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This paper is devoted to the analytical modelling of a sandwich beam. Three models of
this beam are elaborated. Two nonlinear individual shear theories of deformation of a plane
cross-sections are proposed. Based on Hamilton’s principle, two differential equations of motion
for each model are obtained. The bending, buckling and free flexural vibration problems of the
simply-supported sandwich beam considering these three models are studied. The results of
these analytical investigations are presented in tables.
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Notations

x, y, z – Cartesian coordinates,
L – length of the beam,
b – width of the beam,
h – total depth of the beam,
hf – thicknesses of the faces,
hc – thickness of the core,

χc = hc/h – relative thickness of the core,
uf (x, t) – displacement of outer surfaces of the beam,

ψf (x, t) = uf (x, t)/h – dimensionless function,
v(x, t) – deflection of the beam,

t – time,
η = y/h – dimensionless coordinate,
ξ = x/L – dimensionless coordinate,
Ef , Ec – Young’s modulus of the faces and core, respectively,
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νf , νc – Poisson’s ratio of the faces and core, respectively,
ρf , ρc – mass density of the faces and core, respectively,

ρb – mass density of the beam,
F – force-load of three-point bending of the beam,
Fo – axial force-load of the beam,

λ = L/h – relative length of the beam,
vmax – dimensionless maximal deflection,

F o,CR – dimensionless critical force,
fz – fundamental natural frequency,

Cse,b – shear coefficient in the three-point bending,
Cse,CR – shear coefficient in the buckling.

1. Introduction

Analytical modelling of the sandwich structures was initiated in the mid-
20th century. The theoretical foundation and governing differential equations de-
scribing sandwich structure behaviour were presented in detail by Plantema [1]
and Allen [2]. Noor et al. [3] focused on the review of computational models for
sandwich plates and shells. Frostig [4] carried out a rigorous general stability
analysis for some typical sandwich constructions subjected to in-plane external
loads. Vinson [5] provided a general introduction to the structural mechanics in
the field of sandwich structures and a sufficient number of references. Icardi [6]
developed a sublaminate model for the analysis of sandwich beams with lami-
nated faces, which incorporated a zig-zag representation of displacements within
each sublaminate. Steeves and Fleck [7] considered the collapse strength of
sandwich beams with composite face sheets and polymer foam cores. It was
shown that the optimal designs for composite-polymer foam sandwich beams
are of comparable weight to sandwich beams with metallic faces and a metallic
foam core. Yang and Qiao [8] presented a higher-order sandwich impact theory
and conducted a detailed study on the free vibration as well as the foreign ob-
ject impact problem of a sandwich beam with a soft core. Magnucka-Blandzi
and Magnucki [9] generalized the classical hypothesis of “broken line” to de-
scribe displacements in the three-layered beams with the core of varying pro-
perties. The strength and stability analyses were also conducted. Carrera and
Brischetto [10] compared different theories to consider sandwich structures’
bending and vibration problems. A brief survey of significant review papers
and the latest developments on sandwich structure modelling were also given.
Kreja [11] provided a state-of-the-art review on the computational treatment of
laminated composite and sandwich panels. Magnucka-Blandzi [12] analysed
a simply-supported sandwich beams with a metal foam core with mechanical
properties that were varied in a normal direction in relation to the middle sym-
metry plane. The fields of displacement for the beam’s flat cross section were
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defined by three different hypotheses. Based on Hamilton’s principle, the system
of three partial differential equations of motion was obtained for each hypothesis
and approximately solved. The subject of Magnucka-Blandzi’ research [13]
was a simply-supported rectangular sandwich plate with a core made of metal
foam with properties varying across its thickness. The non-linear hypothesis of
the field of displacements that is a generalisation of the classical hypotheses
was assumed. The system of differential equations was formulated and approxi-
mately solved. Critical loads for a family of sandwich plates were numerically
determined.

Baba [14] contributed towards the improvement of designing structures
made from sandwich composites. His work dealt with the vibration behaviour of
sandwich beams made of fibre-glass laminate skins wrapped over a polyurethane
foam core. Experimental and numerical investigations on the natural frequen-
cies of both flat and curved beams with and without debond were carried out.
Results indicated that fundamental natural frequencies were seriously affected
by curvature angle and debond, whereas the higher order natural frequencies
showed relatively small changes. In Phan et al. [15], a new one-dimensional
high-order theory for orthotropic elastic sandwich beams was formulated. This
theory was an extension of the high-order sandwich panel theory (HSAPT) and
included the in-plane rigidity of the core. These results were compared with the
corresponding ones from the elasticity solution. Furthermore, the results using
the classical sandwich model without shear, the first-order shear, and the earlier
HSAPT were also presented for completeness. The comparison among these nu-
merical results showed that the solution from the current theory was very close
to that of the elasticity in terms of both the displacements and stress or strains,
especially the shear stress distributions in the core for a wide range of cores.

