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The main objective of the present paper is to discuss very efficient procedure of the numer-
ical investigation of localized fracture in inelastic solids generated by impact-loaded adiabatic
processes. Particular attention is focused on the proper description of a ductile mode of fracture
propagating along the shear band for high impact velocities. This procedure of investigation is
based on utilization the finite difference method for regularized thermo-elasto-viscoplastic con-
stitutive model of damaged material. A general constitutive model of thermo-elasto-viscoplastic
damaged polycrystalline solids with a finite set of internal state variables is used. The set of
internal state variables consists of two scalars, namely equivalent inelastic deformation and vol-
ume fraction porosity. The equivalent inelastic deformation can describe the dissipation effects
generated by viscoplastic flow phenomena and the volume fraction porosity takes into account
the microdamage evolution effects. The relaxation time is used as a regularization parameter.
Fracture criterion based on the evolution of microdamage is assumed.
As a numerical example we consider dynamic shear band propagation and localized fracture

in an asymmetrically impact-loaded prenotched thin plate. The impact loading is simulated by
a velocity boundary condition which are the results of dynamic contact problem. The separation
of the projectile from the specimen, resulting from wave reflections within the projectile and
the specimen, occurs in the phenomenon.
A thin shear band region of finite width which undergoes significant deformation and

temperature rise has been determined. Its evolution until occurrence of final fracture has been
simulated. Shear band advance, microdamage and the development of the temperature field
as a function of time have been determined. Qualitative comparison of numerical results with
experimental observation data has been presented. The numerical results obtained have proven
the usefulness of the thermo-elasto-viscoplastic theory in the investigation of dynamic shear
band propagations and localized fracture.

Key words: localized fracture, finite difference method, thermo-elasto-viscoplasticity, micro-
damage.

1. Prologue

In technological processes fracture can occur as a result of an adiabatic shear
band localization generally attributed to a plastic instability generated by in-
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trinsic microdamage mechanisms within a material and thermal softening during
plastic deformation.
Recent experimental observations have shown that the shear band procreates

in a region of a body deformed where the resistance to plastic deformation is
lower and the predisposition for localized shear band formation is higher. In the
explanation of the fracture phenomenon along shear band regions very important
role has the microdamage process which consists of the nucleation, growth and
coalescence of microcracks. It has been found experimentally that in dynamic
processes the shear band regions behave differently than adjacent zones. Within
the shear band region the deformation process is characterized by very large
strains (shear band strains over 100%) and very high strain rates (104–106 s−1).
The strain rate sensitivity of a material becomes very important feature of the
shear band region and the microdamage process is intensified. The mechanism of
final failure is a simple propagation of a macrocrack along the damaged material
within the shear band region.
The main objective of the present paper is to discuss very efficient procedure

of the numerical investigation of localized fracture in inelastic solids generated by
impact-loaded adiabatic processes. Particular attention is focused on the proper
description of a ductile mode of fracture propagating along the shear band for
high impact velocities.
This procedure of investigation is based on utilization the finite difference

method for regularized thermo-elasto-viscoplastic constitutive model of dam-
aged material.
In this paper emphasis is laid on experimental and physical foundations

as well as on mathematical constitutive modelling for the description of poly-
crystalline solids in modern technological processes. Our aim is twofold. First,
particular attention will be focused on the fundamental mathematical analysis
of the initial-boundary value problem (the evolution problem) and its proper nu-
merical solution. We shall discuss the well-posedness of the evolution problem,
its discretization in space and time, its approximated scheme, and its consis-
tency, stability and convergence. Second, very important part of the discussion
will also concern the physical aspects of the dispersion waves in considered nu-
merical example. It will be proved that dispersive waves have a great influence
on the results concerning the evolution of adiabatic shear bands as well as the
propagation of the macrocrack path. It will be shown that cooperative phenom-
ena generated by the interaction of dispersive and dissipative effects influence
the final results concerning localized fracture of the considered specimen.
A general constitutive model of thermo-elasto-viscoplastic damaged poly-

crystalline solids with a finite set of internal state variables is used. The set of
internal state variables consists of two scalars, namely equivalent inelastic defor-
mation and volume fraction porosity. The equivalent inelastic deformation can
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describe the dissipation effects generated by viscoplastic flow phenomena and the
volume fraction porosity takes into account the microdamage evolution effects.
The relaxation time is used as a regularization parameter. Fracture criterion
based on the evolution of microdamage is assumed cf. Perzyna [37–39, 42–44].
The identification procedure for the material functions and constants in-

volved in the constitutive equations is developed basing on the experimen-
tal observations of adiabatic shear bands in an AISI 4340 steel presented by
Chakrabarti and Spretnak [2].
We idealize the initial-boundary value problem investigated experimentally

by Chakrabarti and Spretnak [2] by assuming the velocity driven process
for a thin steel (AISI 4340) plate.
Base on the best curve fitting of the experimental results obtained by Cha-

krabarti and Spretnak [2] for the stress-strain relation the identification
of the material constans has been done. The investigation of the stability and
convergence of the numerical method based on the finite difference discretization
has been presented, cf. Dornowski and Perzyna [11].
As a numerical example let us consider dynamic shear band propagation and

localized fracture in an asymmetrically impact–loaded prenotched thin plate,
cf. Dornowski and Perzyna [13]. The plate is made of an AISI 4340 steel.
A notch (250 µm wide) is further extended by 2 mm and is situated unsym-
metrically on the edge. The constant velocity V0 = 38 m/s is imposed for pro-
jectile. The projectile comes into contact with the specimen over the width
of 50 mm.
The impact loading is simulated by a velocity boundary condition which are

the results of dynamic contact problem. The velocity imposed in specimen in
front of projectile increases during the process. The separation of the projectile
from the specimen, resulting from wave reflections within the projectile and the
specimen, occurs in the phenomenon. All surface areas have traction free bound-
ary conditions except where the velocity boundary condition is applied. We ide-
alize the initial boundary value problem observed experimentally in Guduru,
Rosakis and Ravichandran [21], by assuming the velocity boundary condi-
tion and different material of the specimen. The discretization parameters are
assumed in such a way, to solve the problem of mesomechanics properly. The
dimension of the accepted mesh is of order 20 µm. A thin shear band region
of finite width which undergoes significant deformation and temperature rise
has been determined. Its evolution until occurrence of final fracture has been
simulated.
Shear band advance as a function of time, the evolution of the Mises stress,

equivalent plastic deformation, temperature, the microdamage and the crack
path in the fracture region have been determined. Very important result is ob-
tained for the evolution of temperature. The distribution of temperature along
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shear band is nonuniform, cf. also Glema, Łodygowski and Perzyna [20].
This result is in agreement with the experimental observations presented by
Guduru, Rosakis and Ravichandran [21]. They observed that the tempera-
ture distribution along the shear band is highly nonuniform, with discrete regions
of high temperature, that look like “hot spots”. The evolution of the microdam-
age and the crack path is very irregular and it widens steadily. It seems that
in some places of the crack we can expect the branching effect as it has been
observed by Guduru, Rosakis and Ravichandran [21]. Qualitative compari-
son of numerical results with experimental observation data has been presented.
The numerical results obtained have proven the usefulness of the thermo-elasto-
viscoplastic theory in the numerical investigation of dynamic shear band prop-
agation and localized fracture.

2. Physical and experimental motivation

2.1. Analysis of meso- and micro-mechanical problems

In modern technology we observe recently very important application of
metals, ceramics and polymers at meso- and micro-scales. Micromachines are in
this size range clearly will be of increasing technological significance. Processes
that control the mechanical integrity of microelectronic devices take also place
on this size scale, cf. Needlemen [31] and Hutchinson [24].
It is considerable experimental evidence that plastic flow and particularly lo-

calization of plastic deformation and localized fracture phenomena in crystalline
solids are inherently size dependent over meso- and micro-scales. It is generally
accepted that: “smaller is stronger” or “smaller is harder”.
Plastic behaviour at micro-scale range can not be characterized by conven-

tional plasticity theories because they incorporate no material length scale and
predict no size effect.
In recent years a variety of theoretical frameworks is emerging to describe

inelastic deformation at the meso- and micro-scales. Four such frameworks (con-
stitutive structures), each involving a length scale, are as follows: (i) discrete dis-
location plasticity; (ii) nonlocal plasticity; (iii) the coupling of matter diffusion
and deformation; (iv) elasto-viscoplasticity.
The meso- and micro-mechanical problems pose also numerical challenges.

