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LARGE PLANE DYNAMIC POSTCRITICAL DEFORMATIONS
OF ELASTIC BEAM

Z. WESOLOWSEKI and J. WIDEASZEWSKI (WARSZAWA)

Large elastic deformations of a prismatic beam with inextensible axis are analysed.
The beam at rest i1s an elastic arch formed by buckling from an initially straight beam
and fixing its ends. The beam is modelled as a system of rigid elements connected by
means of elastic hinges. The resulling motion equations are integrated numerically. The
initial-boundary problem is solved with the use of Lagrange multipliers at each time step.
Static characteristics are obtained with the use of the dynamic relaxation method.

1. DESCRIPTION OF THE PROBLEM

When an elastic beam is subject to large flexure and then fixed at its
ends, an elastic arch is formed as shown in Fig.1. One of the features of
such a nonlinear system is the existence of two configurations of stable equi-
librinm. Flat springs based on this idea have been known to have numerous
applications in technology, especially in various fixing and positioning de-
vices. They are usually made of thin metal sheet with a high elastic limit
which ensures a reversible behaviour within a broad range of deflections and
curvatures. One of the applications consists in capability of the system of
suddenly changing its configuration under slight changes of the load or the
slope at either of the ends. '

Fig. 1. Beam in postcritical state.

Suitable properties of the flexion springs and their dynamit characteris-
ties in particular, can only be achieved by analysing the dynamics of large
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deformations of _a,._bezim in a postbuckling state. Complexity of the prob-
lem Tequires a number of simplifying assumptions to be made to derive the
solvable motion equations. In the papers devoted to large dynamic defor-
mations, e.g. by WITMER et al. (1] and WoODALL [2], rotational mass
inertia as well as shear strains were assumed to be negligible. On further
assumption that the beam axis undergoes flexure only and its length stays
unchanged, the motion equations for arbitrary curvatures take the form

AP-"" : :—' (N éOS_- @ — T'sin cp)’ ,

(1.1)

I

Apy (N sinp+ Tcos ),

'(1.2). | M =T.

Load-deformation relationships and auiii]jary geometric formualae are

(1.3) M = Kk,

(1.4) S k= ¢,
,yl’

(1‘5) tgy = '1':71

where A, p, K — cross-sectional area of the beam, its density and flexural
stiffness, respectively; @,y — Cartesian coordinates of material points of the
beam axis in the 0z0y frame of reference; ¢ — angle between a tangent to
the beam axis and the coordinate axis 0z; & — beam curvature, N, T, M -
components of the internal force tangent and normal to the beam axis and
bending moment, respectively. ,¥, ¥, K, N, T, M are functions of a natural
coordinate s measured along the beam axis and the time t (s € <0, L>,
L — beam length); ()" means differentiation with respect to time t, () means
differentiation with respect to the coordinate s.

The presented partial differential equations have no analytical solutions
in the literature. WITMER et al. [1] modelled the beam as a system of
concentrated masses and used the finite difference method. WoODALL [2]
introduced an additional simplifying assumption which limited the range of
validity of solution to moderately large displacements. The finite difference,
the perturbation and the Galerkin methods were used to solve the prob-
lem. A similar system for moderately large curvatures and with allowance -
for Totational inertia was solved with the help of perturbation method by
ATLURI [3]. '
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2. METHOD OF SOLUTION

Algorithm of numerical solution of the motion equations consists in re-
placing a confinuous structure by a system of rigid elements connected by
elastic hinges. Discretization of the beam is shown in Fig.2 whereas the
internal forces applied to an element are given in Fig.3 . Each element has
a definite length, mass and moment of inertia. The motion of the system
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Fi1G. 2. Discretization of the beam,
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F1G. 3. Rigid element.

is described by the momentum and the moment of momentum conservation
principles as well as the internal force-displacement relationships. When the
beam axis is inextensible, the relation is limited to the mutual rotation of
neighbouring elements and corresponding bending moments. The equations
take the form

(2.1)  Tégp = Mpyr — My + (X + Xiq1)asinag — (Y + Yiqa )acos ag,
k=1,2,...,n,
mir = Xp— Xiy1, E=1,2,...,n,

(2.2)
mix = Yi—Yiq, E=1,2,...,n,
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(2:3) My = K(og = ap-1), k=231

where 2a, m, I — length, mass an(i'momeﬁt' of _iﬁertia, of an element; Xg,
Ye, My, — internal forces and moments at the nodes;. ag: angle between the
L-th element and the 0z-axis; &%, y& — coordinates of a mass centre for the
k-th element; n-number of elements (L = 2 an)..The initial conditions at

f = ip are

ap(te) = k= 1,"2,;...,'1'1',
(2.4)
dk(to) = O, k=1,2,...,m,

where oy, &y — are the initial values of the angles and their rates.