In Magnucki et al. [16], the strength and buckling problem of a five-layer
sandwich beam under axial compression or bending was presented. A mathe-
matical model of the field of displacements, which includes shear effect and
bending moment, was developed. The system of partial differential equations of
equilibrium for the five-layer sandwich beam was derived on the basis of the prin-
ciple of stationary total potential energy and analytically solved. Sayyad and
Ghugal [17] undertook an extensive review of the literature available for the
bending, free vibration and buckling analysis of laminated composite and sand-
wich beams. In Magnucka-Blandzi [18], an original mathematical model of
seven-layer beams was formulated. Based on the principle of the total poten-
tial energy, the equations of equilibrium were derived and analytically solved.
The deflections and the critical axial force were determined for different values
of the trapezoidal corrugation pitch of the main core. Czechowski et al. [19]
dealt with an experimental investigation of the mechanical properties of sand-
wich beams obtained from bending tests. The tested specimens consisted of
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foam or honeycomb core and face sheets made of aluminium alloys, plywood or
composite material. The face sheets and the core were bonded with glue mate-
rial. Beams of different dimensions, namely beam width, core and face sheets
thickness, were tested. Three-point bending tests were carried out, in which the
beam’s mid-span deflections versus applied force were recorded. Experimental
test results were compared with simulations on the basis of the finite element
method. Birman and Kardomateas [20] outlined the review of the papers on
sandwich structures and concentrated on the theoretical models and applica-
tions of such structures and observations of their behaviour under a multitude of
loads. Sayyad and Ghugal [21] focused on the review of literature on bending,
buckling, and vibration analysis of functionally graded sandwich beams under
mechanical and thermal loads using elasticity theory, analytical methods, and
numerical methods based on classical and refined shear deformation theories.

In Zhen et al. [22], a Reddy-type higher-order zig-zag model was proposed
for the critical load analysis of laminated composite and sandwich beams. The
proposed model can describe the discontinuity of the slope of the in-plane dis-
placement at the interface using the zig-zag function, and satisfies the inter-
laminar continuity condition of transverse shear stresses at interfaces using
the three-field Hu-Washizu mixed variational principle. Laminated composite
and sandwich beams with various configurations including material properties,
length-to-thickness and lay-ups were taken into account. Numerical results were
compared with those computed by other models to show the agreement of the
proposed model. Magnucki [23] analysed the bending problems of sandwich
beams and I-beams with consideration of the shear effect. Based on the princi-
ple of stationary total potential energy, the differential equations of equilibrium
were obtained. The system of the equations was analytically solved for two
types of load: three-point bending and uniformly distributed load. Magnucki
and Magnucka-Blandzi [24] provided a generalisation of the analytical model
of sandwich structures. The individual nonlinear theory of deformation of the
straight line normal to the neutral surface was developed. This analytical model
of sandwich structures was presented in detail for the exemplary rectangular
plate. Based on the principle of stationary potential energy, differential equa-
tions of equilibrium of the plate were obtained and analytically solved.

The main goal of this paper is to present three models of the simply-supported
sandwich beam of the total depth h, width b and length L. The beam is under
three-point bending force F or axial compression force Fo (Fig. 1).

The novelty of this paper lies in the use of an efficient shear theory [24]
for the sandwich beam. The three analytical models of the sandwich beam are
analysed. The first model is formulated as the classical sandwich beam with
consideration of the “broken line” theory. The second model is a generalisation
of the first model; the nonlinear shear effect in the core is only considered. In
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a)

b)

Fig. 1. Schemes: a) loads of the sandwich beam, b) the cross-section of the beam.

the third model, the nonlinear shear effect in the faces and the core is taken
into account. The deflections, elastic buckling and flexural free vibrations of
exemplary simply-supported beams for each model are analytically determined
and compared with the FEM results using ABAQUS software.

2. The first model – the linear shear effect only in the core

The deformation of a planar cross-section of the sandwich beam in accor-
dance with the “broken line” theory – the classical model is shown in Fig. 2.

Fig. 2. Deformation scheme of the beam’s planar cross-section – the classical model.
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The longitudinal displacements in accordance with Fig. 2 are as follows:
• the upper face (−1/2 ≤ η ≤ −χc/2)

(2.1) u(x, η, t) = −h
[
η
∂v

∂x
+ ψf (x, t)

]
,

• the core (−χc/2 ≤ η ≤ χc/2)

(2.2) u(x, η, t) = −hη
[
∂v

∂x
− 2

χc
ψf (x, t)

]
,

• the lower face (χc/2 ≤ η ≤ 1/2)

(2.3) u(x, η, t) = −h
[
η
∂v

∂x
− ψf (x, t)

]
,

where ψf (x, t) = uf (x, t)/h – dimensionless displacement function, χc = hc/h
– relative thickness of the core, η = y/h – dimensionless coordinate, v(x, t) –
deflection of the beam, t – time.

Therefore, the strains are in the following form:
• the upper/lower faces

(2.4)

ε(uf)x (x, η, t) = −h
[
η
∂2v

∂x2
+
∂ψf
∂x

]
,

ε(lf)x (x, η, t) = −h
[
η
∂2v

∂x2
−
∂ψf
∂x

]
,

(2.5) γ(uf)xy (x, t) = γ(lf)xy (x, t) = 0,

• the core

(2.6) ε(c)x (x, η, t) = −hη
[
∂2v

∂x2
− 2

χc

∂ψf
∂x

]
, γ(c)xy (x, t) =

2

χc
ψf (x, t).

