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Stokes flow of non-Newtonian fluid beyond a partially contaminated non-Newtonian fluid
sphere with interfacial slip condition is considered. An analytic solution for the flow fields
indicated by the stream function and the drag force over the sphere was obtained. Special
well-known cases are reduced. It was observed that with an increase in slip parameter values,
there is a rise in drag coefficient values.
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1. Introduction

Ever since the idea of micropolar fluids was introduced, multiple researchers
have attempted to solve various fluid flow problems involving such fluids. The
axisymmetric flow issues in micropolar fluids are an intriguing class of problems
that have piqued the curiosity of researchers. Micropolar fluids have applications
in blood flow, liquid crystals, lubricants, colloidal suspensions, bubble fluids, etc.
Basset [1] in his monograph presented slip condition, i.e., the tangent ve-

locity relative to a solid boundary is proportional to the corresponding viscous
stress. The slip parameter is given by s = βa

µ . The no-slip case is obtained when
s→∞. Happel and Brenner [2] in their monograph have also discussed the
interfacial slip over a surface. Feng et al. [3] elaborated on the Newtonian flow
over a Newtonian drop with finite Reynolds numbers and with interfacial slip
condition. The outcome of their work concluded that the drag force over the
surface was reduced with the presence of slip over the surface.
Eringen [4, 5] introduced the theory of micropolar fluids. The particles in

such fluid can rotate with their own spins and micro rotations. According to the
theory on the description of the fluid motion, two vectors, velocity and spin vec-
tors, are used. The treatise by Łukaszewicz [6] also widely discussed the theory
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of micropolar fluids. Ramkissoon and Majumdar [7], in their study of flow
over a micropolar fluid past an axisymmetric body, obtained a drag force formula
in limiting form with a stream function. By using this drag force, a micropolar
fluid flow past an impervious sphere was calculated. Jaiswal and Yadav [8]
investigated the reaction of the thickness of the micropolar fluid layer through
two layers of Newtonian fluid stresses at the interfaces, velocities of fluids, and
on distinct Darcy number of porous layers. Dang et al. [9] analyzed the aspects
of lubricants: power law fluids, couple stress lubricants and micropolar fluids and
their influence on journal bearing effectiveness. Alouaoui et al. [10] considered
a laminar boundary layer fluidity of a micropolar nano-fluid close to a vertical
permeable plate, which is in motion. The effect of stability and magnetic fields
on heat transfer are studied over vertical permeable plate. The above-mentioned
authors have considered micropolar fluid in their investigations.
Rybczyński [11] and Hadamard [12] in their works studied the closed-

form solution for the laminar flow past a fluid sphere. Clift et al. [13] and
Michaelides [14] analysed Newtonian flow over a fluid sphere by applying no-
slip condition in their research. Niefer and Kaloni [15] obtained an expres-
sion for stream function, spin and drag in their study of Newtonian fluid past
a non-Newtonian fluid drop with the no-slip condition at the boundary. Ram-
kissoon [16], in his study on micropolar fluid flow past the moving fluid sphere,
obtained an analytic solution for velocity and drag over the body. Ramkissoon
and Majumdar [17] studied the creeping flow of non-Newtonian fluid over de-
formed viscous spheroid. The drag over it was obtained analytically. Hoffman
et al. [18], in their investigation, considered the drag force exerted over a moving
sphere placed in a micropolar fluid considered with a non-zero spin condition for
the micro-rotation over the boundary. Deo and Shukla [19], in their study over
a non-Newtonian fluid beyond a fluid drop with non-zero spin boundary condi-
tion, obtained an exact solution for the drag force. All the above investigations
are related to works on fluid flow over a fluid sphere.
Sadhal and Johnson [20] examined the Stokes flow over a bubble or a liq-

