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DETERMINATION OF DRYING INDUCED STRESSES
IN A PRISMATIC BAR

A. RYBICKI (POZNAK)

In the paper a solution of the two-dimensional problem of convective drying of porous
- capillary material is presented. The considered phenomenon is described by a system of
coupled differential equations proposed by KowavLski [7,8]. The problem is solved with
the use of the finite element method for spatial derivatives and of the three-point finite
difference method for derivatives with respect to time. The obtained results with special

emphasis on the stress distribuiions are shown diagrammatically.
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coordinates of points,
time,
components of the displacement vector,

A[N/m?®] bulk modulus for porous material,
.M [N/m?®] shear modulus for porous material,
oij [N/m?] components of the total stress tensor,
€ij [1] - components of the strain tensor,
T[°K] absolute temperature,
¥ [deg] relative temperature,
@ [1] specific moisture content,
cs [J/m®deg] thermal coefficient of the moisture potential,
¢s [J/m®]  moisture content coefficient of the moisture potential,
ay [deg™!] coefficient of the linear thermal expansion,
ag [t} coeflicient of the linear humidity expansion,
am [kg s/m*] coefficient of the convective mass exchange,
i [J/kg] moisture potential density,
A {W]m *K] coefficient of thermal conductivity,

Am {kg 5 Jm]
po [kg/m®]

coefficient of moisture conductivity,
density of the skeleton of porous material.
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1. INTRODUCTION

The process of drying of wet porous-capillary materials is accompanied
by some changes in the shape of the body due to shrinkage. In turn, this
usually gives rise to some shrinkage stresses that, similarly as the thermal
stresses, are caused by internal changes in the material. Their existence is
independent of the mechanical forces applied. The reasons for the gener-
ation of drying stresses is caused by: nonuniform distribution of moisture
content, nonuniform distribution of temperature and a mechanical field due
to external forces, if any.

Nonuniformity of the moisture content distribution increases along with
the tate of drying process. The evaporation of maoisture from the boundary
surface proceeds faster than the flow of moisture from the interior of the
dried material. That is why the shrinkage of material layers near the surface
is considerably larger than that in the interior. The shrinkage stresses of the
surface layers may often exceed the limit value of the strength of the material
so the surface cracks and even the through cracks (leading to the damage of
the whole material structure) can occur. :

In the paper such shrinkage stresses in the dried material are analysed
which do not exceed its strength. The elastic (reversible) stresses only are
allowed for in the presented considerations. The model proposed by KOWAL-
sK1 [7,8] is used for the description of the stated problem. The model relates
stresses to strains, moisture content and temperature of the material and
has the form of a system of five doubly coupled differential equations whose
solution must additionally satisfy the compatibility relationships. The above
mentioned couplings mean that a variation in one of the three fields involved,
i.e. either the temperature or the moisture content or the strain field, causes
mutual variations in the two remaining ones. In other models put forward
in the literature on drying, e.g.[1-5], an influence of the strain field on the
temperature field and the moisture distribution field was ignored.

An analysis of the generation of shrinkage stresses together with the
sumerical results for the distribution of shrinkage stresses was made in [10].
The paper concerned a one-dimensional case of convective drying of a plate
resting on an impermeable foundation. In order to concentrate attention on
the shrinkage stresses caused exclusively by the moisture content variations,
the considerations were confined to the so-called first period of drying when
the temperature of the dried material remained constant and equal to the
temperature of the wet-bulb thermometer [6], and no external mechanical
fields acted on the plate.
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Similar two-dimensional problem will be dealt with in this paper. Con-
vective drying of an infinite bar with rectangular cross-section will be consid-
ered under the same assutnption as those made in [10]. The coupled system
of three second-order differential equations describing the problem will be
solved with the use of the finite element method. The numerical results will
be shown by means of various diagrams. '

2. SHRINKAGE STRESSES. BASIC SYSTEM OF EQUATIONS

The distribution of the shrinkage stresses will be determined on the basis
of moisture concentration distribution (or the moisture potential), the tem-
perature distribution and the dilatancy of the porous material in question.
These fields are described by the following system of equations [8}:

2
MV + (M~§- A - 7—) grad diva — (7,9 Yo )gradﬂ
9

Ca

(2.1) v cs
KViy = p+ 2divu - 29,
Po Po

£V F+ kdiva — K 1,

where u is the displacement vector of the dried material, i stands for the
moisture potential and @ denotes the relative temperature. In addition, the
following formulae are present in Eqs. {2.1):

c? c
K = 4,2 cf =2
mp(]’ =) P(],
Cp— C €9 Yo
2.9 k, = ‘”—(1———)
( ) B 3&196,9 (:9719 ]

9 = (2M + 3A)ay, Yo = (2M + 3A})a,,

where A,, is the coefficient of moisture conductivity, ¢, is the moisture con-
tent coeflicient of the moisture potential, ay, e, stand for the coefficients
of the linear thermal expansion and the linear humidity expansion, respec-
tively, M, A, denote Lamé’s constants for the dried material and po is the
density of dry material. -
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Knowing the fields u, 9, p, the distribution of the specific moisture con-
tent can be found from the formula (see [8])

(2.3) € = O, + (pop — cy¥ + vodivu)/cy

followed by the stress distribution oy; associated with a given thermome-
chanical state and the given moisture distribution:

(2.4) oij = 2Megj + [Ackr — 199 — 16(0 - 0,)] 035,

where
Yo = a,g(?M + 34), Yo = 0to(2M + 34),

and
(2.5) eij = (uij + u5,)/2

denotes a small strain tensor of the dried material,

During the first period of drying the temperature ¢ is equal to the tem-
perature of the wet-bulb thermometer and remains constant. The system of
Egs. (2.1) is reduced to take the form

2
MV?u + (M +A4- 1‘1) grad diva — Z—fgradp =0,
(=)

Co

(2.6) .
KVi = p+ 2diva.
Po

3. FORMULATION OF THE TWO-DIMENSIONAL PROBLEM

The problem to be solved is that of convective drying of an infinite bar
having a rectangular cross-section. None of the sides of the bar is loaded
and at the initial instant of time the moisture distribution in the material
is uniform; in other words, the distribution of moisture content potential
po is constant and no initial stresses are present. The first period of dry-
ing is considered which takes place at constant temperature equal to the
wet-bulb temperature [6]. The bar is submerged in a uniform atmosphere
with constant moisture potential. Drying continues in a convective manner.

Under the circumstances, the following initial-boundary problem is for-
mulated: find such functions u.{z, y, t), u,(z, ¥, 1), p(z, y, t) that, within
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the rectangle (~L, L) X (—H, H) and for t € R*, satisfy the system of
differential equations

0%, 9?u 9%u
(2M+A——) 5o T Mg +Ma A

2 2 2
s 8%u, 9*u &y
(3.1) (A —) 5ea, T Marae t M7

2 2
+ (2M+ _:’ﬂ) 3:” _edk g

2 2 2 2
Yo U -y_@auera_y_Kap I,,B,uzo,

Po dxdt Po 6y6t ot 5;5 - 3_?;2

in the presence of the stress boundary conditions

onle=t = Onls=-L =0,
(3.2) JZZ‘y:H = 0'22|y=—H =0,
UIZI.?::L - Ul2|x=—L = 0-12|y=f{ = T12jy=—H :.01

for the moisture flow

= on
x==L Oz

_Ou
y=—H ay

dp
(3.3) e

o
=L ay

= - (am/Am) {(—pta),
y=H

and in the presence of the initial conditions
(3.4) u(z, y, 0) = po, gi;(z,y,0)=0, for i,7=1,2.

The finite element technique will be employed to arrive at the solution
sought.
4. FORMULATION OF THE FEM PROBLEM

The solution within the relevant domain will be sought in an approximate
manner: '
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N

Z a:,_(t) 1,bn((l7, y)a

n=1

u.’c(w, Y, tk)

N

Z a‘-ﬁ.(t) Pa(2, ¥),

n=1

(4’1) u'y.(msya tk)

N .
,u(a:, ¥ tk) = }: a’i(t) d)‘n(wv y)'

n=1
For the given set of the base functions {#n}, » = 1,..., N determined
according to the FEM rules, at each instant of time &, & = 0 , M (where
tr — tx_1 = At denotes an assumed time step) a set of coefﬁaents {6}k,
n=1,...,3N is sought, where N is the number of the base functions. These
coefficients will be determined with use of the three-point Lees method [11]
according to the expression

(42)  {a},,, =-[A/3+C/2807
x [A/3 {ai}s +(A/3 + C/280 6} +1],

where A and C are the stiffness and the time coefficient matrices, respec-
tively, determined according to the semi-discrete Galerkin method, see [12],
p. 146.