Consequently, the stresses (Hooke’s law) are in the following form:
• the upper/lower faces

(2.7) σ(uf)x (x, η, t) = Efε
(uf)
x (x, η, t), σ(lf)x (x, η, t) = Efε

(lf)
x (x, η, t),

(2.8) τ (uf)xy (x, t) = τ (lf)xy (x, t) = 0,

where Ef is Young’s modulus of the faces.
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• the core

(2.9)

σ(c)x (x, η, t) = Ecε
(c)
x (x, η, t),

τ (c)xy (x, t) =
Ec

2(1 + νc)
γ(c)xy (x, t),

where Ec, νc are Young’s modulus and Poisson’s ratio of the core, respec-
tively.

The bending moment is

(2.10) Mb(x, t) = bh2


−χc/2ˆ

−1/2

ησ(uf)x (x, η, t) dη +

χc/2ˆ

−χc/2

ησ(c)x (x, η, t) dη

+

1/2ˆ

χc/2

ησ(lf)x (x, η, t) dη

.
Substituting the expressions (2.7) and (2.9) for normal stresses and integrat-

ing, one obtains the following equation:

(2.11) Cvv1
∂2v

∂x2
− Cvψ1

∂ψf
∂x

= −12
Mb(x, t)

Efbh3
,

where Cvv1 = 1−(1−ec)χ3
c , Cvψ1 = 3−(3−2ec)χ

2
c , ec = Ec/Ef are dimensionless

coefficients.
The elastic strain energy of the beam is

(2.12) Uε =
1

2
Efbh

L̂

0


−χc/2ˆ

−1/2

(
ε(uf)x (x, η, t)

)2
dη

+ ec

χc/2ˆ

−χc/2

[(
ε(c)x (x, η, t)

)2
+

1

2(1 + νc)

(
γ(c)xy (x, t)

)2]
dη

+

1/2ˆ

χc/2

(
ε(lf)x (x, η, t)

)2
dη

dx.



104 K. MAGNUCKI et al.

Taking into account the expressions (2.4) and (2.6), one obtains

(2.13) Uε =
Efbh

3

24

L̂

0

{
Cvv1

(
∂2v

∂x2

)2

− 2Cvψ1
∂2v

∂x2
∂ψf
∂x

+Cψψ1

(
∂ψf
∂x

)2

+ Cψ1
ψ2
f (x, t)

h2

}
dx,

where
Cψψ1 = 4 [3− (3− ec)χc] and Cψ1 =

24

1 + νc

ec
χc

are dimensionless coefficients.
The work of the load is

(2.14) W =

L̂

0

{
T (x)

∂v

∂x
+

1

2
Fo

(
∂v

∂x

)2
}

dx,

where T (x) is the transverse force, and Fo is the axial compressive force.
The kinetic energy of the beam is

(2.15) Uk =
1

2
ρbbh

L̂

0

(
∂v

∂t

)2

dx,

where ρb = (1− χc) ρf + χcρc is the mass density of the beam, and ρf , ρc are
the mass density of the faces and core, respectively.

Based on Hamilton’s principle

(2.16) δ

t2ˆ

t1

[Uk − (Uε −W )] dt = 0,

two differential equations of motion are obtained in the following form:

ρbbh
∂2v

∂t2
+

1

12
Efbh

3

(
Cvv1

∂4v

∂x4
− Cvψ1

∂3ψf
∂x3

)
+

dT
dx

+ Fo
∂2v

∂x2
= 0,(2.17)

Cvψ1
∂3v

∂x3
− Cψψ1

∂2ψf
∂x2

+ Cψ1
ψf (x, t)

h2
= 0.(2.18)

It may be easily noticed, that first Eq. (2.17) of this system and Eq. (2.11) are
equivalent for the static problems. Thus, Eqs. (2.11) and (2.18) are govern-
ing equilibrium equations of the bending and buckling of sandwich beams.
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2.1. Three-point bending of the beam

The bending moment of the beam is

(2.19) Mb(x) =
1

2
Fx, 0 ≤ x ≤ L/2,

where F is the concentrated force at the midpoint of the beam.
Therefore, the system of two equations of equilibrium (2.11) and (2.18) is as

follows:

(2.20)

Cvv1
d2v

dx2
− Cvψ1

dψf
dx

= −6x
F

Efbh3
,

Cvψ1
d3v

dx3
− Cψψ1

d2ψf
dx2

+ Cψ1
ψf (x)

h2
= 0.

This system, after simple transformation, is reduced to one differential equation:

(2.21)
d2ψf
dξ2

− (k1λ)2 ψf (ξ) = −6
Cvψ1

Cvv1Cψψ1 − C2
vψ1

λ2
F

Efbh
,

where k1 =

√
Cvv1Cψ1

Cvv1Cψψ1−C2
vψ1

is the dimensionless coefficient, λ = L/h is relative

length, and ξ = x/L is the dimensionless coordinate (0 ≤ ξ ≤ 1/2).
The solution of this equation is the following function:

(2.22) ψf (ξ) = 6

[
1− cosh(k1λξ)

cosh(k1λ/2)

]
Cvψ1

Cvv1Cψ1

F

Efbh
.