Let the origin of coordinates be at the left-hand side end of the considered
beam. The other end lies on the 0z-axis. Both ends are fixed and cannot
move in any direction. The boundary conditions for the beginning of the
first element and the end of the last element are

(2'5) rix = Oa ny = 01

(2'6) ‘ Tn2 = In, Un2 = 0,

where 2,1, y1,1 — coordinates of the left-hand side end of the beam; 432,
Yn,2 — coordinates of the right-hand side end of the beam; I, — distance
between the fixed ends of the beam (L1 < L).

Thus the deflections at the beam ends vanish. To have a complete de-
scription of the situation, two conditions are still lacking. In what follows
two variants of those conditions will be introduced: (1) bending moments
conditions and (2) a slope of the left-hand side end the beam associated
with the bending moment at the other end.

Since the beam ends are at rest, we have vanishing velocities and accel-
erations of those points

(2.7) ’ £10=10, th1=0,
(2.8) 13 =0, H1p=0,
(2.9) Ep2 =0, 2z =0,
(2.10) En2 =0, 2 =0.

The conditions (2.3), (2.7), (2.8) are satisfied identically since the origin
of coordinates coincides with the point concerned. The boundary condi-
tion (2.10) referring to the zero acceleration of the end of the beam can be
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expressed in terms of the angles ay

n .
Epn2 = —2a Z (di €08 avg, + (¥ sin ak) =0,
k=1
(2.11) .
2 = —2a Z (dt% sin a, — dy, cos ak) =0.
k=1

Similarly, the accelerations #; and § entering Eqs.(2.2), can be shown to
take the form

' k—1 :

e = —2a)_ (c‘r? cos @; + &; sin a,-) —-a (d?c cos ay, + & sin ak) ,

i=1 :
(2.12) 1 |
e = -—2a E (d:? sin oy; — &; cos a,—) —a (di sin oy — G cos ak) .
=1

The system of equations consists of the motion equations (2.1), (2.2), elas-
ticity relationships (2.3) and the acceleration boundary condition at the
end of the beam (2.10). Linear accelerations £, §ir in Eqs.(2.2) and (2.10)
may be eliminated since they are expressed in terms of angles o and their

derivatives dy, and &g, (2.12) and (2.11). We finally get:
Iy = Mpyy — Mi 4+ (X5 + Xgq1 )asinag |
—(Yx + Yip1)acosag, - k=1,2,...,n,

—- kﬂl : -
m | —2a Z (d? cos &; -+ O sin oz,;) —a (di cos o, + &g sin ak) :
L i=1 : : J
ZXk-.Xk_kl, k=1,2,;..,n,
- k—l ’ . : C
(213) m|-2a Z (d? sin e — & cos a,;) - a (dﬁ sin o — dy, cos ak)
L (=31 J

:Yk_Yk+la k=1,2,...,n,

Mkzﬁ’(ak—-ak_l), £E=2,3,...,n,
- n .‘
—2a Z (c’ui cos arp. + O sin ak) =0,
k=1 .
L .
—2a Z (ai sin g — di, oS ak) =0.
k=1
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The above system constitutes 4n +-1'a,lgébfa..i'.s_:__-:.éd;ilati_ons that are linear with
respect to &, Xk, Y, Mk, Xnt1, Yot1s Mn+1 (k =1,2,...,n). The number
of these quantities is 4n+ 3. If two of the above.listed quantities are known,
the number of equations becomes equal to the number of unknowns and
a unique solution can be arrived at, provided. the principal matrix of the
system is not singular. This means that, knowing ata given time instant ¢
the configuration of elements, their velocities and two values from the above
4n+3 accelerations, forces and moments, remaining quantities can be found
in a nonsingular situation. The two mentioned quantities supplement the
description of boundary conditions. In the system of Eqs.(2.13) the values
My, My can be chosen as known ones. This corresponds to a statical
input of known applied moments at the ends of the beam. The kinematic
input can be modelled by assuming & (t). This means a description of the
motion of the beam under forcing function ay(f) resulting from the known
function & (f) and an initial value of &i(fo)- &

