the principal
and perturbation motion components:

3 = ¢+ep,
(5.7) Y3 = ¢34+ eps,

P4 = Pi+EPs,

whereas the remaining coordinates will have only small, perturbation com-
ponents,

Tgp = EZop,
(58) Yo = EY%,
Y1 = E¥L,

where ¢2, 3,49 — principal motion components, £z, €93, E@4,ETa, EY0, EP1
— perturbation motion components. Such decomposition allows for lineariza-
tion of the equations of the perturbation motion, for which the principal mo-
tion is the vibration excitation; the disturbance motion does not influence
the principal motion.

The principal motion equations and the equations of constraints which
result from the object geometry are as follows:

PoAzz + $3Azs + B A2
= By + FOD; — F2 A3 — Pizdsin g + Paajcos s,
@9 Asz + $YAss + @S Az = Bs + F3 D3 — F{ Dy
—Puaysin (3 + @3) + Paz} cos (4] + ¢8)
(5.9)  @3An+ @SAsm + @A = By + F{ Dy
—Pyoysin (9] + 45+ ¥}) + Parycos (4 + o8 + )
a%-l-b% — 2asbg cos (az +ﬁ2+<,92) —u% =0,
a§+b§—2a3b3cos(a3+ﬁ3—tpg——II) -uf =0,
a§+bi—2a4b4cos (a4+ﬂ4—cpg-ﬂ) —uﬁ:ﬂ,

and the perturbation motion equations after linearization are

epra1r = —bi — cogn — kep1 + Pudn + Padyz

EPaayy = — (622 + dggcz) E@r = (522 + kézdé) gy — Fida,
(6.10) e@aazs = -— (033 + dggca) Ep3 — (533 + k3d§3) @3 — Fydss,

EPalag = —diyCacPy — (b44 + k4d34) £@4 ~ Fidag,

efouss = —bss — cog€do — Koz€®o + P1,

eliotes = —bes — CoyEYo — Koy + P2 .
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The forces exterted by the cylinders, which are the sums of forces resulting
from the principal and the perturbation motions are found from the formulae

R 2t F + eFy = —kadaacpy — daacaca,
(5.11) Fy = F:;] +ely= —-k3d33£(,03 — dazcacys,
Fy = F)4eFy= —kadassps — daacacpy .

Coefficients of the equations of both the motions depend on the geomet-
rical characteristics and displacements of the excavator masses; they are also
functions of the principal motion coordinates(®.

a0 ]
Uz
20
Uy
uy ]
e 1 ‘ Iy

FiG. 10. Input signals in the excavation experiment.
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FiG. 11. Bucket tip trajectory during excavation.

In the experiment of soil excavation in the model equations the input
signals ua(t), ua(f) and wu4(t), Fig.10, are given. This results in the arm
and bucket displacement from point A to B, Fig.11. As a result of this
displacement, soil is excavated, and the forces Py(t), P;(t) which act on the
bucket are measured (Fig.12). :

The method of fixing of the excavator on the simulation stand (Fig.13)}
is such that displacements of its elements are possible only within the range

(3)The coefficients in explicit form and numerical values of the parameters are given in
paper [4].
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Fic. 12. Soil reaction forces (reference signals).

Fiq. 13. Excavator model on the test stand (fixed bucket).

of the perturbation motion, while the principal motion coordinates remain
constant. The mathematical model of the excavator is conceived in a slightly
different manner: the input signals are the forces Fy, F5 and Fy exerted by
cylinder actuators, whereas the output signals are the forces Py, P acting
on the bucket tip (Fig.14). The equations of the mathematical model which
describe vibrations of the excavator on the stand are written in the form

epray = —copr — ket + Prdn + Padaz,
EPaan = — '[622 + Czdgg] £pg — [522 + kzdgzl ey — Fad},
epsaas = — |csa + caddy] ea - (b3 + kad3s)| 03 — Fad3,