This function satisfies the following conditions: dψf/dξ|0 = 0 and ψf (1/2) = 0.
Therefore, the maximum relative deflection of the beam based on the first

equation of the system (2.20), with consideration of the conditions v(0) = 0 and
dv/dξ|1/2 = 0, is as follows:

(2.23) ṽ(1)max =
v(1/2)

L
= v(1)max

F

Efbh
,

where the dimensionless maximal deflection is

(2.24) v(1)max =
(

1 + C
(1)
se,b

) λ2

4Cvv1
,
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and the shear coefficient in the three-point bending is

(2.25) C
(1)
se,b =

12

λ2

[
1− 2

k1λ
tanh

(
1

2
k1λ

)]
C2
vψ1

Cvv1Cψ1
.

Moreover, the shear stresses are:
• the upper/lower faces

(2.26) τ (1,f)xy (ξ, η) = τ (1,f)xy (ξ, η) = 0,

• the core

(2.27) τ (1,c)xy (ξ, η) = τ (1,c)xy (ξ, η)
F

bh
,

where the dimensionless shear stress is

(2.28) τ (1,c)xy (ξ, η) =
6

1 + νc

e0
χc

[
1− cosh(k1λξ)

cosh(k1λ/2)

]
Cvψ1

Cvv1Cψ1
.

2.2. Elastic buckling of the beam

The bending moment of the simply-supported buckled beam:

(2.29) Mb(x) = Fov(x), 0 ≤ x ≤ L.

Therefore, the system of two equations of equilibrium (2.11) and (2.18) is as
follows:

(2.30)

Cvv1
d2v

dx2
− Cvψ1

dψf
dx

+ 6v(x)
Fo

Efbh3
= 0,

Cvψ1
d3v

dx3
− Cψψ1

d2ψf
dx2

+ Cψ1
ψf (x)

h2
= 0.

This system is approximately solved with the use of two assumed functions:

(2.31) v(x) = va sin
(
π
x

L

)
, ψf (x) = ψa cos

(
π
x

L

)
,

where va, ψa are the parameters of the functions.
These functions satisfy the conditions of a simply-supported beam. Sub-

stituting these functions (2.31) into Eqs. (2.30), one obtains the homogeneous
system of algebraic equations:

(2.32)

[(π
L

)2
Cvv1 − 12

Fo
Efbh3

]
va −

π

L
Cvψ1ψa = 0,

π

L
Cvψ1va −

[
Cψψ1 +

λ2

π2
Cψ1

]
ψa = 0,
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from which the critical force is

(2.33) F
(1)
o,CR = F

(1)
o,CREfbh,

where the dimensionless critical force is

(2.34) F
(1)
o,CR =

(
1− C(1)

se,CR

) π2Cvv1
12λ2

,

and the shear coefficient in the buckling is

(2.35) C
(1)
se,CR =

π2

π2Cψψ1 + λ2Cψ1

C2
vψ1

Cvv1
.

2.3. Free flexural vibration of the beam

The system of two differential equations of motion (2.17) and (2.18) for the
free flexural vibration of the simply-supported sandwich beam is in the following
form:

(2.36)

ρbbh
∂2v

∂t2
+

1

12
Efbh

3

(
Cvv1

∂4v

∂x4
− Cvψ1

∂3ψf
∂x3

)
= 0,

Cvψ1
∂3v

∂x3
− Cψψ1

∂2ψf
∂x2

+ Cψ1
ψf (x, t)

h2
= 0.

This system is approximately solved with the use of two assumed functions:

(2.37) v(x, t) = va(t) sin
(
π
x

L

)
, ψf (x, t) = ψa(t) cos

(
π
x

L

)
,

where va(t), ψa(t) are the functions of time t.
Substituting these functions (2.37) into Eqs. (2.36), and after simple trans-

formation, one obtains the following equation:

(2.38)
d2va
dt2

+
(

1− C(1)
se,fv

) π4Cvv1
12λ4

Ef
ρbh2

va(t) = 0,

where the shear coefficient in the free flexural vibration is

(2.39) C
(1)
se,fv =

π2

π2Cψψ1 + λ2Cψ1

C2
vψ1

Cvv1
.

This shear coefficient is identical as in the buckling problem (2.35).
Equation (2.38) is approximately solved with the use of the function

(2.40) va(t) = va sin(ωt),
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where va [mm] is the amplitude of the flexural vibration, and ω [1/s] is the
fundamental natural frequency.

Substituting this function into Eq. (2.38), after simple transformation, one
obtains the fundamental natural frequency:

(2.41) f (1)z =
ω(1)

2π
=

√
3π2106

6λ2

√(
1− C(1)

se,fv

)
Cvv1

Ef
ρbh2

[Hz],

where dimensions of quantities are: Ef [MPa], ρb [kg/m3], and h [mm].