The system (2.13) can be solved for the accelerations dy. By numerical
integration approximate values of velocities & and the angles oy themselves
are obtained in the next time step. However, the angles oy and angular ve-
locities ¢y, will not, in general, satisfy the boundary conditions (2.6) and
(2.9) for a location and velocity of the end of the beam. By assuming ad-
equately small time step the values of a; and dy differ little from those
that satisfy the boundary conditions in an exact manner. That is why the
obtained values of ay and & are corrected in order to satisfy the condi-
tions (2.6) and (2.9) with the least error possible. At the same time, the
corrections must be small enough not to distort the whole solution.

One of the procedures to approach the above described problem is, in
the first place, to try to obtain a location of the beam end according to the
condition (2.6). On the basis of the angles ax we calculate the kinking angles
B (k=1,2,...,n — 1) between the neighbouring rigid elements, Iig.2.

(2.14) Br = 041 — Qs k=1,2,...,n—1.

By uniform increase of absolute values of the kinking angles at all hinges, the
distance between the ends of the chain of rigid elements becomes smaller.
Conversely, by a decrease of absolute values of the kinking angles the chain
becomes more straight and its end depart. After the desired distance be-
tween the ends is reached, the whole chain is subject to a rigid rotation
with respect to the origin of the coordinate system until its right-hand side
end touches the Oz-axis. This procedure enables the condition (2.6) to be
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satisfied to within a required accuracy, limited by the precision of arithmetic
operations. When the angles ay satisfying (2.6) are known, the second stage
of the correction follows by seeking such corrections 7 for the velocities &y
that will result in the satisfaction of the condition (2.9) on the vanishing
velocity at the support. The following equations must be met:

n
QGZ(dk—i—m)sinak = 0, k=1,2,...,n,

k=1
(2.15).

n
QGE(dk-l-nk)cosak = 0, k=1,2,...,n,
k=1
where ; denote corrections for the angular velocities dx. The correction 1
can be minimized by using various norms. Minimum of squared corrections
is required in further calculations, o

n
(2.16) > nf = min.
k=1
On using the Lagrange method, the minimum of correction function is sought

n n k{1
(2.17) H= Z nt 4+ M Z(c’rk + ) sinag + Ag E(c’uk + k) cos ag
k=1 k=1 k=1
where A, Ay are the Lagrange multipliers.
The condition

(2.18) OH _,,

%]: — ¥
provides expressions for 7 that, after substituting into (2.15), enable the
multipliers Ay, Az to be calculated followed by the corrections 7y themselves.
Knowing the configuration and the velocities, subsequent calculations are
conducted by repeating the described algorithm for the consecutive time
instants. :

A considerable decrease in the principal matrix order, and thus reducing
the dimensions of the computational task, can be readily achieved by using
Eqs.(2.2) and (2.3) in Eq.(2.1). In this way n forces X}, n forces Y; and
n — 1 moments My (k = 1,2,...,7 4 1) can be eliminated from Eq.(2.1).
There remain n+2 equations containing n accelerations éy (k=1,2,...,n),
two single values of X;, Y¥; and two values of M; (1 <4 < n+1). Accepting
as known two from among these magnitudes, we again arrive at the same

Ek=1,2,....n

number of equations and unknowns, i.e. (n+ 2).
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3. STATICS OF THE BREAM

If damping terms are accounted for in. the motion equations (e.g. ex-
pressed as linear functions of velocities) the: presented algorithm can be
employed in statical analysis of the beam with the use of the dynamic re-
laxation method [4, 5]. Due to the action of viscous damping the system
tends asymptotically to its statical equilibrium configuration, which usually
happens after a suitable time of vibration damping has elapsed.

Fia. 4. Beam in static equilibrium.

Deformed beam axes under static equilibrium for various parameters
I, = I /L ranging from 0 to 0.9 are depicted in Fig.4. The solutions
were obtained on assuming that M; = (0 and M, 1 = 0. Equilibrium config-
urations are shown in the dimensionless coordinates & = ¢/L and § = y/L.
The analysed beam was split up into n = 20 elements. Broken lines for
particular configurations of rigid elements represent the elastic axes in a
satisfactory manner as compared with exact analytical solutions.