Computations on smaller size scale require smaller time steps. Since size depen-
dent phenomena come into play when there are gradients of deformation and
stress, hence numerical methods are usually needed to obtain solutions. Finite
strains and rotations have to be taken into consideration.
At the meso- and micro-scale problems the dominant numerical methods are

the finite element and finite difference methods.
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It is noteworthy to add that the meso- and micro-scale continuum mechanics
is in an early stage of development, both in terms of the theoretical framework
as well as the computational methods.
In our consideration we shall use the thermo-elasto-viscoplasticity as a consti-

tutive model of the material and apply the finite difference method in numerical
computations.

2.2. Experimental investigation of the initiation and propagation
of shear bands

Guduru, Rosakis and Ravichandran [21] presented an experimental in-
vestigation of the initiation and propagation characteristics of dynamic shear
band in C300 maraging steel. An elastic discharge machining (EDM) notch
(260 µm wide) was further extended by 2 mm by fatigue loading, cf. Fig. 1.

Fig. 1. Specimen geometry and impact arrangment. The projectile is 127 mm long. All
dimensions shown are in milimeters (after Guduru, Rosakis and Ravichandran [21]).

In experimental investigation of Guduru,Rosakis andRavichandran [21],
two diagnostic techniques were used to observe the crack tip, the propagating
shear band and the temperature field evolution during the initiation and prop-
agation of the shear band. On one side of the specimen, the optical technique
of coherent gradient sensing (CGS) in reflection was used to monitor the evo-
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lution of the stress intensity factors as a function of time. On the other side
of specimen, a newly developed full-field, high-speed infrared (IR) imaging sys-
tem was employed to measure the evoluting, 2-D temperature field, cf. Fig. 2.
They measure the advance of the shear band and its velocity in five different
experiments, cf. Fig. 3 and 4. The shear band velocity can be seen to be highly

Fig. 2. Schematic illustration of the experimental setup. The CGS setup measures the out
plane displacement gradients on the rear side of the specimen. Simeltaneous thermal imaging
is accomplished using the IR camera on the facing side of the specimen (after Guduru,

Rosakis and Ravichandran [21]).

Fig. 3. Shear band advance as a function of time (after Guduru, Rosakis and
Ravichandran [21]).
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Fig. 4. Shear band velocity as a function of time (after Guduru, Rosakis and
Ravichandran [21]).

transient and a function of the impact speed. In all but one experiment, the
band arrests momentarily at about 30 µs, before accelerating to high speeds.
The maximum shear band velocity observed here is about 1100 m/s, cf. also
Zhou et al. [57, 58].

2.3. Fracture phenomena along localized shear bands

Fractured specimens were examined using an optical microscope to study the
features of the shear bands such as its width, trajectory, the fracture surface,
etc. The shear band is revealed as a white stripe. The thickness of the band is
about 40 µm, cf. Fig. 5. A scanning electron microscope (SEM) image of the
specimen surface that failed by shear band propagation, shows elongated voids,
with sheared edges that are characteristic of such a failure mode, cf. Fig. 6. The
presence of voids reveals the development of triaxiality tensile stress state that
led to void growth and eventual fracture.

Fig. 5. An optical micrograph of an arrested shear band (after Guduru, Rosakis and
Ravichandran [21]).
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Fig. 6. An SEM image of the fracture surface that failed by shear banding. Arrow shows the
crack propagation direction (after Guduru, Rosakis and Ravichandran [21]).

2.4. Temperature measurement

Guduru, Rosakis and Ravichandran [21] (cf. also Guduru et al. [22])
performed also broad experimental observations of the temperature field evolu-
tion during the initiation and propagation of the shear band. One of their objec-
tives of imaging the temperature field was to visualize the development of the
plastic zone at the tip of the initial crack and to observe its evolution, through
further localization, into a shear band. The IR camera was focussed at the tip
of the fatigue crack as illustrated on the left-hand side of Fig. 7. The impact

Fig. 7. A sequence of thermal images showing the transition of crack tip plastic zone into
a shear band (after Guduru, Rosakis and Ravichandran [21]).
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speed was 35 m/s. They show a sequence of thermal images revelling the devel-
opment of the temperature field as a function of time. Starting at about 21 µs,
the central hot region extends to the right, as indicated by the contour lines,
signifying the process of shear localization. The measured highest temperature
rise within the plastic zone when this happened was at least 80 K, cf. Fig. 7.
Let us now focus our attention on the temperature field associated with the

tip of a propagating shear band. The gradual nature of temperature rise at the
front end of shear band supports the notion of a very diffuse shear band tip, as
opposed to a crack tip which carries a strong singularity in the field quantities.
As the shear band propagates, the material within the band progressively

accumulates large plastic shear strains within short times and the temperature
can quickly reach very high value. Of special interest in the investigation of
Guduru, Rosakis and Ravichandran [21] has been the temperature distri-
bution along a well-defined shear band. They have been consistently observed,
in all experiments where a propagating shear band was imaged, that the temper-
ature distribution along the band is highly non-uniform, with discrete regions
of high temperature, that look like “hot spots”. These hot spots are also seen
to translate along the length of the band.

2.5. Possible shear band branching

Guduru, Rosakis and Ravichandran [21] discussed also the possibility
of shear band branching. Figure 8 shows their three micrographs that confirm
previous observation about the possibility of shear band branching mode by

Fig. 8. Optical micrographs of possible shear band bifurcation (after Guduru, Rosakis and
Ravichandran [21]).



308 P. PERZYNA

Meyers [30]. In the first two, the left edges are the failure paths, caused by
a propagating shear band. The third image is taken from an arrested shear
band. The branching behaviour is clearly seen in all three cases. They added
that currently there is no theoretical framework to explain such a phenomenon
and they stressed that this interesting observation requires further investigation
to understand the conditions under which such a bifurcation can take place.

3. Thermo-elasto-viscoplastic model of a material

3.1. Basic assumptions and definitions

Let us assume that a continuum body is an open bounded set B ⊂ R
3, and

let φ : B → S be a C1 configuration of B in S. The tangent of φ is denoted
F = Tφ and is called the deformation gradient of φ.
Let {XA} and {xa} denote coordinate systems on B and S respectively.

Then we refer to B ⊂ R
3 as the reference configuration of a continuum body

with particles X ∈ B and to S = φ(B) as the current configuration with points
x ∈ S. The matrix F(X, t) = ∂φ(X, t)/∂X with respect to the coordinate bases
EA(X) and ea(x) is given by

(3.1) F a
A(X, t) =

∂φa

∂XA
(X, t),

where a mapping x = φ(X, t) represents a motion of a body B.
We consider the local multiplicative decomposition

(3.2) F = Fe · Fp,

where (Fe)−1 is the deformation gradient that releases elastically the stress on
the neighbourhood φ(N (X)) in the current configuration.
Let us define the total and elastic Finger deformation tensors

(3.3) b = F · FT , be = Fe · FeT ,

respectively, and the Eulerian strain tensors as follows

(3.4) e =
1

2
(g − b−1), ee =

1

2
(g − be−1

),

where g denotes the metric tensor in the current configuration.
By definition1)

(3.5) ep = e− ee =
1

2
(be−1 − b−1)

we introduce the plastic Eulerian strain tensor.

1)For precise definition of the finite elasto-plastic deformation see Perzyna [41].
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To define objective rates for vectors and tensors we use the Lie derivative2).
Let us define the Lie derivative of a spatial tensor field t with respect to the
velocity field υ as

(3.6) Lυt = φ∗
∂

∂t
(φ∗t),

where φ∗ and φ∗ denote the pull-back and push-forward operations, respectively.
The rate of deformation tensor is defined as follows

(3.7) d♭ = Lυe
♭ =

1

2
Lυg =

1

2
(gacυ

c |b +gcbυc |a) ea ⊗ eb,

where the symbol ♭ denotes the index lowering operator and ⊗ the tensor pro-
duct,

(3.8) υa |b=
∂υa

∂xb
+ γabcυ

c,

and γabc denotes the Christoffel symbol for the general coordinate systems {xa}.
The components of the spin ω ω are given by

(3.9) ωab =
1

2
(gacυ

c |b −gcbυc |a) =
1

2

(
∂υa
∂xb

− ∂υb
∂xa

)
.

Similarly

(3.10) de♭ = Lυe
e♭ , dp♭ = Lυe

p♭ ,

and

(3.11) d = de + dp.