3. The second model – the nonlinear shear effect in the core

The deformation of a planar cross-section after the beam’s bending is shown
in Fig. 3.

Fig. 3. Deformation scheme of the beam’s planar cross-section – the second model.

The longitudinal displacements in accordance with Fig. 3 are as follows:
• the upper face (−1/2 ≤ η ≤ −χc/2)

(3.1) u(x, η, t) = −h
[
η
∂v

∂x
+ ψf (x, t)

]
,

• the core (−χc/2 ≤ η ≤ χc/2)

(3.2) u(x, η, t) = −h
[
η
∂v

∂x
− f (2)d,c (η)ψf (x, t)

]
,
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• the lower face (χc/2 ≤ η ≤ 1/2)

(3.3) u(x, η, t) = −h
[
η
∂v

∂x
− ψf (x, t)

]
,

where the dimensionless function of the deformation of a planar cross-section of
the core, taking into account [18] and [19], is assumed in the following form:

(3.4) f
(2)
d,c (η) = 2

3
[
1− (1− ec)χ2

c

]
η − 4ecη

3

[3− (3− 2ec)χ2
c ]χc

.

Therefore, the strains are in the following form:
• the upper/lower faces

(3.5)

ε(uf)x (x, η, t) = −h
[
η
∂2v

∂x2
+
∂ψf
∂x

]
,

ε(lf)x (x, η, t) = −h
[
η
∂2v

∂x2
−
∂ψf
∂x

]
,

(3.6) γ(uf)xy (x, t) = γ(lf)xy (x, t) = 0,

• the core

(3.7)

ε(c)x (x, η, t) = −h
[
η
∂2v

∂x2
− f (2)d,c (η)

∂ψf
∂x

]
,

γ(c)xy (x, η, t) =
df (2)d,c

dη
ψf (x, t).

Therefore, Eq. (2.11) and two equations of motion (2.17) and (2.18) for the
second model are as follows:

(3.8) Cvv2
∂2v

∂x2
− Cvψ2

∂ψf
∂x

= −12
Mb(x, t)

Efbh3
,

and two differential equations of motion are:

ρbbh
∂2v

∂t2
+

1

12
Efbh

3

(
Cvv2

∂4v

∂x4
− Cvψ2

∂3ψf
∂x3

)
+

dT
dx

+ Fo
∂2v

∂x2
= 0,(3.9)

Cvψ2
∂3v

∂x3
− Cψψ2

∂2ψf
∂x2

+ Cψ2
ψf (x, t)

h2
= 0,(3.10)
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where

Cvv2 = 1− (1− ec)χ3
c ,

Cvψ2 = 3

[
1− χ2

c +
2

5

5
(
1− χ2

c

)
+ 4ecχ

2
c

3 (1− χ2
c) + 2ecχ2

c

ecχ
2
c

]
,

Cψψ2 = 12

{
1− χc +

105
(
1− χ2

c

)2
+ 168

(
1− χ2

c

)
ecχ

2
c + 68e2cχ

4
c

35 [3 (1− χ2
c) + 2ecχ2

c ]
2 ecχc

}
,

Cψ2 =
72

1 + νc

15
(
1− χ2

c

)2
+ 20

(
1− χ2

c

)
ecχ

2
c + 8e2cχ

4
c

5 [3 (1− χ2
c) + 2ecχ2

c ]
2

ec
χc
.

3.1. Three-point bending of the beam

Therefore, the maximal relative deflection of the beam (2.23) for the second
model is as follows:

(3.11) ṽ(2)max = v(2)max

F

Efbh
,

where the dimensionless maximal deflection is

(3.12) v(2)max =
(

1 + C
(2)
se,b

) λ2

4Cvv2
,

the shear coefficient in the three-point bending is

(3.13) C
(2)
se,b =

12

λ2

[
1− 2

k2λ
tanh

(
1

2
k2λ

)]
C2
vψ2

Cvv2Cψ2
,

and k2 =

√
Cvv2Cψ2

Cvv2Cψψ2−C2
vψ2

is the dimensionless coefficient.

Moreover, the dimensionless shear stresses are:
• the upper/lower faces

(3.14) τ (2,f)xy (ξ, η) = 0,

• the core

(3.15) τ (2,c)xy (ξ, η) =
18

1 + νc

1− (1− ec)χ2
c − 4ecη

2

3− (3− 2ec)χ2
c

e0
χc

·
[
1− cosh(k2λξ)

cosh(k2λ/2)

]
Cvψ2

Cvv2Cψ2
.
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3.2. Elastic buckling of the beam

Thus, the critical force of the beam (2.33) for the second model is as follows:

(3.16) F
(2)
o,CR = F

(2)
o,CREfbh,

where the dimensionless critical force is

(3.17) F
(2)
o,CR =

(
1− C(2)

se,CR

) π2Cvv2
12λ2

,

and the shear coefficient in the buckling is

(3.18) C
(2)
se,CR =

π2

π2Cψψ2 + λ2Cψ2

C2
vψ2

Cvv2
.