The first Eq.(3.1) now takes the form

&y HE 62 9%u op
4. y g OB _
43) kg -kgg — kg~ kg kg =0,
where
v2
kh = 2M+A- -2, ke = M,
(44) ;e
7@ 7@
k3 = _ k4 = -
€o 5

On suitable rearranging Eq.(4.3) can be written down in the form

0
dz
The form of Eq.(4.3) serves to calculate those coefficients of the stiffness
matrix A that form the rows numbered 37 — 2, where ¢,j = 1,2,...,3N.

(45) o111 + 5y—0’12 =0.
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Particular terms are calculated by means of the following expressions:
ABj—2,3i-2) = K j 99; a¢.d + LZ/ i} 3""

3% dpi

y Oz
f (o

The form of Eq.{(4.5) clearly shows that the stress boundary conditions
(3.2) for # = £ can be realized as natural conditions for an appropriate
Galerkin form. In a similar manner the expressions for the stiffness matrix
elements in the rows numbered 35 — 1 will be found accompanied by the
stress boundary conditions at the sides y = +H. These magnitudes enter
the second Eq. (4.2).

The stiffness matrix elements in the 3j-th rows have the form

o; axbl o
a ?

(4.6) A(3j-2,3i—1) = kz iy +L3

A(35 — 2, 3i)

A(35,3i-2) = A(3j-2,3i—-1)=0

A(3,3i) = K f a¢,a¢,d 4K %"/’J%*b‘

(4.7)

The boundary conditions (3.2) for the moisture outflow are not natural con-
ditions. Therefore, the Galerkin form of equation (3.1)3 should by supple-
mented with suitable integrals over the boundary of the region. For instance,
for z = L we have

op

Oz =L

(4.8) = —apfAm ( ~ pa) .

To satisfy this boundary condition it appears necessary to introduce into
the rows 37 of the stiffness matrix an additional term

(4.9) A(37, 33 = A(34, 3) + Kan / Wit ds.
I

The components of the free terms vector in the relationship (4.2) is also
altered according to the expression

(4.10) b(37) = b(37) — pta K am f ;i ds.
, _ /
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For the time coefficient matrix C the following relationships are applica-
ble: the rows 35 — 2 and 37 — 1 have all vanishing terms, while the rows 33
" have the terms:

C(35,3i—2) = ksfwja‘b‘du,
(4.11) C(35,3i-1) = k6f¢38¢'
C(35,3) = f i dv.
G

Let us notice that the symmetry of the boundary conditions (3.2) enables
only one quarter of the domain (—L,L) x (-H,H ) to be considered, for
instance the domain (0, L) x (0, /), remembering the symmetry with respect
to the 0X and 0Y axes.

5. NUMERICAL EXAMPLES

The above procedure to solve the initial-boundary problem was em-
ployed to analyse the drying process of a prismatic bar whose rectangular
cross-section had the dimensions 0.2 m x 0.1 m. The following set of material
constants, taken from the literature on the subject [9, 10] were assumed:

A = 10°[N/m?, M = 6.25-10%[N/m?,
Am = 6.04-10"7[kg s/m?), ¢, = 6.6-10%[J/m’],
ay = 3.0-107%, om = 8.6-107%[kgs/m?],
po = 1200 {kg/m’}, pa = A0[J/kel,

o = 100[3/ke).

Due to the exchange of spatial variables the problem was reduced to the
rectangular domain 2 X 1. The rectangle was divided into 128 rectangular
elements, each having 16 base functions. These were assumed in the form of
bi-cubic Hermite’s functions ([12}, pp. 53-55). The time step Al was equal
to 1s. Eventually, the problem consisted in the solution of a linear system of
equations in 1836 unknowns for each time imstant &x. A decomposition into
triangular matrices was used. The time-consuming triangularization of the
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matrix [A/3 4+ C/2 Atf] was made only once. Next, for each step after the
modification of the right-hand side of Eq.(4.2) all that was necessary was
a rapid back-substitution and forward-substitution. The above method was
used as less time-consuming than the iterative method ([13], pp. 142-153).