uid drop whose interface is partially contaminated and is placed in an unmix-
able fluid. The exact solution for the drag force was derived. Saboni et al.
[21], in their study, concluded that the flow greatly affected the Reynolds num-
ber and stagnant cap segment, and also evaluated the drag coefficient inversely
proportional to the Reynolds numbers in the state of stable stagnant cap and
a given viscosity ratio κ. Ramana Murthy and Phani Kumar [22, 23] stud-
ied laminar Newtonian fluid flow past a partially contaminated fluid sphere with
slip and no-slip conditions. Saboni et al. [24] developed the partially or fully
contaminated drop by considering the model of mass transfer from a continu-
ous phase. These are a few works in the literature on the contaminated fluid
sphere.
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In the above-mentioned works, most authors have considered Newtonian fluid
flow over a contaminated fluid sphere with a no-slip condition on the boundary.
In addition, the other studies’ reviews reveal that, no study was conducted on
the two-sided flow of non-Newtonian fluid past a partially contaminated fluid
sphere with interfacial slip condition. This motivated the authors of the present
study to consider micropolar fluid flow past a partially contaminated micropolar
fluid sphere with interfacial slip over the boundary, continuity of shear stress on
the clear part, and regularity condition far away from the body. The velocity
components are expressed in terms of stream function and an exact solution is
investigated. The drag coefficient is evaluated.

2. Formulation of the problem

2.1. Basic equations

We know the momentum equation for micropolar fluid fromEringen [4, 5] as:

(2.1)
∂ρ

∂t
+ div(ρV) = 0,

ρ
dV
dt

= ρf−∇p+k∇×w−(µ+k)∇×∇×V+(λ+2µ+k)∇(div V),(2.2)

ρJ
dw
dt

= ρI−2kw+k∇×V−γ∇×∇×w+ (α+β+γ)∇(div w),(2.3)

where ρ is the density, V is the velocity field, w is the microrotation field, J is
the gyration parameter, f is body forces per unit mass, I is microrotation driving
forces per unit mass, p is the pressure, µ is the classical viscosity coefficients.
k, λ, µ are vortex viscosity coefficients, and α, β, γ are gyroviscosity coefficients
satisfying the following inequalities:

(2.4)
3α+ β + γ ≥ 0, 2µ+ k ≥ 0, 3λ+ 2µ+ k ≥ 0,

γ ≥ |β| , k ≥ 0, γ ≥ 0.

2.2. Formulation

Consider a stationary micropolar fluid sphere placed in a micropolar fluid
region. The flow is considered to be steady, axisymmetric and uniform far away
from the body. The micropolar fluid is assumed to flow from left to right. The
surfactants are accumulated over the rear end, i.e., the interface is contaminated
partially over a region. The contaminated portion is named the cap region, and
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the remaining portion with the clear interface is named the no-cap region. Con-
sider for the no-cap zone as −1 < x < x0 which is the clear segment, and for
the cap zone x0 < x < 1, which is the contaminated segment in the fluid where
x = cos θ. Here µ = µi

µe
, ρ = ρi

ρe
. The posture of the cap is the cosine angle of

contamination x0 (Ramana Murthy and Phani Kumar [23]). The geometry
of the model is given in Fig. 1.

Fig. 1. Geometry of the model.

For convenience, spherical polar coordinates (r, θ, φ) are taken with the
θ = 0 axis in the direction of the free stream flow. The velocity and angular
rotation of the flow field are:

q = (ur, uθ, 0), V = (0, 0, vφ) .

In the view of the axisymmetric flow, the velocity components expressed in
terms of stream function ψ are:

ur =
1

r2 sin θ

∂ψ

∂θ
, uθ = − 1

r sin θ

∂ψ

∂r
.

To match uniform velocity at infinity, the solution for ψ can be assumed
in the form:

(2.5)

ψe(r, x) =

{
ψen(r)G2(x) for −1 < x < x0 (no-cap region),

ψec(r)G2(x) for x0 < x < 1 (cap region),

ψi(r, x) =

{
ψin(r)G2(x) for −1 < x < x0 (no-cap region),

ψic(r)G2(x) for x0 < x < 1 (cap region).