Let τ denote the Kirchhoff stress tensor related to the Cauchy stress tensor σ by

(3.12) τ = Jσ =
ρRef
ρ

σ,

where the Jacobian J is the determinant of the linear transformation F(X, t) =
(∂/∂X)φ(X, t), ρRef(X) and ρ(x, t) denote the mass density in the reference and
current configuration, respectively.
The Lie derivative of the Kirchhoff stress tensor τ ∈ T2(S) (elements of

T2(S) are called tensors on S, contravariant of order 2) gives

(3.13) Lυτ = φ∗
∂

∂t
(φ∗τ) =

{
F · ∂

∂t
[F−1 · (τ ◦ φ) · F−1T ] · FT

}
◦ φ−1

= τ̇− (d+ω) · τ− τ · (d+ω)T ,

2)The algebraic and dynamic interpretations of the Lie derivative have been presented by
Abraham et al. [1], cf. also Marsden and Hughes [29].
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where ◦ denotes the composition of mappings. In the coordinate system (3.13)
reads

(3.14) (Lυτ)
ab = F a

A

∂

∂t

(
F−1
c

A
τ cdF−1

d

B
)
F b
B

=
∂τab

∂t
+
∂τab

∂xc
υc − τ cb

∂υa

∂xc
− τac

∂υb

∂xc
.

Equation (3.14) defines the Oldroyd rate of the Kirchhoff stress tensor τ (cf.
Oldroyd [33]).

3.2. Constitutive postulates

Let us assume that: (i) conservation of mass, (ii) balance of momentum,
(iii) balance of moment of momentum, (iv) balance of energy, (v) entropy pro-
duction inequality hold.
We introduce the four fundamental postulates:
(i) Existence of the free energy function. It is assumed that the free energy
function is given by

(3.15) ψ = ψ̂(e,F, ϑ;µ),

where e denotes the Eulerian strain tensor, F is deformation gradient,
ϑ temperature and µ denotes a set of the internal state variables.
To extend the domain of the description of the material properties and

particularly to take into consideration different dissipation effects we have
to introduce the internal state variables represented by the vector µ.

(ii) Axiom of objectivity (spatial covariance). The constitutive structure should
be invariant with respect to any diffeomorphism (any motion) ξ : S → S
(cf. Marsden and Hughes [29]). Assuming that ξ : S → S is a regular,
orientation preserving map transforming x into x′ and Tξ is an isome-
try from TxS to Tx′S, we obtain the axiom of material frame indifference
(cf. Truesdell and Noll [54]).

(iii) The axiom of the entropy production. For any regular motion of a body
B the constitutive functions are assumed to satisfy the reduced dissipation
inequality

(3.16)
1

ρRef
τ : d− (ηϑ̇ + ψ̇)− 1

ρϑ
q · gradϑ ≥ 0,

where ρRef and ρ denote the mass density in the reference and actual con-
figuration, respectively, τ is the Kirchhoff stress tensor, d the rate of defor-
mation, η is the specific (per unit mass) entropy, and q denotes the heat
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flow vector field. Marsden and Hughes [29] proved that the reduced dis-
sipation inequality (3.16) is equivalent to the entropy production inequality
first introduced by Coleman and Noll [5] in the form of the Clausius–
Duhem inequality. In fact the Clausius–Duhem inequality gives a statement
of the second law of thermodynamics within the framework of mechanics
of continuous media, cf. Duszek and Perzyna [14], and Perzyna [42].

(iv) The evolution equation for the internal state variable vector µ is assumed
in the form as follows

(3.17) Lυµ = m̂(e,F, ϑ,µ),

where the evolution function m̂ has to be determined based on careful
physical interpretation of a set of the internal state variables and analysis
of available experimental observations.
The determination of the evolution function m̂ (in practice a finite set

of the evolution functions) appears to be the main problem of the modern
constitutive modelling.
The main objective is to develop the rate type constitutive structure for an

elastic-viscoplastic material in which the effects of the plastic non-normality,
micro-damaged mechanism and thermomechanical coupling are taken into con-
sideration. To do this it is sufficient to assume a finite set of the internal state
variables. For our practical purposes it is sufficient to assume that the internal
state vector µ has the form

(3.18) µ = (ǫp, ξ),

where ǫp is the equivalent viscoplastic deformation, i.e.

(3.19) ǫp =

t∫

0

(
2

3
dp : dp

)1/2

dt,

and ξ is volume fraction porosity and takes account for micro-damaged effects.
Let us introduce the plastic potential function f = f(J1, J2, ϑ,µ), where J1,

J2 denote the first two invariants of the Kirchhoff stress tensor τ.
Let us postulate the evolution equations as follows

(3.20) dp = ΛP, ξ̇ = Ξ,

where for elasto-viscoplastic model of a material we assume (cf. Perzyna [34–
36, 41])

(3.21) Λ =
1

Tm

〈
Φ

(
f

κ
− 1

)〉
,
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Tm denotes the relaxation time for mechanical disturbances, the isotropic work-
hardening-softening function κ is

(3.22) κ = κ̂(ǫp, ϑ, ξ),

Φ is the empirical overstress function, the bracket 〈·〉 defines the ramp function,

(3.23) P =
∂f

∂τ

∣∣∣∣
ξ=const

(∣∣∣∣
∣∣∣∣
∂f

∂τ

∣∣∣∣
∣∣∣∣
)−1

,

Ξ denotes the evolution function which has to be determined.

3.3. Intrinsic micro-damage mechanisms

To take into consideration experimentally observed time dependent effects it
is advantageous to use the proposition of the description of the intrinsic micro-
damage process presented by Perzyna [38, 39] and Duszek–Perzyna and
Perzyna [15].
Let us assume that the intrinsic micro-damage process consists of the nucle-

ation and growth mechanisms3).
Physical considerations (cf. Curran et al. [7] and Perzyna [38, 39]) have

shown that the nucleation of microvoids in dynamic loading processes which
are characterized by very short time duration is governed by the thermally–
activated mechanism. Based on this heuristic suggestion and taking into account
the influence of the stress triaxiality on the nucleation mechanism we postulate
for rate dependent plastic flow4)

(3.24)
(
ξ̇
)
nucl

=
1

Tm
h∗(ξ, ϑ)

[
exp

m∗(ϑ) | In − τn(ξ, ϑ, ǫ
p) |

kϑ
− 1

]
,

where k denotes the Boltzmann constant, h∗(ξ, ϑ) represents a void nucleation
material function which is introduced to take account of the effect of microvoid
interaction, m∗(ϑ) is a temperature dependent coefficient, τn(ξ, ϑ, ǫp) is the
porosity, temperature and equivalent plastic strain dependent threshold stress
for microvoid nucleation,

(3.25) In = a1J1 + a2

√
J ′
2 + a3

(
J ′
3

)1/3

3)Experimental observation results (cf. Shockey et al. [49]) have shown that coalescence
mechanism can be treated as nucleation and growth process on a smaller scale. This conjecture
simplifies very much the description of the intrinsic micro-damage process by taking account
only of the nucleation and growth mechanisms.
4)An analysis of the experimental observations for cycle fatigue damage mechanics at high
temperature of metals performed by Sidey and Coffin [50] suggests that the intrinsic micro-
damage process does very much depend on the strain rate effects, the wave shape effects as
well as on the stress tiaxiality.
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defines the stress intensity invariant for nucleation, ai (i = 1, 2, 3) are the ma-
terial constants, J1 denotes the first invariant of the Kirchhoff stress tensor τ,
J ′
2 and J

′
3 are the second and third invariants of the stress deviator τ

′.
For the growth mechanism we postulate (cf. Johnson [26]; Perzyna [38, 39];

Perzyna and Drabik [45] and Dornowski and Perzyna [10–12]

(3.26)
(
ξ̇
)
grow

=
1

Tm

g∗(ξ, ϑ)

κ0
[Ig − τeq(ξ, ϑ, ǫ

p)] ,

where Tmκ0 denotes the dynamic viscosity of a material, g∗(ξ, ϑ) represents a
void growth material function and takes account for void interaction, τeq(ξ, ϑ, ǫp)
is the porosity, temperature and equivalent plastic strain dependent void growth
threshold stress,

(3.27) Ig = b1J1 + b2

√
J ′
2 + b3

(
J ′
3

)1/3
,

defines the stress intensity invariant for growth and bi (i = 1, 2, 3) are the
material constants.
Finally the evolution equation for the porosity ξ has the form

(3.28) ξ̇ =
h∗(ξ, ϑ)

Tm

[
exp

m∗(ϑ) | In − τn(ξ, ϑ, ǫ
p) |

kϑ
− 1

]

+
g∗(ξ, ϑ)

Tmκ0
[Ig − τeq(ξ, ϑ, ǫ

p)] .

To have consistent theory of elasto-viscoplasticity we can replace the expo-
nential function in the nucleation term and the linear function in the growth
term by the empirical overstress Φ, then the evolution equation for the porosity
ξ takes the form as follows (cf. Perzyna [43])

(3.29) ξ̇ =
1

Tm
h∗(ξ, ϑ)

〈
Φ

[
In

τn(ξ, ϑ, ǫp)
− 1

]〉

+
1

Tm
g∗(ξ, ϑ)

〈
Φ

[
Ig

τeq(ξ, ϑ, ǫp)
− 1

]〉
.