(5.12)
ePatas = —CadigePs — [544 + k4d§4] ey — Fydy
£foass = —CozEdo — koz€Zo + Pi,
Efjottes = —CoyEYo — koyeYo + P2,

and

(513) P, = —khewq —cheda,

P, = kheya+ cheia,
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F1G. 15. Signals in the identification experiment (Experiment 2).
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Fig. 17. Input signals obtained by synthesis.
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FiG. 18. Forces acting on the bucket in the verification experiment.
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where the displacements of the bucket tip are

af'vA =1z — [(m% sintpg)] £y

- [w}g sin (c,og + cpg)] €3 — [mi sin (503 +¢8 + @2)] €p4 ,

14
(514 eya = Yo+ Thepr + [:v% cos &03] 2

+ [23 cos (93 + 8)] es + [k cos (93 + 93 + ¥3)] eva

The experiment on the stand is replaced by solution of the equations of the

P
:._3" 1 =1 Experiment 1
up uz [ug YT o onthe stand For
l £y
. . L o] Pre
Sail excavation £ J Experiment 2 P
experiment [P E o the stand | 22
a2
et et
|| Identification
by the areraging
method =
" Jﬁaf Bz Qs |G
f:)
2
Input signal
B Ssynthesis
I I =
B lE &
i 4
Verifreatton
experiment
V‘% ki
5 -
s\ Simulation errar £
7 coteulation

FIG. 19. Input signals generation in the simulation tests.

mathematical model. To make this model conform with the model (5.1) and
(5.2), the signal F3(t) is treated as a disturbing signal, and its shape is the
same as that in the experiments. After making two experiments for different
input signals (Figs.14, 15), two transfer functions (5.3) were found, Fig.16.
These transfer functions served for the synthesis of forcing signals (5.5) which
yield the minimum simulation errors (Fig.17). To estimate the simulation
error, a verifying experiment has been carried out. For the assessed input
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signals (Fig.17) the equations of the mathematical model have been solved
for the corresponding forces (Fig.18) acting on the bucket on the test stand.
The simulation error calculated according to Eq.(5.6) equals 12.3%. This
error has been obtained for the input signals which resulted from the forming
process (Fig.19), in which the iteration procedures have not been applied.
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STRESZCZENIE

O PEWNEI] METODZIE IDENTYFIKACJI W STANOWISKOWYCH BADANIACH
SYMULACYINYCH

W pracy przedsiawiono metods identyfikacji {zwana metoda uéredniania), w ktorej
informacje o badanym obickcie dostarczaja wyniki szeregu eksperymentdw przeprowa- -
dzanych w podobnych warunkach. Wskazano na mozliwosc zastosowania te] metody w
stanowiskowych badaniach symulacyjnych, gdzie wystepuja warunki dla wykonania wy-
maganych eksperymentéw. Przedstawiono takie odpowiednia dia tej metody identyfika-
cji metode syntezy sygnaléw wymuszajacych w badaniach symulacyjnych oraz przyklad
ksztaltowania sygnaléw wymuszajacych dla badat kopatki jednonaczyniowej, w ktorym
eksperymenty rzeczywiste zastapiono eksperymentami komputerowymi.
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PE3IOME

0 HEKOTOPOM METOAE WAEHTUPHUKALMHK B YCTAHOBKAX
HUMUTAITMOHHBIX UCCIEOOBAHUN

B pabore mpegcTaBiicH MeTol HOSHTHHHKAUUH (Ha3LIBACMBIH METOROM YcpegHe-
HEs), B koTopoM RHQoOpManmio 06 HeeleayeMoM oBLeKTe NAIOT PE3YALTATHI PAAA DKC-
HepHMEHTOB, NPOBENEHHEIX B AHAMOTHYHEIX YCHOBHAX. YKa34HA PO3MOMKHOCTb MpH-
MeHeHH A BTOT0 MeTO[A B YCTAHOBKAX HMHTALMOHHLIX HccNeZoBauk i, rae BulcTynaOT
YC/IOBHA I ApoBefleRA rpebyeMBIX sxcnepuMenToB. IlpeacTaBien Takxe, COOTBET-
CTRYIOUIHH STOMY MeToNY HAeHTHOHUKALMK, MeTO/L CHHTE32 BRIHY HAAICINUX CUTHATOB
B WMHTALMOHHEIX HCCIEFOBAHMAX, A TAKXKE NpHMeD DOPMHDPOBAHEA BEIHYMAAOMIHX
CHTHAIOB ONA HCCAeHOBAHH H OfHOKOBIIOBOTO SKCKABATOPA, B KOTOPOM ReHCTBUTENE-
Hbi€ BKCHEPHMEETH 3aAMeHEHBI KOMIBIOTEPHBIMHY BKCTEPHMEHTAMHE.
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