3.3. Free flexural vibration of the beam

Consequently, the fundamental natural frequency (2.41) for the second model
is as follows:

(3.19) f (2)z =
ω(2)

2π
=

√
3π2106

6λ2

√(
1− C(2)

se,fv

)
Cvv2

Ef
ρbh2

[Hz],

where the shear coefficient in the free flexural vibration C
(2)
se,fv = C

(2)
se,CR.

4. The third model – the nonlinear shear effect in the faces
and the core

The deformation of a planar cross-section after the beam’s bending is shown
in Fig. 4.

The longitudinal displacements in accordance with Fig. 4 are as follows:
• the upper face (−1/2 ≤ η ≤ −χc/2)

(4.1) u(x, η, t) = −h
[
η
∂v

∂x
+ f

(3)
d,f (η)ψf (x, t)

]
,

• the core (−χc/2 ≤ η ≤ χc/2)

(4.2) u(x, η, t) = −h
[
η
∂v

∂x
− f (3)d,c (η)ψf (x, t)

]
,
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Fig. 4. Deformation scheme of the beam’s planar cross-section – the third model.

• the lower face (χc/2 ≤ η ≤ 1/2)

(4.3) u(x, η, t) = −h
[
η
∂v

∂x
− f (3)d,f (η)ψf (x, t)

]
,

where the dimensionless functions of the deformation of a planar cross-section
of the faces and the core, taking into account the expression (3.4), are assumed in
the following form:

(4.4)

f
(3)
d,f (η) =

1

1 + β
(β − 3η + 4η3),

f
(3)
d,c (η) =

C0

(1 + β)χc

{
3
[
1− (1− ec)χ2

c

]
η − 4ecη

3
}
,

and the coefficient C0 =
2β+(3−χ2

c)χc
3(1−χ2

c)+2ecχ2
c

and the parameter β (2<β).

Therefore, the strains are in the following form:
• the upper/lower faces

(4.5)

ε(uf)x (x, η, t) = −h
[
η
∂2v

∂x2
+ f

(3)
d,f (η)

∂ψf
∂x

]
,

ε(lf)x (x, η, t) = −h
[
η
∂2v

∂x2
− f (3)d,f (η)

∂ψf
∂x

]
,

(4.6) γ(uf)xy (x, t) = γ(lf)xy (x, t) =
3

1 + β
(1− 4η2)ψf (x),
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• the core

(4.7)

ε(c)x (x, η, t) = −hη
[
∂2v

∂x2
− f (3)d,c (η)

∂ψf
∂x

]
,

γ(c)xy (x, t) =
df (3)d,c

dη
ψf (x, t).

Therefore, Eq. (2.11) and two equations of motion (2.17) and (2.18) for the
third model are as follows:

(4.8) Cvv3
∂2v

∂x2
− Cvψ3

∂ψf
∂x

= −12
Mb(x, t)

Efbh3
,

and two differential equations of motion are:

ρbbh
∂2v

∂t2
+

1

12
Efbh

3

(
Cvv3

∂4v

∂x4
− Cvψ3

∂3ψf
∂x3

)
+

dT
dx

+ Fo
∂2v

∂x2
= 0,(4.9)

Cvψ3
∂3v

∂x3
− Cψψ3

∂2ψf
∂x2

+ Cψ3
ψf (x, t)

h2
= 0,(4.10)

where

Cvv3 = 1− (1− ec)χ3
c ,

Cvψ3 =
3

5(1 + β)

{
4 + 5β(1− χ2

c)− (5− χ2
c)χ

3
c + C0ecχ

2
c

[
5(1− χ2

c) + 4ecχ
2
c

]}
,

Cψψ3 =
3

35(1 + β)2

·
{

68 + 35β
[
4β(1− χ2

c) + 5− (6− χ2
c)χ

2
c

]
−
(
105− 42χ2

c + 5χ4
c

)
χ3
c

+C2
0ecχc

[
105(1− χ2

c)
2 + 168ecχ

2
c(1− χ2

c) + 68e2cχ
4
c

]}
,

Cψ3 =
18

5(1 + β)2

{
1

1 + νf
+
(
8− 15χc + 10χ3

c − 3χ5
c

)
− C2

0

1 + νc

ec
χc

[
15
(
1− χ2

c

)2
+ 20ecχ

2
c

(
1− χ2

c

)
+ 8e2cχ

4
c

]}
.

4.1. Three-point bending of the beam

Therefore, the maximum relative deflection of the beam (2.23), for the third
model, is

(4.11) ṽ(3)max = v(3)max

F

Efbh
,
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where the dimensionless maximal deflection is

(4.12) v(3)max =
(

1 + C
(3)
se,b

) λ2

4Cvv3
,

the shear coefficient in the three-point bending is

(4.13) C
(3)
se,b = max

β

12

λ2

[
1− 2

k3λ
tanh

(
1

2
k3λ

)]
C2
vψ3

Cvv3Cψ3
,

and k3 =

√
Cvv3Cψ3

Cvv3Cψψ3−C2
vψ3

is the dimensionless coefficient.