This determines the evolution function Ξ.

3.4. Thermodynamic restrictions and rate type constitutive equations

Suppose the axiom of the entropy production holds. Then the constitutive
assumption (3.15) and the evolution equations (3.20) lead to the results as fol-
lows
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(3.30)

τ = ρRef
∂ψ̂

∂e
, η = −∂ψ̂

∂ϑ
,

−∂ψ̂
∂µ

· Lυµ− 1

ρϑ
q · grad ϑ ≥ 0.

The rate of internal dissipation is determined by

(3.31) ϑ̂i = −∂ψ̂
∂µ

· Lυµ = −
(
∂ψ̂

∂ǫp

√
2

3

)
Λ− ∂ψ̂

∂ξ
Ξ.

Operating on the stress relation (3.30)1 with the Lie derivative and keep-
ing the internal state vector constant, we obtain (cf. Duszek–Perzyna and
Perzyna [15])

(3.32) Lυτ = Le : d− Lthϑ̇− [(Le + gτ+ τg) : P]
1

Tm

〈
Φ

(
f

κ
− 1

)〉
,

where

(3.33) Le = ρRef
∂2ψ̂

∂e2
, Lth = −ρRef

∂2ψ̂

∂e∂ϑ
.

Substituting ψ̇ into the energy balance equation and taking into account the
results (3.30)3 and (3.31) gives

(3.34) ρϑη̇ = −divq+ ρϑ̂i.

Operating on the entropy relation (3.30)2 with the Lie derivative and sub-
stituting the result into (3.34) we obtain

(3.35) ρcpϑ̇ = −divq+ ϑ
ρ

ρRef

∂τ

∂ϑ
: d+ ρχ∗τ : dp + ρχ∗∗ξ̇,

where the specific heat

(3.36) cp = −ϑ∂
2ψ̂

∂ϑ2

and the irreversibility coefficients χ∗ and χ∗∗ are determined by

(3.37)

χ∗ = −
(
∂ψ̂

∂ǫp
− ϑ

∂2ψ̂

∂ϑ∂ǫp

)√
2

3

1

τ : P
,

χ∗∗ = −
(
∂ψ̂

∂ξ
− ϑ

∂2ψ̂

∂ϑ∂ξ

)
.
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So, a set of the constitutive equations of the rate type has the form as follows

(3.38)

Lυτ = Le : d− Lthϑ̇− [(Le + gτ + τg) : P]
1

Tm

〈
Φ

(
f

κ
− 1

)〉
,

ρcpϑ̇ = −divq+ ϑ
ρ

ρRef

∂τ

∂ϑ
: d+ ρχ∗ 1

Tm

〈
Φ

(
f

κ
− 1

)〉
τ : P+ ρχ∗∗ξ̇,

ξ̇ =
1

Tm
h∗(ξ, ϑ)

〈
Φ

[
In

τn(ξ, ϑ, ǫp)
− 1

]〉

+
1

Tm
g∗(ξ, ϑ)

〈
Φ

[
Ig

τeq(ξ, ϑ, ǫp)
− 1

]〉
.

All the material functions and the material constants should be identified based
on available experimental data.

3.5. Fracture criterion based on the evolution of micro-damage

We base the fracture criterion on the evolution of the porosity internal state
variable ξ. The volume fraction porosity ξ takes account for microdamage effects.
Let us assume that for ξ = ξF catastrophe takes place (cf. Perzyna [37]),

that is

(3.39) κ = κ̂(ǫp, ϑ, ξ)|ξ=ξF = 0.

It means that for ξ = ξF the material loses its carrying capacity. The condition
(3.39) describes the main feature observed experimentally that the load tends
to zero at the fracture point.
It is noteworthy that the isotropic hardening–softening material function κ̂

proposed in Eq. (3.22) should satisfy the fracture criterion (3.39).

3.6. Length-scale sensitivity of the constitutive model

The constitutive equations for a thermo-elastic-viscoplastic model introduce
implicitly a length-scale parameter into the dynamic initial-boundary value
problem, i.e.

(3.40) l = αcTm,

where Tm is the relaxation time for mechanical disturbances, and is directly
related to the viscosity of the material, c denotes the velocity of the propagation
of the elastic waves in the problem under consideration, and the proportionality
factor α depends on the particular initial-boundary value problem and may also
be conditioned on the microscopic properties of the material.



316 P. PERZYNA

The relaxation time Tm can be viewed either as a microstructural parameter
to be determined from experimental observations or as a mathematical regular-
ization parameter.

4. Discussion of the evolution problem

4.1. Initial-boundary value problem (evolution problem)

Find ϕ as function of t and x satisfying

(4.1)





(i) ϕ̇ = A(t,ϕ)ϕ+ f(t,ϕ);

(ii) ϕ(0) = ϕ0(x);

(iii) The boundary conditions;

where the unknown ϕ takes values in a Banach space, A(t,ϕ) is a spatial lin-
ear differential operator (in general unbounded) depending on t and ϕ, f is
a nonlinear function, and the dot denotes the material derivative.
The evolution problem (4.1) describes an adiabatic inelastic flow process

provided

(4.2)

ϕ =




υ

ρ
τ

ξ
ϑ



,

f =




0
0

−

〈
Φ

(
f

κ
− 1

)〉

Tm

[(
Le +

χ∗τ

ρRef
Lth + gτ + τg

)
: P

]
− χ∗∗Ξ

ρRef
Lth

Ξ
1

Tm

〈
Φ

(
f

κ
− 1

)〉
χ∗

ρRef
Lthτ : P+

χ∗∗

ρRef
Ξ




,

A =




0 0
τ

ρRefρ
grad

1

ρRef
div 0

0 −ρdiv 0 0 0

0 E : sym
∂

∂x
+ 2sym

(
τ : ∂

∂x

)
0 0 0

0 0 0 0 0

0
ϑ

cpρRef

∂τ

∂ϑ
: sym

∂

∂x
0 0 0




.
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where

(4.3) E = Le − ϑ

cpρRef
Lth ∂τ

∂ϑ

denotes the thermo-elastodynamic matrix for adiabatic process.
It is noteworthy that the spatial operator A has the same form as in thermo-

elastodynamics while all dissipative effects generated by viscoplastic flow phe-
nomena and by microdamage mechanisms influence the adiabatic impact loading
process through the nonlinear function f.
A strict solution of (4.1) with f(t,ϕ) ≡ 0 (i.e. the homogeneous evolution

problem) is defined as a function ϕ(t) ∈ E (a Banach space) such that5)

(4.4)

ϕ(t) ∈ D(A), for all t ∈ [0, tf ],

lim
∆t→0

∥∥∥∥
ϕ(t+∆t)−ϕ(t)

∆t
−Aϕ(t)

∥∥∥∥
E

= 0 for all t ∈ [0, tf ].

The boundary conditions are taken care of by restricting the domain D(A) to
elements of E that satisfy those conditions; they are assumed to be linear and
homogeneous, so that the set S of all ϕ that satisfy them is a linear manifold;
D(A) is assumed to be contained in S.
The choice of the Banach space E, as well as the domain of A, is an essential

part of the formulation of the evolution problem.

4.2. Well-posedness of the evolution problem

The homogeneous evolution problem (i.e. for f ≡ 0) is called well posed (in
the sense of Hadamard) if it has the following properties:
(i) The strict solutions are uniquely determined by their initial elements;
(ii) The set Y of all initial elements of strict solutions is dense in the Banach
space E;

(iii) For any finite interval [0, t0], t0 ∈ [0, tf ] there is a constant K = K(t0) such
that every strict solution satisfies the inequality

(4.5) ‖ϕ(t)‖ ≤ K‖ϕ0‖ for 0 ≤ t ≤ t0.

The inhomogeneous evolution problem (4.1) will be called well posed if it has
a unique solution for all reasonable choices of ϕ0 and f(t,ϕ) and if the solution
depends continuously, in some sense, on those choices.

5)We shall follow here some fundamental results which have been discussed in Richtmyer
and Morton [47], Strang and Fix [52], Richtmyer [46] and Dautray and Lions [8].
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It is evident that any solution is unique, because of the uniqueness of the
solutions of the homogeneous evolution problem. Namely, the difference of two
solutions, for given ϕ0 and given f(·), is a solution of the homogeneous problem
with zero as initial element, hence must be zero for all t.
It is possible to show (cf. Richtmyer [46]) that strict solutions exists for sets

of ϕ0 and f(·) that are dense in E and E1 (a new Banach space), respectively.
Let {F∗

t ; t ≥ 0} be a semi-group generated by the operator A+ f(·) (as it has
been defined in Section 4.1) and {Ft; t ≥ 0} be a semi-group generated by the
operator A.
Then we can write the generalized solution of the nonhomogenous evolution

problem (4.1) in alternative forms

(4.6)

ϕ(t,x) = F
∗(t)ϕ0(x)

= F(t)ϕ0(x) +

t∫

0

F(t− s)f(s,ϕ(s))ds.