6. NUMERICAL RESULTS

The results of calculations are visualized diagrammatically for three time
instants t; = 75s, {2 = 2.5min, 3 = 7.5 min. Contour lines for the moisture
potential at the instant ¢, in the whole considered region (—L, L) x (-~ H, H),
are shown in Fig.1. A relevant quarter of the rectangle is also shown. All

r// 1— p-99.99
2~ p=959
F— pu=955
44— =95

| &— p=80

66— p= 75
7- u=60
.

NS =

FiG. 1, Distribution of the moisture potential {J/kg] in the whole region
af the instant ¢, = 75s.

the further results will be given for this particular quarter (due to double
symmetry of the domain in question). Contour lines for the moisture poten-
tial at the instants ¢3 and i3 are shown in Fig. 2. What should be stressed
here is a movement of the lines of lower potential inwards as well as a change
of their shapes as a result of the process becoming two-dimensional. These
effects well agree with the intuition.

Displacements in the z-direction at the instant #; are depicted in Fig. 3
by means of suitable contour lines. At all the points of the region a shrinkage
took place in the z-direction; it was larger near the edge where the moisture
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e e 1

1- p=75[1/kg]
2 y=65[3/kg]
3- p=50{3/kg]

——

t

Fic. 2. Contour lines of the moisture potential in a quarter of the region
at the instants 2 = 2.5 min and ¢, = 7.5 min.

[
1

T1a. 3. Displacement contour lines 4z X 10% [m) at the instant £ = 75s,

1) #.=-1, 2) tzr=-2 3) uz =4,

4) uz=—6, 5) ur= -8, 6) ug=-10,

) ur=-12, 8) ur=—14, 9)  u, = —18,
10) up =—22, 11) u, = —26.

content was considerably decreased. Displacements uy at the instant i, in
the y-direction are shown in Fig. 4. Unexpectedly enough, a certain swelling
occurs here, i.e. positive displacements inside the region exist despite a
decrease of moisture content in the whole rectangle. It is this very shape of
the region that causes the observed effect; shrinkage on the shorter side and
on the longer side lead to some different “resultant forces” of shrinkage. This
effect is observed to be less pronounced at the instant ¢z and to disappear at
the instant t; when all the displacements become negative. No such effects
are visible for a square drying domain whose characteristics are given in
Fig. 5.
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Fi6. 4. Displacement contour lines u, % 10% [m] at the instant ¢; = 75s.

1) uy =—10, 2) uy=-8, 3) uy=—6,
4) uy = -4, © 5)  wy=-—2, 6} uy=-—1,
T} uy =-0.5, 8) wuy, =-—0.1, 9} wu, = —0.01,
10) wy =0, 11) u, =01, 12) u, =0.2,
13} uy =04, 14} wu, =0.6, ~15) u, = 0.8,
16) uy = 1.0, 17) uy=12.
&
_\ 5
5 _ 4
4 \_/
3
3\_/
\ 2 2p
\ \ '\1
' Displacements U, Displacements U,

Fic. 5. Displacement contour lines us, uy x 10° [m] at the instant t; = 75s
in a square bar 2L x 2L.

l) u; = —0.5, 2) i = —1, 3) ui = —2,
4) i = —4, 5) u; = —8, 6) up = —12.

The distributions of the moisture potential along the-z- and y-directions
at the instant ¢, are depicted in Fig. 6. Suitable dimensionless axes x/L and
y/ L are used. Drop in the moisture potential along the z-axis is larger what
leads to also larger shrinkage in the same direction. The stresses generated
by the shrinkage result in some swelling of the dried material inside the
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domain and its positive displacements in the direction of least resistance,
i.e. in the y-direction.

u
[3/kg]
100

a0

&0 |-

1
XL, YH

FIG. 6. Variation of the moisture potential along the axes 0X and 0Y
at the instant ¢; = 75s.

Let us now analyse the accompanying stresses. Contour lines of the
stresses oy at the instant ¢; are seen in Fig. 7a. As expected, the shearing
stresses in almost the whole region are negative. The existence of a small
island of positive stresses with small values is a result of the same effect that
was observed for the displacements w,. Positive o1z stresses decrease at the
instant ¢, and completely disappear at the instant i3, Figs. 7b, 7c. Moreover,
along with the continuing process of drying accompanied by a decrease and
equalization of the moisture content, the absolute values of shearing stresses
diminish and corresponding contour lines smooth out.