Moreover, the dimensionless shear stresses are:
• the upper/lower faces

(4.14) τ (3,f)xy (ξ, η) =
9

1 + νf

1− 4η2

1 + β

[
1− cosh(k3λξ)

cosh(k3λ/2)

]
Cvψ3

Cvv3Cψ3
.

• the core

(4.15) τ (3,c)xy (ξ, η) =
9

1 + νc
C0

1− (1− ec)χ2
c − 4ecη

2

1 + β

e0
χc

·
[
1− cosh(k3λξ)

cosh(k3λ/2)

]
Cvψ3

Cvv3Cψ3
.

4.2. Elastic buckling of the beam

Thus, the critical force of the beam (2.33) for the third model is as follows:

(4.16) F
(3)
o,CR = F

(3)
o,CREfbh,

where the dimensionless critical force is

(4.17) F
(3)
o,CR =

(
1− C(3)

se,CR

) π2Cvv3
12λ2

,

and the shear coefficient in the buckling is

(4.18) C
(3)
se,CR = max

β

π2

π2Cψψ3 + λ2Cψ3

C2
vψ3

Cvv3
.

4.3. Free flexural vibration of the beam

Consequently, the fundamental natural frequency (2.41) for the third model
is as follows:

(4.19) f (3)z =
ω(3)

2π
=

√
3π2106

6λ2

√(
1− C(3)

se,fv

)
Cvv3

Ef
ρbh2

[Hz],

where the shear coefficient in the free flexural vibration C
(3)
se,fv = C

(3)
se,CR.
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5. Exemplary analytical calculations – comparative analysis

Exemplary calculations are carried out for the following data of the sand-
wich beams: Ef = 72000 MPa, νf = 0.33, ρf = 2710 kg/m3, Ec = 3600 MPa,
νc = 0.30, ρc = 610 kg/m3, b = 18 mm, h = 20 mm, ec = 1/20, and λ = 15, 20,
25, 30. The results of the calculations are specified in Tables 1–6. The dimen-
sionless shear stresses for the first model (2.26), (2.28), the second model (3.14),
(3.15) and the third model (4.14), (4.15) of the exemplary beams for three-point
bending are presented in Fig. 5.

• The value of the relative thickness of the core χc = 18/20.

Table 1. The first model.

λ 15 20 25 30

C
(1)
se,b

0.0596384 0.0340247 0.0219594 0.0153345

v
(1)
max 193.867 336.323 519.373 743.049

C
(1)
se,CR

0.0489570 0.0282265 0.0182764 0.0127731

F
(1)
o,CR

0.00106883 0.000614325 0.000397194 0.000277375

f
(1)
z [Hz] 510.580 290.314 186.750 130.050

Table 2. The second model.

λ 15 20 25 30

C
(2)
se,b

0.0714646 0.0402602 0.0257901 0.0179207

v
(2)
max 196.031 338.351 521.320 744.941

C
(2)
se,CR

0.0558294 0.0321915 0.0208445 0.0145683

F
(2)
o,CR

0.00106111 0.000611818 0.000396155 0.00027687

f
(2)
z [Hz] 508.731 289.721 186.505 129.932

Table 3. The third model.

λ 15 20 25 30

β

C
(3)
se,b

4.487
0.0715806

4.549
0.0403241

4.586
0.0258305

4.612
0.0179485

v
(3)
max 196.053 338.372 521.340 744.962

β

C
(3)
se,CR

4.734
0.0559080

4.737
0.0322379

4.739
0.0208749

4.739
0.0145896

F
(3)
o,CR

0.00106102 0.000611789 0.000396142 0.000276865

f
(3)
z [Hz] 508.710 289.714 186.503 129.931
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a) b) c)

Fig. 5. Graphs of the dimensionless shear stresses for ξ = 1/4, λ = 15, χc = 18/20:
a) first model, b) second model, c) third model.

• The value of the relative thickness of the core χc = 16/20.

Table 4. The first model.

λ 15 20 25 30

C
(1)
se,b

0.105892 0.0603227 0.0388977 0.0271471

v
(1)
max 121.118 206.449 316.059 449.977

C
(1)
se,CR

0.083410 0.0488123 0.0318347 0.0223385

F
(1)
o,CR

0.00172082 0.0010045 0.000654354 0.00045887

f
(1)
z [Hz] 578.048 331.232 213.872 149.249

Table 5. The second model.

λ 15 20 25 30

C
(1)
se,b

0.116236 0.0656107 0.0420782 0.0292615

v
(1)
max 122.251 207.479 317.026 450.903

C
(1)
se,CR

0.0883291 0.0516923 0.0337135 0.0236570

F
(1)
o,CR

0.00171159 0.00100145 0.000653085 0.000458251

f
(1)
z [Hz] 576.496 330.730 213.664 149.148
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Table 6. The third model.