The generalized solution of the nonhomogenous evolution problem (4.1) in
the form (4.6)2 is the integral equation.
The successive approximations for (4.6)2 are defined to be the functions

ϕ0,ϕ1, . . . , given by the formulas

(4.7)

ϕ0(t) = ϕ0,

. . . . . . . . .

ϕk+1(t) = F(t)ϕ0 +

t∫

0

F(t− s)f(s,ϕk(s))ds,

k = 0, 1, 2, . . . ; t ∈ [0, tf ].

It is possible to show that these functions actually exist on t ∈ [0, tf ] if
the continuous function f is Lipschitz continuous with respect to the second
argument uniformly with respect to t ∈ [0, tf ], cf. Perzyna [40]. Then (4.6)2
has unique solution (cf. also Ionescu and Sofonea [25]).

4.3. Discretization in space and time

We must approximate (4.1) twice. First, when E is infinite dimensional, we
must replace A by an operator Ah which operates in a finite dimensional space
Vh ⊂ E, where, in general, h > 0 represents a discretisation step in space, such
that dim(Vh) → ∞ as h→ 0. Second, we must discretise in time, that is to say
choose a sequence of moments tn (for example tn = n∆t, where ∆t is time step)
at which we shall calculate the approximate solution.
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Let us introduce the following semi-discretised (discrete in space) problem.

(4.8)





Find ϕh ∈ C0([0, t0];Vh) (C0 denotes the space of functions
continuous on ([0, t0], Vh)) satisfying

dϕh(t)

dt
= Ahϕh(t) + fh(t),

ϕh(0) = ϕ0,h.

The operator Ah for the finite element method can be obtained by a varia-
tional formulation approach. The discrete equations are obtained by the Galerkin
method at particular points in the domain.
Finally, we shall define a method allowing us to calculate ϕn

h ∈ Vh, an ap-
proximation to ϕh(tn) starting from ϕn−1

h (we limit ourselves to a two-level
scheme). Then we can write

(4.9) ϕn+1
h = Ch(∆t)ϕ

n
h +∆tfnh, ϕ0

h = ϕ0,h,

where we introduce the operator Ch(∆t) ∈ L(Vh) (L is the set of continuous
linear mapping of Vh with values in Vh) and where fnh approximates fh(tn).
We shall always assume that the evolution problem (4.1) is well posed and

there exists a projection Rh of E into Vh such that

(4.10) lim
h→0

|Rhϕ−ϕ|E = 0, ∀ϕ ∈ E.

4.4. Convergence, consistency and stability

The first fundamental question is that of the convergence, when h and ∆t
tend to zero, of the sequence {ϕn

h}, the solution (4.9), towards the function ϕ(t),
the solution of (4.1). Let us restrict our consideration, for the moment, to the
case where f(t) ≡ 0.

Definition 1: The scheme defined by (4.9) will be called convergent if the
condition

(4.11) ϕ0,h → ϕ0 as h→ 0

implies that

(4.12) ϕn
h → ϕ(t) as ∆t→ 0, n→ ∞ with n∆t→ t

for all t ∈ ]0, t0[, t0 ∈ [0, tf ], where ϕ
n
h is defined by (4.9) and ϕ(t) is the solution

of (4.1). All this holds for arbitrary ϕ0.
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The study of the convergence of an approximation scheme involves two fun-
damental properties of the scheme, consistency and stability.

Definition 2: The scheme defined by (4.9) is called stable, if there exists
a constant K ≥ 1 independent of h and ∆t such that

(4.13) ‖(Ch(∆t))
nRh‖L(E) ≤ K ∀n,∆t satisfying n∆t ≤ t0.

In the Definition 1 and 2 there occur two parameters h and ∆t. It may
be that the scheme is not stable (or not convergent) unless ∆t and h satisfy
supplementary hypotheses of the type ∆t/hα ≤ constant, α < 0, in which case
we call the scheme conditionally stable. If the scheme is stable for arbitrary
h and ∆t we say that it is unconditionally stable.
These schemes reflect so called explicit and implicit types of the integration

procedure in a particular umerical implementation.

Definition 3: The scheme defined by (4.9) will be called consistent with
equation (4.1) if there exists a subspace Y ⊂ E dense in E, such that for every
ϕ(t) which is a solution of (4.1) with ϕ0 ⊂ Y (and f ≡ 0) we have

(4.14) lim
h→0,∆t→0

∣∣∣∣
Ch(∆t)Rhϕ(t)−ϕ(t)

∆t
−Aϕ(t)

∣∣∣∣
E

= 0.

We see that the two essential preoccupations in the study of approximation
schemes for the solution of evolution equations are on the one hand the deter-
mination of the consistency of the scheme, more precisely the order of precision
and on the other hand its stability.
Determining the order of precision is, in general, easy, we shall therefore

study the stability of the scheme in more detail.

4.5. The Lax-Richtmyer equivalence theorem

We can now state the Lax-Richtmyer equivalence theorem (cf. Richtmyer
andMorton [47], Strang and Fix [52],Dautray and Lions [8] andGustafs-
son, Kreiss and Oliger [23]).

Theorem 1: Suppose that the evolution problem (4.1) is well-posed for
t ∈ [0, t0] and that it is approximated by the scheme (4.9), which we assume
consistent. Then the scheme is convergent if and only if it is stable.

The proof of the Lax-Richtmyer equivalence theorem for the case when the
partial differential operator A in (4.2) is independent of ϕ can be found in
Dautray and Lions [8].

Remark. Let us consider the evolution problem (4.1) with

(4.15) f(t,ϕ) 6= 0
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and ϕ0 = 0, and also the corresponding approximation (4.9). We have

(4.16) ϕn+1
h = ∆t

n∑

j=1

[Ch(∆t)]
n−jfjh.

If A is the ifinitesimal generator of a semigroup {F(t)} we can write

(4.17) ϕ(t) =

t∫

0

F(t− s)f(s)ds.

Under suitable hypotheses on the convergence of fjh to f(j∆t) we can show that
expression (4.16) converges to (4.17) if the scheme is stable and consistent.

4.6. Dispersive analysis

The most important feature is that the propagation of deformation waves in
an elastic-viscoplastic medium has dispersive nature.
The dispersion of a waveform is caused by certain physical and/or geometri-

cal characteristics of the medium in which the wave is generated. Consequently,
instead of dispersive waves, it is perhaps more precise to speak of a dispersive
medium or, where geometrical features alone cause the dispersion, a disper-
sive geometry, cf. Thau [53].
To make our analysis easier let us consider the linear case of the evolution

equation with the interpretation of the functions ϕ and f as well as the spatial
differential operator A given by (4.1) and (4.2) i.e.

(4.18) ϕ̇ = A0(t,x)ϕ+ f0(t,x)ϕ.

The theory of dispersive wave propagation can be introduced by a particu-
lar wave solution of (4.18), namely, by the simple harmonic wavetrains (cf.
Whitham [55, 56] and Thau [53])

(4.19) ϕ = A exp[i(k · x− ωt)],

where k is the wave number, ω is the frequency, and A denotes the amplitude.
Since a set of the equations (4.18) is linear, A factor out and can be arbitrary.

To satisfy a set of the equations (4.18), k and ω have to be related by an equation

(4.20) G(ω,k,x, t) = 0,

which is called the dispersion relation.
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Let us assume that the dispersion relation may be solved in the form of real
roots

(4.21) ω =W (k,x, t).

There will be a number of such solutions, in general, with different functions
W (k,x, t). We refer to these as different modes.
The phase velocity c is given as a function of wavenumber

(4.22) c(k,x, t) =
ω

k
k̂ = k−1W (k,x, t)k̂,

where k̂ is the unit vector in the k direction. For any particular mode ω =
W (k,x, t), the phase velocity c is a function of k.
Another velocity associated with the harmonic wavetrains (4.19) in dispersive

media is the group velocity C defines as

(4.23) C(k,x, t) =
∂W (k,x, t)

∂k
,

which also depends on the wavenumber k.
The derivative of C with respect to k is the symmetric dispersive tensor

(4.24) Wkk =
∂2W

∂k2
.

To have dispersive wave we have to introduce two assertions:

(4.25)

(i) W (k,x, t) is real;

(ii) det

∣∣∣∣
∂2W

∂ki∂kj

∣∣∣∣ 6= 0.