Here ψen, ψec are external stream functions for no-cap and cap regions, respec-
tively. Also, ψin, ψic represent internal stream function with no-cap and cap
regions, respectively, and G2(x) is the Gegenbauer function of order 2.
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The moment equation and angular velocity for a micropolar fluid flow past
a contaminated fluid sphere are given by:

−∇p+ k∇×w− (µ+ k)∇×∇× v = 0,(2.6)

−2kw + k∇× v− γ∇×∇× v + (α+ β + γ)∇(∇ ·w) = 0.(2.7)

The momentum equation on simplification reduces to:

(2.8) E4

(
E2 − λ2

a2

)
ψ = 0,

and angular velocity C is given as:

(2.9) C = −1

2

(
Γ (µ+ k)

k2
E4ψ + E2 ψ

)
,

where
λ2

a2
=
k(2µ+ k)

Γ(µ+ k)
, c =

k

µ+ k
,

and

E2 =
∂2ψ

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂ψ

∂θ

)
is the axi-symmetrical potential operator.

When k = 0 =⇒ c = 0, micropolar fluid reduces to a viscous fluid.
The general stream function of (2.8) from Ramkissoon [16] is:

(2.10) ψ =

(
A

r
+Br + Cr2 +Dr4 + Ce

√
rk3/2 (λer) + Ci

√
rI3/2 (λir)

)
sin2θ

2
.

The stream function for the two regions is given as ψ = ψi + ψe to satisfy
Eq. (2.8).

The solutions for external, internal, no cap and cap regions are:

ψen =

[
r2 +

A1

r
+B1r

4 + C1

√
rk3/2(λenr)

]
G2(x),(2.11)

ψec =

[
r2 +

A2

r
+B2r

4 + C2

√
rk3/2(λecr)

]
G2(x),(2.12)

ψin =
[
A3r

2 +B3r
4 + C3

√
rI3/2(λinr)

]
G2(x),(2.13)

ψic =
[
A4r

2 +B4r
4 + C4

√
rI3/2(λicr)

]
G2(x),(2.14)

where I3/2, k3/2 are modified Bessel’s functions (Abramowitz, Stegun [25]).
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The parameters A1, B1, C1, A2, B2, C2, A3, B3, C3, A4, B4, C4 in (2.11)–
(2.14) are evaluated using the following boundary conditions:

(i) Regularity conditions:

(2.15)
lim
r→∞

ψe =
1

2
Ur2sin2θ (outside the region) and

ψi = finite (inside the region).

(ii) Tangential velocity is zero on the boundary condition:

(2.16) lim
r→0

ψec = ψic = ψen = ψin = 0 on r = 1.

(iii) Slip condition: tangential velocity is proportional to the tangential shear
along the clear surface, see Happel and Brenner [2]:

(2.17) τrθ = β(qθ − vθ) on r = 1.

(iv) Shear stress is continuous across the surface, i.e.:

(2.18) τrθe = τrθi on r = 1.

(v) Angular velocity is zero on the boundary condition, i.e., the micro-rotation
vector C = 0 on r = 1:

(2.19) Cen = Cec = Cin = Cic = 0 on r = 1.

3. Solution of the problem

Using the boundary condition (2.15)–(2.19) in (2.11)–(2.14), we obtain the
system of equations as:

A1+B1 + C ′1 = −1, A2+B2 + C ′2 = 0, A3+B3 + C ′3 = 0,

B1 = −1−A1 − C ′1, B2 = −1−A2 − C ′2, B3 = −1−A3 − C ′3,

(6 + s)A1 − sB1 + C ′1 (4 + (2 + s)∆1(λen)) + 2sA3 + 4sB3 − C ′3∆3(λin) = 2s,

(6 + s)A2 −B2s+ C ′2 (4 + (2 + s)∆2(λec)) + 2sA4 + 4sB4 − C ′4∆4(λic)s = 2s,

−6A1 − C ′1 (4 + 2∆1(λe)) + 6µB3 + µC ′3(4 + 2∆3(λin)) = 0,

A4 = 0, B4 = 0, and C ′4 = 0,

where
C ′1 = C1k3/2(λen), C ′2 = C2k3/2(λec),

C ′3 = C3I3/2(λin), C ′4 = C4I3/2(λic),
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∆1(λen) = 1 +
λenk1/2(λen)

k3/2(λen)
, ∆2(λec) = 1 +

λeck1/2(λec)

k3/2(λec)
,

∆3(λin) = 1 +
λinI1/2(λin)

I3/2(λin)
, ∆4(λic) = 1 +

λinI1/2(λic)

I3/2(λic)
,

and slip parameter (s) = βa
µ .