Figures 8a and 8b shows the control lines of the siresses at the instants 1y
and ta; Fig.9 depicts the stresses o2 at the instant {5, Large tensile stresses
along the sides of the domain parallel to the stress vector are observed
together with compressive stress inside the rectangle.

The most dangerous for the drying material are the normal stresses. The
diagram 10 in Fig.8 shows the stresses 011 along the X -direction and range
(0, L) for three time instants #1, %2 and t3. This diagrams are similar to
those obtained for the one-dimensional case (see [10]).

Figure 9 shows the contour lines of the stresses ¢'17 at the instants ¢; and
t3; Fig. 10 depicts the stresses og; at the instant {;. Large tensile stresses
along the sides of the domain parallel to stress vector are observed together
with compressive stresses inside the rectangle.



F1G. 7. 012 stress contour lines at the instants:
a) #y =755, b) #z = 2.5 min, ¢) t3 = 7.5 min,

1} 12 = 100, 2) Co1s = —80, 3) o1z = —40,
4) a2 = —20, 5) oryp = -;10, 6) o = —b,

7) o1 = ~—1, 8) a2z =0, 9) o2 = —0.05,
10) o2 = 0.1, 11) 012 =0.2.

[181]
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FiG. 8. Contour lines for the stresses g43 x 107° [N/m?] at the instants:
' a) ty =T75s, b) {3 = 7.5 min.

‘1) an = -—160, 2) o = =120,
3) on=-9, 4) on = —60,
5) a1 = —30, 6) o1 = =10,
7 eu=-1 8) o1 =0,

9) en=1, 10} &y =10,

11) o1 =60, 12) o1 = 150,

13) o = 250, 14) o1 = 400.

Movement of the line o33 = 0 is shown in Fig. 11 for the three considered
instants of time. This line travels towards the centre of the region and
becomes straighter. '

The contour lines of o322 and 012 at the instant ¢ for a square bar are de-

picted in Fig. 12. Similarly as for displacements and stresses, some anomalies
caused by the anisotropy of the studied region tend to disappear.



flm 4

=

FiG. 9. Contour lines for the stresses gz x 1077 [N/m?] at the time &> = 2.5 min.

1}
4}
7)
10)
13)

500 +

105 [v/m?]

o2 = —120, 2) aga = —90, 3) oy = —60,
o2z = —30, ) 5) o2 = —15, 6) o0 = —3,
092 = -—1, 8) oy = 0, 9) aaz — 1,
T3y = 5, 11) oo — 19, 12) daz = 20,
gaa = 3.

Sy

F1G. 10. 011 stress contour lines along the axis 0.X at the instants

= 75s, {3 = 2.5 min, t3 = T.5min.

[153]
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Fig. 11. Movement of the surface 011 = 0 at the instants ¢ = T5s,
t; = 2.5min, {3 = 7.5 min.

Fia. 12. Contour lines for the siresses o2, 022 X 10~ [N/m®] at instant t; = 758
in a square bar 2L x 2L,

1) o=-1, 2) o=-b, 3) o=-10, 4) o= —15,

5} o= -25, 6) ¢ =-50, T) o=-75 8) o= -100,

9) o =50, 10) o =100, 11) o =200, 12) o = 300,
13) o =400,

7. GENERAL CONCLUSIONS

The following conclusions can be drawn from the solved two dimensional
problem of drying of a prismatic bar having a rectangular cross-section.

First, the obtained results agree with intuition and certain expectations
resulting from experimental evidence. At the same time, the suitability
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of the used model of the phenomenon and the method of its solutions are
confirmed.

Second, the solution shows that appropriate theoretical considerations
can enrich the knowledge on the phenomenon under consideration. At the
first glance surprising results are obtained in the paper. However, they
can be interpreted in a reasonable manner. The appearance of a subregion
inside the whole studied domain in which local positive stresses oceur (due
to anisotropy of the shape of the dried body) would have been very difficult
to discover experimentally. :

Finally, the obtained results for 2D situation provide a number of addi-
tional pieces of information of a cognitive nature as compared with the uni-
dimensional problem in [10]. These are: faster drying of corners and larger
stresses in them, appearance of the field of maximum shearing stresses inside
the considered domain and so on.

Since the material of the bar was assumed to be elastic and the numerical
input data did not refer to any specific material, the presented results are
rather of a qualitative character.
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