The group velocity C is having a great effect and the condition (4.25)2 ensures
that it is not a constant.
The quantity

(4.26) Θ = k · x− ωt

in the solution (4.19) is the phase. The group velocity is actually the most
important velocity associated with dispersive waves, as it not only is the velocity
of a given group of oscillations or “wavelets” in a wavetrain but also coincides
with the velocity with which the energy in that group propagates. Moreover, in
a dispersive medium any initial disturbance is eventually broken up into a system
of such groups, cf. Thau [53].
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Since the medium under consideration has also dissipation property (cf.
Eq. (4.1) in which the last term on the right hand side is responsible for dis-
sipation effect) hence mathematically, looses due to dissipation are manifested
by the dispersion relation yielding complex or pure imaginary values of W cor-
responding to real values of k. The amplitude of a harmonic wavetrain then
decays exponentially with time.
If the dissipation becomes appreciable, as is in the elastic-viscoplastic medium,

then the general theory of waves in dispersive media would require modification.
The previous consideration does not apply to general nonlinear case (cf.

Eq. (4.1)). To obtain some results we can use the variational method, the per-
turbation theory or the numerical method, cf. Sluys [51].
Dispersion is a relation between the frequency and wave number, cf.Whit-

ham [55]. The ratio of the frequency and wave number is the phase speed
whereas the derivative of the frequency with respect to the wave number is
the group speed. For nondispersive problem, both speeds are equal and on the
other hand for dispersive one the group velocity depends on the frequency and
in general is different from the phase speed. As a matter of fact, the disper-
sion of a waveform is caused by both material (physical law) and geometrical
(boundaries) characteristics of the medium (specimen) in which the wave is
generated.

4.7. Application of finite difference method

Let us consider the evolution problem in the form of (4.1). Let us introduce in
the Euclidean space E3 a regular difference net of nodes (i, j, k) with convective
coordinates χ1

i = i∆χ1, χ2
j = j∆χ2 and χ3

k = k∆χ3, i, j, k ∈ N , where N is a set
of natural numbers, cf. Dornowski [10] and Dornowski and Perzyna [11].
Of course, some of the nodes belong to the edge of the body and are used
to approximate the boundary conditions. Time is approximated by a discrete
sequence of moments tn = n∆t, where ∆t is time step, n ∈ N .
For all functions ϕ = ϕ̂(x, t) of the analysed problem we postulate the

following approximation in the domain ∆E = ∆χ1×∆χ2×∆χ3 of a convective
difference mesh (cf. Fig. 9):

(4.27) ϕ(x, t) ∼= ϕh(x, t) = a1(t) + a2(t)χ
1 + a3(t)χ

2 + a4(t)χ
3

+ a5(t)χ
1χ2 + a6(t)χ

1χ3 + a7(t)χ
2χ3 + a8(t)χ

1χ2χ3,

x ∈ ∆S.

The functions a1(t), . . . ,a8(t) depend only on time, are determined by the value
of the function ϕw(t) = [ϕ1(t), . . . ,ϕ8(t)]

T in the node points of difference
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Fig. 9. Convective finite difference mesh of nodes.

mesh, (cf. Fig. 9). Hence the approximation functions (4.27) can be written in
the form

(4.28) ϕh(x, t) = N(x)ϕw(t), x ∈ ∆S,

where

(4.29)

N1(x) = q(−∆χ1 + 2χ1)(−∆χ2 + 2χ2)(∆χ3 − 2χ3),

N2(x) = q(∆χ1 + 2χ1)(−∆χ2 + 2χ2)(−∆χ3 + 2χ3),

N3(x) = q(−∆χ1 + 2χ1)(∆χ2 + 2χ2)(−∆χ3 + 2χ3),

N4(x) = q(∆χ1 + 2χ1)(∆χ2 + 2χ2)(∆χ3 − 2χ3),

N5(x) = q(−∆χ1 + 2χ1)(−∆χ2 + 2χ2)(∆χ3 + 2χ3),

N6(x) = q(∆χ1 + 2χ1)(∆χ2 − 2χ2)(∆χ3 + 2χ3),

N7(x) = q(∆χ1 − 2χ1)(∆χ2 + 2χ2)(∆χ3 + 2χ3),

N8(x) = q(∆χ1 + 2χ1)(∆χ2 + 2χ2)(∆χ3 + 2χ3),

q =
1

8∆χ1∆χ2∆χ3
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Equations (4.28) allow to determine values of the function ϕh(x, t) in any point

of the difference mesh, x ∈ ∆S. For the central point x = x0,N1 = · · · = N8 =
1

8

and ϕh(t) = [ϕ1(t) + . . .+ϕ8(t)]
1

8
.

By using (4.28) we can determine the matrix of the difference operators which
approximate the first partial derivatives of the function ϕ(x, t) for x ∈ ∆S,

(4.30)
∂

∂x
ϕ(x, t) ∼= ∂

∂x
ϕh(x, t) =

∂

∂x
N(x)ϕw(t) = R(x)ϕw(t).

The matrix of the difference operator R(x) for the central point takes the form

(4.31) R(x = x0) =
∂

∂x
N(x)

∣∣∣∣
x=x0

=




−1

∆χ1

1

∆χ1

−1

∆χ1

1

∆χ1

−1

∆χ1

1

∆χ1

−1

∆χ1

1

∆χ1

−1

∆χ2

−1

∆χ2

1

∆χ2

1

∆χ2

−1

∆χ2

−1

∆χ2

1

∆χ2

1

∆χ2

−1

∆χ3

−1

∆χ3

−1

∆χ3

−1

∆χ3

1

∆χ3

1

∆χ3

1

∆χ3

1

∆χ3




.

In similar way we can find the difference form of the spatial difference operator
A(t,ϕ) of the considered evolution problem (4.1)

(4.32) A(t,ϕ)ϕ ∼= A(t,ϕh)N(x)ϕw(t) = Ah(t,ϕh)ϕw(t),

hence

(4.33) Ah(t,ϕh) = A(t,ϕh)N(x) for x ∈ ∆S.

For the central node, x = x0 the difference operator (4.33) depends only on
time.
As a result of the proposed approximation of the evolution problem (4.1)

with respect to the spatial variables we obtain a set of differential equations
with respect to time and difference equations with respect to spatial variables

(4.34)
dϕh(t)

dt
= Ahϕw(t) + fh(t).

For the approximation of (4.34) with respect to time we use the evident scheme
of the first order in the form

(4.35)
dϕh(t)

dt
∼= ϕn+1

h −ϕn
h

∆t
= Ahϕ

n
w + fnh .
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The solution of (4.35) is reduced to the realization of the recurrence relation

(4.36) ϕn+1
h = Ch(∆t)ϕ

n
w +∆tfnh .

The difference operator

(4.37) Ch(∆t) = ∆tAh +N

couple dependent variables and various points of difference mesh.
For the finite difference approximation it can be proved that the introduced

scheme (4.36) is consistent with equation (4.1).

4.8. Stability criterion

In explicit finite difference scheme for a set of the partial differential equations
(4.1)1 of the hiperbolic type the condition of stability is assumed as the criterion
of Courant–Friedrichs–Lewy, cf. Courant et al. [6]

(4.38)
∆tn,n+1 ≤ min

(
∆Ln

p,q,r∣∣cnp,q,r
∣∣

)
,

p = 1, 2, 3, . . . , P ; q = 1, 2, 3, . . . , Q; r = 1, 2, 3, . . . , R,

where ∆tn,n+1 denotes time step, cnp,q,r denotes the velocity of the propagation
of the disturbances in the vicinity of the central node (p, q, r), ∆Ln

p,q,r is the
minimum distance between the mesh nodes which are in the vicinity of the node
(cf. Fig. 9).
The Courant–Friedrichs–Lewy condition requires that the numerical domain

of dependence of a finite-difference scheme include the domain of dependence of
the associated partial differential equations, cf. Durran [16].
We can now use the Lax–Richtmyer equivalence theorem (cf. Theorem 1 in

Subsec. 4.5).

5. Identification procedure

5.1. Assumption of the material functions for an adiabatic process

To do the proper identification procedure we first make assumption of the
material functions (cf. Dornowski and Perzyna [11]).
The plastic potential function f is assumed in the form (cf. Perzyna [37]

and Shima and Oyane [48])

(5.1) f =
{
J

′

2 + [n1(ϑ) + n2(ϑ)ξ] J
2
1

}1/2
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where

(5.2)
n1(ϑ) = 0,

n2(ϑ) = n = const.

The isotropic work-hardening-softening function κ is postulated as (cf. Perzyna
[38] and Nemes and Eftis [32])

(5.3) κ = κ̂(ǫp, ϑ, ξ)

= {κs(ϑ)− [κs(ϑ)− κ0(ϑ)] exp [−δ(ϑ)ǫp]}
[
1−

(
ξ

ξF

)β(ϑ)
]
,

where

(5.4)

κs(ϑ) = κ∗s(1− ιϑ), κ0(ϑ) = κ∗0(1− ιϑ),

δ(ϑ) = δ∗(1− ιϑ), β(ϑ) = β∗(1− ιϑ), ϑ =
ϑ− ϑ0
ϑ0

.