Solving the above system of equations, we obtain the values of parameters as:

(3.1)

A1 = −1− C ′1
(
λ2
en

c
+ 1

)
, A2 = −1− C ′2

(
λ2
ec

c
+ 1

)
,

A3 = −
(

1− 1

5

λ2
in

c

)
C ′3,

B1 =
λ2
en

c
C ′1, B2 =

λ2
ec

c
C ′2,

B3 = −1

5

λ2
in

c
C ′3,

C ′1 =
(3s+ 6)f2 + 3t2

Λ
, C ′2 =

(3s+ 6) f2 − 3t3
t3f1

,

C ′3 =
− (3s+ 6) f1 − 3t1

Λ
,

where

Λ = t1f2 − t2f1,

f1 = −3λ2
en

c
+ 1− (∆1(λe)) , f2 = µ

(
−3

5

λ2
in

c
+ 2 + (∆2(λin))

)
,

t1 = −2

(
λ2
en

c

)
(s+ 3) + ((2 + s)(∆1(λen)− 1)) ,

t2 = −s
(
λ2
in

c

)(
2

5

)
+ (2 + (∆2(λin))) ,

t3 = −2

(
λ2
ec

c

)
(s+ 3) + ((2 + s)(∆3(λec)− 1)) .

Thus, the stream functions for external and internal flows are obtained.
Special cases:
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(1) External stream function:
(a) For the no-cap region:

A micropolar fluid reduces to a viscous fluid when λ2
in→∞, λ2

en→∞.
Then, we obtain:

C1 = 0, B1 = −(3s+ 6)µ+ 2s

(6 + 2s)µ+ 2s
, A1 =

sµ

(6 + 2s)µ+ 2s
.

The external stream function for the no-cap region is:

(3.2) ψen=

(
r2−

(
2s+ 3sµ+ 6µ

2sµ+ 6µ+ 2s

)
r+

(
sµ

2sµ+ 6µ+ 2s

)
1

r

)
G2(x),

which matches the results of Ramana Murthy and Phani Ku-
mar [22]. In addition, when s → ∞, we obtain a no-slip condition,
and with this, we get external velocity for a fluid sphere with the
no-slip condition as:

(3.3) ψen =

(
r2 −

(
3µ+ 2

2µ+ 2

)
r +

(
µ

2µ+ 2

)
1

r

)
G2(x).

In addition, when µ→∞, the viscous fluid sphere reduces to a solid
sphere, and hence, we obtain external velocity for a solid sphere with
the no-slip condition as:

(3.4) ψen =

(
r2 −

(
3

2

)
r +

(
1

2

)
1

r

)
G2(x).

Equations (3.3) and (3.4) match the results of Happel and Bren-
ner [2].

(b) For the cap region:
A micropolar fluid reduces to a viscous fluid when λ2

ic→∞, λ2
ec→∞.

With this, we obtain:

C2 = 0, B2 = −3s+ 6

2s+ 6
, A2 =

s

2s+ 6
.

Hence, the external stream function ψec for the Newtonian fluid
sphere with the slip condition is:
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(3.5) ψec =

(
r2 −

(
3s+ 6

2s+ 6

)
r +

(
s

2s+ 6

)
1

r

)
G2(x),

which matches Ramana Murthy and Phani Kumar’s results [22].
In addition, when s → ∞, we obtain external velocity for a fluid
sphere with the no-slip condition:

(3.6) ψec =

(
r2 +

(
1

2

)
1

r
−
(

3

2

)
r

)
G2(x),

which matches Happel and Brenner’ result [2].
(2) Internal stream function:

(a) For the no-cap region:
We know that micropolar fluid tends to be viscous fluid when λ2

in→
∞, λ2

en→∞, then we obtain:

C3 = 0, B3 =
s

2s+ 2sµ+ 6µ
, A3 =

−s
2s+ 2sµ+ 6µ

.