Load-displacement characteristics of three flat springs for the end dis-
tance parameters L; = 0.4, 0.6 and 0.8 are shown in Fig.5. The springs
were modelled as beams in the postcritical states having the initial configu-
rations such as shown in Fig.4. A dimensionless slope parameter & denotes
a change in the slope of the left-hand side end of the beam with respect to

its initial value,
~ 10— o

(3.1) iy = ,

where ay g - slope of a beam before load is applied, a1 — 5161?_9 of‘the loaded

beam. The other, vertical coordinate of the diagram denotes a dimensionless

applied moment wo R e
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Fia. 5. Static characteristics.

The presented characteristics are obtained under kinematic excitation.
For a fixed value of the angle oy, and after a sufficient damping of vibra-
tions has taken place, the applied moments were found via the equilibrium
equations of the system. The calculations were made for the angle oy vary-
ing from its value resulting from the equilibrium state with no load aqp to
the value —a o for a configuration symmetric with respect to the initial con-
figuration. The dimensionless slope parameter &, takes the values between
0 and 2. Figure 5 shows a strong nonlinearity of the characteristics. At the
final stage of the deformation process (i.e. for a;), approaching —ay o, the
moment M; rapidly decreases and an abrupt change of configuration occurs.
In this state the beam becomes in equilibrium again when M; = 0.

4., DYNAMICS OF THE BEAM

A series of deformation patterns of the beam in the postcritical state is
shown in Fig.6 a-h. The torque

(4.1) | My (t) = Myon(t)

was applied to one of the beam ends. My ¢ denotes the load amplitude, n{t)
stands for Heaviside’s step function. The nondimensional load amplitude is
My = 1.19 x 10~*. Initially the unloaded beam was in the static equilibrium
and the parameter of the ends distance was IL; = 0.8. Consecutive con-
figurations of the beam were registered every 3 ms. Numerical integration
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hadn [4 eI g

Fig, 6. Beam deflections in & postcritical state.

was made by the Runge-Kutta method of the fourth order. The applied
damping enabled the change of configuration to be studied from the start
to the final static equilibrium configuration.

Time-dependent slopes a; and o of the first and the last element of
the beam are shown in Fig.7. The deformation process was similar to that
visualized in Fig.6, i.c. an abrupt loading of a beam in its postcritical state
(L, = 0.8) by a moment M; = 8.93 x 1075 in the presence of damping,.
Figures 6 and 7 show the complexity of the deformation history. In Fig.7
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F1G. 7. Response of a system to an abrupt static input.

slight disturbances can be seen imposed on the fundamental mode of motion.
They correspond to the propagation of bending waves along the beam.

Responses of the system to the kinematic excitation are shown in Figs.8-
.10. A beam in the posteritical state was deformed according to the given
function of the slope ay(t). The input was distributed during the first 0.03 s
in a linear manner between the slopes associated with symmetric configu-
rations of the statical equilibrium. Later the load functions remains con-
stant. Response of the considered system is illustrated with the help of the
time-dependent distribution of the end slope a,(t). The presented diagrams
refer to the end distance parameters Iy = 0.8, 0.6 and 0.4. Starting from an
instant when the slope of the beginning of the beam becomes opposite to the
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F1G. 8. Response of a system to a kinematic input for L; = 0.8.
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Fi1G. 9. Response of a system to a kinematic input for Ly =0.6.
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FiG. 10. Response of a system to a kinematic input for [y = 0.4.

initial one, the change of configuration of the system becomes exceedingly
abrupt. Again, propagation of flexural wave can be observed.

5. SUMMING UP

A method is presented for analysing large dynamic deformations of beams
whose end hinges are closer to each other than, the length of the beam
itself. The method consists in the discretization of the system, inclusion
of the constraint equations to the motion equations, numerical integration
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of accelerations at each time step and the analytical-numerical corrections
of the approximate solutions in order to satisfy the houndary conditions
optimally. The proposed procedure enables to analyse complex dynamic
probleins at a relatively low cost. Moreover, broad possibilities seem to exist
to develop the method and apply it to other physically nonlinear systems.
One of the present authors is preparing a paper devoted to the numerical
properties of the algorithm and experimental verification of the obtained
results,
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