The overstress function Φ
(
f

κ
− 1

)
is assumed in the form

(5.5) Φ

(
f

κ
− 1

)
=

(
f

κ
− 1

)m

.

The evolution equation for the porosity ξ is postulated as

(5.6) ξ̇ = ξ̇grow =
g∗(ξ, ϑ)

Tmκ0(ϑ)
[Ig − τeq(ξ, ϑ, ǫ

p)]

where (cf. Dornowski [9])

(5.7)

g∗(ξ, ϑ) = c1(ϑ)
ξ

1− ξ
,

Ig = b1J1 + b2
√
J2,

τeq(ξ, ϑ, ǫ
p) = c2(ϑ)(1− ξ) ln

1

ξ
{2κs(ϑ)− [κs(ϑ)− κ0(ϑ)]F (ξ0, ξ, ϑ)} ,

c1(ϑ) = const, c2(ϑ) = const,

F (ξ0, ξ, ϑ) =

(
ξ0

1− ξ0

1− ξ

ξ

) 2
3
δ

+

(
1− ξ

1− ξ0

) 2
3
δ

.
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As in the infinitesimal theory of elasticity we assume linear properties of the
material, i.e.

(5.8) Le = 2µI+ λ(g ⊗ g),

where µ and λ denote the Lamé constants, and the thermal expansion matrix
is postulated as

(5.9) Lth = (2µ+ 3λ)θg,

where θ is the thermal expansion constant (θ = 12 · 10−6 K−1).

5.2. Identification of the material constants

To determine the material constants assumed in Subsec. 5.1 we take advan-
tage of the experimental observations presented by Chakrabarti and Spret-
nak [2]. They investigated the localized fracture mode for tensile steel sheet
specimens simulating both plane stress and plane strain processes. The mate-
rial used in their study was AISI 4340 steel. The principal variable in this flat
specimen test was the width-to-thickness ratio. Variation in specimen geometry
produces significant changes in stress state, directions of shear bands, and duc-
tility. They found that fracture propagated consistently along the shear band
localized region.
Let us now consider the adiabatic dynamic process for a thin steel plate

under condition of plane stress state. In fact we idealize the initial-boundary
value problem investigated by Chakrabarti and Spretnak [2] by assuming
the velocity driven adiabatic process for a thin steel plate. Dimensions of the
plate and the variation in time of the kinematic constraints are presented in
Fig. 10. The problem has been solved by using the finite difference method.
A thin sheet is modelled via N ×M elements, cf. Fig. 10.

Fig. 10. Dimension of the plate and the variation in time of the kinematic constrains
(after Chakrabarti and Spretnak [2]).
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In numerical calculations it is assumed:

V0 = 1.5 m/s,

t0 = 50 µs,

tf = 800 µs.

The material of a plate is AISI 4340 steel.
Based on the best curve fitting of the experimental results obtained by

Chakrabarti and Spretnak [2] for the stress-strain relation (cf. Fig. 11)
the identification of the material constants has been done, cf. Table 1.

Fig. 11. Component SY Y of the second Piola–Kirchhoff stress tensor as a function
of the logarithmic strain εY Y .

Table 1. An AISI 4340 steel (plate).

κ∗

s = 1155 MPa ϑ0 = 293 K c1 = 0.1 ξ0 = 6 · 10
−4 ν = 0.3

κ∗

0 = 808 MPa ι = 0.1 c2 = 0.067 ξF = 0.25 E = 208 GPa

δ∗ = 14 Tm = 1 µs b1 = 0.58 n = 0.25 ρRef = 7850 kg/m3

β∗
= 9 m = 1 b2 = 1.73 χ = 0.9 cp = 455 J/kg K

5.3. Investigation of stability and convergence

Using the same initial-boundary value problem we can investigate the con-
vergence of the numerical method based on the finite difference discretization.
In this analysis we assume that the micro-damage evolution is investigated.
For a thin steel plate five different meshes have been assumed. In Fig. 12 dis-
tributions of the equivalent plastic deformation along the middle cross-section
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Fig. 12. Distributions of the equivalent plastic deformation along the middle cross-section
(X = a0/2) for various meshes.

(X = a0/2) for various meshes are presented. Similar results for temperature
are showed in Fig. 13. All curves are plotted in the initial configuration of the
specimen and for finite time of the process, tf = 800 µs. The deformed meshes
with various densities of nodes are presented in Fig. 14. Both analysed values
shown in Fig. 12 and 13 have strong increase in the middle region of the plate.
This suggests that in that region of the specimen the localization of plastic de-

Fig. 13. Distributions of the temperature along the middle cross-section (X = a0/2) for
various meshes.
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Fig. 14. Deformed meshes with various densities of nodes.

formation takes place. Based on the results for distributions of the equivalent
plastic deformation plotted in Fig. 12 we can observe that the finite width of
the localized region needs appropriate density for the finite difference mesh (in
considered case higher than 864 nodes).
The numerical procedure for the explicit finite difference scheme (4.36) has

been accomplished with various time step ∆t. The value of the time step has
been determined by using the stability criterion (4.38). In Fig. 15 the evolution
of the time step ∆t in the deformation process for the mesh N ×M = 3456
has been shown. For the considered deformation process the time step ∆t is
decreasing function of time.
The stability of the numerical procedure with constant time step can be

keeping in entire interval [0, tf ] provided we assume ∆t = 0.025 µs. Then as
a result for the considered deformation process we have 32 000 time steps. While
the analogical process with various time step ∆t is accomplished for 26 603 time
steps. This decreases very much time of computation. Very intense change of
time step ∆t observed from t = 0.6 ms in Fig. 15 is caused by the formation of
the shear band localization.
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Fig. 15. Evolution of the time step ∆t for a mesh with 3456 nodes.

The results obtained show that the satisfaction of the stability criterion
(4.38) leads to the convergence of the numerical procedure. We can conclude that
the assumed finite difference scheme (4.36) approximates the well posed initial–
boundary value problem (4.1). These results can be treated as the numerical
proof of the Lax–Richtmyer equivalence theorem formulated in Subsec. 4.8.

5.4. Investigation of localization and fracture phenomena

Let us consider again the adiabatic dynamic process for a thin steel plate
under condition of plane stress state which idealized the experimental observa-
tions of the localized fracture mode for tensile steel sheet specimens performed
by Chakrabarti and Spretnak [2], cf. Subsec. 5.2.
In Fig. 16 distributions of the equivalent plastic deformation in a thin plate

for chosen instants of the deformation process are presented.
The development of macrocracks in a thin plate has been shown in Figs. 17

and 18 and the deformed configuration for final fracture of a plate is presented
in Fig. 19.
The results presented permit to draw some conclusions concerning the adia-

batic dynamic deformation process for a thin steel plate considered. We observe
that two cross shear bands are developed in the center of the specimen. With
continued loading process, one of the instability bands becomes more predom-
inant and most of the plastic deformation is confirmed to this particular adia-
batic shear band. Fracture occurs along the boundary of this active instability
band. The symmetry breaking in the deformation process observed is only due
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Fig. 16. Distributions of the equivalent plastic strain in a thin plate for chosen instants
of the deformation process.
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Fig. 17. Distribution of the microdamage for chosen instants of the deformation process.
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Fig. 18. Development of macrocracks in a thin plate.

Fig. 19. Deformed configuration for final fracture of the plate.
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to very small imperfections generated by numerical procedure. The obtained
results are in accord with the experimental observations of Chakrabarti and
Spretnak [2], cf. Fig. 20.

a) b)

c) d) e)

Fig. 20. Initiation and gradual development of instability bands in 0.099 cm thick specimen.
One of the instability bands is getting predominant and much of the plastic deformation gets
confined in this active band, cf. b)–d); failure takes place by shearing through the instability
boundary of active instability band, cf. e) (after Chakrabarti and Spretnak [2]).
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6. Numerical example

6.1. Numerical solution of the initial boundary-value problem

We analyse the impact loaded plate with a pre-notched crack (Fig. 21).
The material of the plate is assumed as a AISI 4340 steel and is modeled as
elasto-viscoplastic with isotropic hardening-softening effects. We assume that
the material softening is caused by intrinsic microdamage mechanism and ther-
momechanical coupling effect. The height of the specimen is equal to 200 mm,
width is 100 mm and length of the initial crack (notch) is equal to 50 mm and
is situated unsymmetrically, i.e., 110 mm from the bottom. The plane stress
state is considered. As it is shown in Fig. 21, this specimen is loaded asym-
metrically to the notch axis. The initial boundary value problem is different
than those considered previously by Dornowski and Perzyna [13] and Li
et al. [27].