Hence, the internal stream function ψin for the Newtonian fluid sphere
with the slip condition is obtained as:

(3.7) ψin =

((
−s

2s+ 2sµ+ 6µ

)
r2 +

(
s

2s+ 2sµ+ 6µ

)
r4

)
G2(x),

which matches Ramana Murthy and Phani Kumar’s result [22].
In addition, when s → ∞, we obtain internal velocity for a fluid
sphere with the no-slip condition as:

(3.8) ψin =

(
−
(

s

(2µ+ 2)

)
r2 +

(
s

(2µ+ 2)

)
r4

)
G2(x).

In addition, when µ→∞, we get external velocity for a solid sphere
with the no-slip condition as:

(3.9) ψin =

(
−1

2
r2+

1

2
r

4
)
G2(x),

which matches the results in Happel and Brenner [2].
(b) For the cap region, internal velocity does not exist.
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4. Drag calculation

We know that the drag force for a micropolar fluid in the limiting form is
given by Ramkissoon and Majumdar [7] as:

(4.1) Fz = 4π(2µ+ k) lim
r→∞

(
ψe − ψ∞
R sin2 θ

)
.

Substituting (2.11), (2.12) and simplifying, we get:

Fz = 2π (2µ+ k) aU∞(B1 +B2).

Substituting B1, B2 from (3.1), we get:

(4.2) Fz = −3π(2µ+ k)aU∞.

As k →, we get Fz = −6πµaU∞, which matches the results in Happel and
Brenner [2]. The drag coefficient is Cd = Fz

−6πµU∞a
:

(4.3) Cd =
2π(2µ+ k)aU∞(B1 +B2)

−6πµU∞a
.

5. Numerical results

The drag coefficient (Cd ), for the micropolar contaminated fluid sphere over
which a micropolar fluid passes, is evaluated analytically. The variations of drag
coefficient for varying slip parameter (s) for different cross-viscosity parame-
ters (c) are computed numerically. The numerical values are presented in Table 1,

Table 1. Drag coefficient values for varying slip parameter values (s)
and different cross-viscosity parameters (c).

Sl. No. s\c c = 0.6 c = 0.8 c = 1.0 c = 1.2

1 2 0.7961 0.7961 0.7961 0.7961

2 4 0.8490 0.8490 0.8490 0.8490

3 6 0.8780 0.8780 0.8780 0.8780

4 8 0.8965 0.8965 0.8965 0.8965

5 10 0.9094 0.9094 0.9094 0.9094

6 12 0.9189 0.9189 0.9189 0.9189

7 14 0.9264 0.9264 0.9264 0.9264

8 16 0.9324 0.9324 0.9324 0.9324
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and a graph presenting drag coefficient vs. slip parameter is presented in Fig. 2.
It is observed that with an increase in slip parameter values, there is an increase
in drag coefficient values. Also, there is no change in drag coefficient values with
a change in the cross-viscosity parameter (c).

Fig. 2. Drag coefficient versus slip parameter.

6. Conclusion

We have considered external and internal flow to be micropolar fluid, past
a contaminated fluid sphere with slip condition over the boundary, regularity
condition far away from the body, and continuity of shear stress over the clear
part. The velocity field is expressed in terms of stream function and their values
over the no-cap region and cap region are evaluated. Drag over the body is also
evaluated. The results in special cases are derived, i.e.:

• when λin → ∞, λen → ∞, λic → ∞, λec → ∞, i.e., when the micropolar
fluid reduces to the viscous fluid,

• the viscous fluid sphere with the no-slip condition when s→∞,
• fluid sphere changes to solid sphere when µ→∞,

which are in good agreement with results available in the literature. In our
investigation, we observed that with a rise in the slip parameter values, there is
an increase in the drag coefficient values.
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