λ 15 20 25 30

C
(1)
se,b

7.565
0.116748

7.672
0.0658930

7.737
0.0422568

7.780
0.0293845

v
(1)
max 122.307 207.534 317.061 450.957

C
(1)
se,CR

7.972
0.0886542

7.985
0.0518897

7.991
0.0338445

7.994
0.0237498

F
(1)
o,CR

0.00171098 0.00100125 0.000652996 0.000458207

f
(1)
z [Hz] 576.393 330.696 213.650 149.141

6. Exemplary FEM calculations – comparative analysis

The finite element model of the beam was built using the ABAQUS code.
Because of the symmetry of the problem, only a quarter of the beam was used
with proper boundary conditions in the symmetry planes. The beam geometry
and loading are described in Fig. 6. It can be observed in Fig. 6 that the FE
model has two symmetry planes perpendicular to the x-axis and z-axis, respec-
tively. Loading is applied to the reference point at the centre of the top faces
of the beam with the use of coupling constraints. The boundary conditions at
the end of the beam are applied to the second reference point coupled with the
planes of faces at the end of the beam. The faces and the core are modelled with
the use of C3D8R solid elements. The convergence analysis has been made, and

Fig. 6. The finite element model in ABAQUS.
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it is observed that at least two elements are needed along the thickness of the
face. Therefore the beam was discretised with a mesh size of 0.5 mm with no
refinements. The results from the FEM analysis are collected in Tables 7–8.

Table 7. The results from the FEM model for the relative thickness of the core χc = 18/20.

λ 15 20 25 30

v
(FEM)
max 195.543 337.732 520.659 744.25

F
(FEM)
o,CR

0.0010693 0.00061421 0.00039699 0.00027719

f
(FEM)
z [Hz] 508.05 289.21 186.25 129.79

Table 8. The results from the FEM model for the relative thickness of the core χc = 16/20.

λ 15 20 25 30

v
(FEM)
max 122.149 207.369 316.949 450.915

F
(FEM)
o,CR

0.0017264 0.00100579 0.00065461 0.00045883

f
(FEM)
z [Hz] 575.67 330.21 213.39 148.98

For comparison purposes, the third model is considered as the reference
model because, in this model, the full nonlinear shear effect is taken into account.
The results obtained for the first, the second and the FEM models were com-
pared with the third model ones for both cases of the relative thicknesses of
the core. The percentage differences of the compared results are presented in
Tables 9–14. The minus sign in front of the data in the tables below means
that this result is underestimated in comparison to the third model result.

Table 9. The percentage difference between the first model and the third model
for the relative thickness of the core χc = 18/20.

λ 15 20 25 30

∆vmax −1.12% −0.61% −0.38% −0.26%

∆F o,CR 0.73% 0.41% 0.27% 0.18%

∆fz [Hz] 0.37% 0.21% 0.13% 0.09%

Table 10. The percentage difference between the second model and the third model
for the relative thickness of the core χc = 18/20.

λ 15 20 25 30

∆vmax −0.011% −0.006% −0.004% −0.003%

∆F o,CR 0.008% 0.005% 0.003% 0.002%

∆fz [Hz] 0.004% 0.002% 0.001% 0.001%
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Table 11. The percentage difference between the FEM model and the third model
for the relative thickness of the core χc = 18/20.

λ 15 20 25 30

∆vmax −0.26% −0.19% −0.13% −0.10%

∆F o,CR 0.78% 0.39% 0.21% 0.12%

∆fz [Hz] −0.13% −0.17% −0.14% −0.11%

Table 12. The percentage difference between the first model and the third model
for the relative thickness of the core χc = 16/20.

λ 15 20 25 30

∆vmax −0.98% −0.52% −0.32% −0.22%

∆F o,CR 0.57% 0.32% 0.21% 0.14%

∆fz [Hz] 0.29% 0.16% 0.10% 0.07%

Table 13. The percentage difference between the second model and the third model
for the relative thickness of the core χc = 16/20.

λ 15 20 25 30

∆vmax −0.046% −0.027% −0.011% −0.012%

∆F o,CR 0.036% 0.020% 0.014% 0.010%

∆fz [Hz] 0.018% 0.010% 0.007% 0.005%

Table 14. The percentage difference between the FEM model and the third model
for the relative thickness of the core χc = 16/20.

λ 15 20 25 30

∆vmax −0.13% −0.08% −0.04% −0.01%

∆F o,CR 0.90% 0.45% 0.25% 0.14%

∆fz [Hz] −0.13% −0.15% −0.12% −0.11%

7. Conclusions

The detailed analytical analysis shows that considering the nonlinear shear
effect has a significant impact on the obtained values. The results for the first
analytical model show that the “broken line” theory gives the lower deflection
and higher critical load and fundamental natural frequency in comparison to the
third model. The differences between results obtained for the second and third
model for the considered cases of relative thickness are negligible. Therefore, for
the classical sandwich beam with thin faces, the shear effect in the faces can be
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neglected. For considered cases of the beam geometry, the maximum percentage
difference between the FEM model and the third model, which is treated as
the reference model, is 0.9% for the critical load, −0.17% for the fundamental
natural frequency and −0.26% for the beam deflection. The comparisons be-
tween the results for the third and FEM models prove that the critical load,
the fundamental natural frequency and the maximum deflection given by the
developed analytical formulas are in excellent agreement with the ones obtained
from the FEM.
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