Fig. 21. The impact loaded plate with a prenotched crack.

To obtain the solution of the initial-boundary value problem formulated the
finite difference method for regularized elasto-viscoplastic model is used6). The

6)Numerical modelling of localized fracture phenomena in inelastic solids in dynamic load-
ing processes by means of finite element method has been presented by Łodygowski and
Perzyna [28].
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loading condition is modeled by the velocity of nodes lying on the edge section
with length equals to 50 mm, according to the relation

(6.1) V (t) = V0t/t0 for t ≤ t0 and V (t) = V0 for t > t0.

The rise time t0 is fixed at 1.0 µs and the speed impact V0 = 38 m/s. Initial
conditions of the problem are homogeneous. In the discussion of the numerical
results attention is focused mostly on the phenomenon of crack propagation.
The finite difference method with the explicit time integration scheme (con-

ditionally stable) is used. The stress state in a nodal environment is determined
by the iterative procedure of solving the dynamical yield condition with respect
to the norm of the plastic deformation rate tensor. The elaborated algorithm
satisfies the material objectivity principle with respect to diffeomorphism (any
motion). We assume a nonuniform mesh of nodes which contain 180 000 nodes.
The smallest mesh has the dimensions ∆χ1 = ∆χ2 = 40 µm, the time increment
∆t = 0.00356 µs.
Figure 22 shows the Mises stress contour in the failure region following the

impact. It can be clearly observed that the crack follow the path of the greatest
Mises stress (the white band). The crack path changes its direction and has
irregular (ragged) edges.

Fig. 22. Misses stress contours in the failure region.

In Fig. 23 the equivalent plastic strain distribution is displayed. It shows
that there is a strain concentration region right in the front of the pre-notch
tip. Along with the shear band progress the equivalent plastic strain inten-
sity decreases. It confirms that the shear band transforms into an opening
crack.
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Fig. 23. Evolution of the equivalent plastic deformation in the fracture region.

The evolution of temperature is shown in Fig. 24. Zones of increased tem-
perature correspond to the plastic zones. The maximum value of temperature
is ϑmax = 750 K. The effect of such a strong heating of the material results
from its mechanical properties, i.e. the high strength steel, Rm = 2000 MPa.
From Fig. 24 one may see that the computed temperature distribution is very
heterogeneous. The similar effect has been noticed in experimental observations
by Guduru, Rosakis and Ravichandran [21].

Fig. 24. Evolution of temperature in the fracture region.
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In Fig. 25 the evolution of microdamage is presented. It can be clearly ob-
served that the crack path (a black line) is very irregular and it widens steadily.

Fig. 25. Evolution of the microdamage and the crack path in the fracture region.

6.2. Discussion of the numerical results

From Fig. 22 we can observed that the macrocrack follows the path of the

maximum value of the Mises stress τM =

(
2

3
τ′ : τ′

)1/2

. The macrocrack path

changes its direction and has irregular edges. It results from the dispersive stress
wave interaction and reflection of the considered impact adiabatic process as well
as from the fact that the shear band transforms into an opening macrocrack,
cf. Glema, Łodygowski and Perzyna [17–19]. The dissipation effect due to
viscoplastic flow phenomena is observed in Fig. 23 as decay of the equivalent
viscoplastic deformation intensity along with the shear band progress.
From Fig. 24 one may see that the computed temperature distribution along

a propagating shear band is very heterogeneous and nonuniform. A similar
effect has been noticed in experimental observations by Guduru, Rosakis
and Ravichandran [21]. They consistently observed, in all experiments where
a propagating shear band was imaged, that the temperature distribution along
the shear band is highly non-uniform, with discrete regions of high temperature,
that look like “hot spots”. These hot spots are also seen to translate along the
length of the shear band. Figure 26 shows one such image where the hot spots
can be identified easily. This observation raises question about the spatial and
temporal nature of shear deformation inside a shear band. We suggest that the
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reason of this phenomenon is caused by interaction and reflection of dispersive
stress waves during observed impact adiabatic process.

Fig. 26. A thermal image of a shear band showing non-uniform temperature distribution
along the length of the band. After Guduru, Rosakis and Ravichandran [21].

In our recent paper Glema, Łodygowski and Perzyna [20] investigated
this problem numerically by using the finite element method and ABAQUS
system. We used regularized thermo-elasto-viscoplastic constitutive model with
one scalar internal state variable, namely equivalent inelastic deformation. We
considered the initial boundary value problem, cf. Fig. 27, which is idealization
of the process observed experimentally by Guduru, Rosakis and Ravichan-
dran [21], by assuming the velocity boundary condition and different material of
the specimen (HY-100 steel). To identify the material functions and constants we
used the experimental observation results obtained by Cho, Chi and Duffy [4],
cf. also Chi et al. [3]. The contour plots of equivalent inelastic deformation and
temperature obtained for time instants 40, 50, 60 µs are visualized in Fig. 28
for unsymmetric impact. To show better that we obtained non-uniform tem-
perature distribution along the shear band we present the magnification of the
result for the field of temperature at 60 µs in Fig. 29. The function of shear band
length and propagation velocity of it front were also calculated, cf. Fig. 30. The
advances of shear band length in experimental observations and in numerical
computations have similar find values and the functions presenting its evolution
are comparable. The comparison of the shear band propagation velocity reaches
the same conclusion.
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Fig. 27. Specimen geometry.

Fig. 28. Evolution of plastic equivalent deformation and temperature along the shear band
for unsymmetric impact (for 40, 50, 60 µs).

Rather the qualitative agreement is verified, than strict comparison of values.
The common sudden velocity drop, observed in experiment and simulations, is
specially worth to point it out.
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Fig. 29. Magnification of the results for the field of temperature at 60 µs for unsymmetric
impact.

Fig. 30. Propagation velocity of shear band front and shear band length as functions of
time, for unsymmetric impacts.

The remark concerning the temperature distribution goes in the same di-
rection. There is valuable to expose that numerical results show the particular
character of experimental ones, with occurrence of discrete regions of high tem-
perature, that are described as “hot spots”, cf. Fig. 29. Appearance of several
local extremes take place after the mentioned above drop of propagation ve-
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locity of the shear band tip. The evolution of described variables suggests the
step-wise nature of shear band propagation phenomena caused by the reflection
and interaction of dispersive stress waves during impact adiabatic process.
From the results presented in Figs. 22–25 one can easy observe that the lo-

calized fracture is preceded by the propagation of the shear band7). This is also
visible in Fig. 25, where the propagated localized region of critical microdamage
(it means the fracture front for ξ = ξF ) is preceded by the shear band along
which the microdamage is smaller than ξ = ξF . The evolution of the microdam-
age and the macrocrack path in the fracture region shown in Fig. 25 indicates
that the macrocrack path is very irregular and it widens steadily. It seems that
in some places of the macrocrack we can expect the branching effect as it has
been observed by Guduru, Rosakis and Ravichandran [21], cf. Fig. 8.
Of course, we have to take into account that during experimental observa-

tions they investigated real material (C300 steel), which can have some impuri-
ties, which help to generate the shear band bifurcation, while we assumed fully
homogeneous material of the plate for our numerical simulation.
We can conclude that the shear band branching can be generated by reflec-

tion and interaction of dispersive stress waves during adiabatic impact process
and by some real existing impurities of the investigated material.

7. Epilogue

The elaborated numerical algorithm satisfies the material objectivity princi-
ple with respect to diffeomorphism (any motion). The discretization parameters
are assumed in such a way that the problem of mesomechanics is solved properly.
A thin shear band region of finite width which undergoes significant deformation
and temperature rise has been determined. Its evolution until occurrence of final
fracture has been simulated. Shear band advance, as a function of time and the
evolution of the Mises stress, equivalent plastic deformation, temperature and
the macrocrack path in the fracture region have been determined. Qualitative
comparison of numerical results with experimental observation data has been
presented. Based on this comparison we can conclude that our numerical re-
sults are in accord with the experimental observations performed by Guduru,
Rosakis and Ravichandran [21]. Particularly, in our numerical simulation
the temperature evolution along the shear band region is very nonuniform and
the obtained macrocrack path is very irregular and is showing a tendency to
branching phenomenon similarly as have been suggested by experimental ob-
servations. The numerical results obtained have been proven the usefulness of

7)For a thorough discussion of numerical investigation of propagation of shear bands in
inelastic solids please consult Glema, Łodygowski and Perzyna [20].
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the thermo-elasto-viscoplastic theory in the numerical investigation of dynamic
shear band propagation and localized fracture phenomena.
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