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The free convective magnetohydrodynamics (MHD) flow of a non-Newtonian fluid due to
a semi-infinite vertical plate under the influence of radiation and viscous dissipation is inves-
tigated. The system of partial differential equations is derived and solved for the solutions of
velocity and temperature profiles along with the Nusselt number and skin friction by using the
perturbation technique. The related important dimensionless parameters of Eckert, Grashof,
and Prandtl numbers, magnetic field, radiation and heat source are discussed and shown in
graphs. Also, the Nusselt number and skin friction at the plate are obtained and presented
in the tabular forms. Finally, the corresponding result of Newtonian fluid is obtained by setting
viscoelastic parameter k1 = 0. It is worth mentioning that the obtained results coincide with
the previously published results.

Key words: radiation; magnetohydrodynamics (MHD); viscous dissipation; porous medium;
heat source and viscoelastic fluid; vertical plate.

Notations

B(x) – applied magnetic field,
B0 – constant,
C – concentration of the fluid,
Cf – skin friction coefficient,
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Cm – solid surface concentration,
Cp – specific heat at constant pressure,
cs – heat capacity of the fluid,

C∞ – concentration far away from the plate,
Ec – Eckert number,

f(η) – dimensionless stream function,
Gr – Grashof number,
H – dimensionless melting parameter,
k∗ – mean absorption coefficient,
k – thermal conductivity,

Kr – chemical reaction parameter,
M – magnetic field parameter,
Nu – Nusselt number,
Pr – Prandtl number,
Q – heat source parameter,
qr – radiative heat flux,
R – thermal radiation parameter,

Rex – Reynolds number,
Sh – Sherwood number,
T – temperature of the fluid,
T ′w – temperature of the fluid at the plate,
TS – solid surface temperature,
T∞ – temperature far away from the plate,
Uw – constant velocity,

U∞ f – ree steam velocity,
(uv) – velocity components,
(xy) – Cartesian coordinates.

Greek symbols

ε – moving parameter,
υ – kinematic viscosity,
α – thermal conductivity of the fluid,
ρ – density of the fluid,
σ – electrical conductivity of the fluid,
σ∗ – Stefan-Boltzmann constant,
η – similarity variable,
λ – latent heat of the fluid,
µ – coefficient of viscosity,
τw – wall shear stress,
ψ – stream function,

θ(η) – dimensionless temperature.

Subscripts

w – condition at the wall,
∞ – condition at the free stream.
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1. Introduction

The problem of free convective flow under the influence of the magnetic
field has attracted the interest of many researchers because of its application in
different engineering fields, including geophysics, environmental and technical
problems, in designing ventilating and heating of buildings, cooling of electronic
components in nuclear reactors, post-accident heat removal from pebble-bed
nuclear reactors, bed thermal storage, pollutant dispersion in aquifers, solar
power collector, and heat sink in the turbine blades. In addition, convective
flows driven by temperature differences of the bounding walls of channels are
important in industrial applications.

Variable suction of two-dimensional free convective flow past an infinite plate
due to viscous dissipation and heat sources was studied by Pop and Soundal-
gekar [1]. Singh and Cowling [2] analyzed the effect of magnetic field on the
free convective flow of electrically conducting fluids past a semi-infinite plate.
Sacheti et al. [3] used the Laplace transform technique for the solutions of
free convective flow over a moving vertical plate with magnetic field and heat
flux. Sattar and Alam [4] investigated the effects of a Hall current on the
magnetohydrodynamics (MHD) convective flow over a porous vertical plate by
using the Runge-Kutta-Merson integration method. Sahoo et al. [5] analyzed
the effects of suction/injection on the free convective flow over a porous vertical
plate with a magnetic field. The influence of the MHD convective flow of Jeffery
fluid due to ramped wall effects on velocity and temperature was examined by
Maqbool et al. [6]. Hamza [7] carried out the finite difference process for the
convective flow of an exothermic fluid in a vertical channel. The free convec-
tive flow of nanofluid through a vertical plate was presented by Nisa et al. [8]
and Hajizadeh et al. [9]. Shah et al. [10], Gholinia et al. [11], Wang and
Zhou [12], and Patel [13] studied the free convective flow mechanism.

The influence of thermal radiation and heat transfer convective flow is ob-
served in several manufacturing sectors, in the design of high precision equip-
ment as well as industrial and environmental applications. The applications are
found mostly in nuclear power plants, gas turbines, cooling chambers, fossil fuel
combustion, energy processes, astrophysical flows, propulsion devices for air-
craft, and solar power technology. Moreover, thermal radiation effects on the
free convection flow are important in the context of space technology and many
engineering applications, such as in advanced types of power plants for nuclear
rockets, re-entry vehicles, high-speed flights, and procedures involving high tem-
peratures.

The Rosseland diffusion approximation is valid for optically thick media. The
radiative heat fluxes approximated for an optically dense medium by the Rosse-
land diffusion approximation have been used extensively in many studies related
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to radiation. Chamkha [14] inspected a finite difference scheme for the bound-
ary layer flow caused by a semi-infinite vertical surface with radiation and heat
source/sink. Heat transfer of nanofluid flow past a porous vertical plate along
with a rotating system in the presence of heat source and radiation was im-
plemented by Satya Narayana et al. [15]. Their study intended to enhance
nanofluid particles with heat transfer. Cortell [16] implemented the second-
grade and Walter’s liquid-B fluids models on radiative nonlinear heat transfer
of a viscoelastic flow due to a stretching sheet with a magnetic field. Amir
Hamzah et al. [17] examined the radiation energy on squeezed magnetohydro-
dynamics (MHD) flow of nanofluids between two infinite parallel plates. They
concluded that there was no significant difference between the Runge-Kutta-
Fehlberg scheme with the shoot technique and the optimal homotopy asymp-
totic method. Fagbade et al. [18] studied the radiation effects on the convective
flow of viscoelastic fluid over a stretching surface with a magnetic field. They
solved the resultant equation using the spectral homotopy analysis method. The
research presented in [19, 20] studied radiation and heat source/sink in various
physical geometries of the flow.

Deformation and flow of materials require energy. This mechanical energy is
dissipated, i.e., during the flow, it is converted into the internal energy of the
material. Viscous dissipation is of interest in many applications. For example,
significant temperature rises were observed in polymer processing flows such as
injection moulding or extrusion at high rates. Aerodynamic heating in the thin
boundary layer around high-speed aircraft increases the temperature of the skin.
In a completely different application, the dissipation function is used to define
the viscosity of the dilute suspension. The influence of viscous dissipation is a sig-
nificant factor in the heat transfer process, especially for highly viscous flows,
even with moderate velocities. The energy equation is added by viscous dissi-
pation, which transforms the kinetic energy to internal energy due to viscosity
and hence increases the fluid motion. Therefore, the fluid motion is controlled
by a dimensionless parameter called the Eckert number.

Makanda et al. [21] studied the convective viscoelastic fluid caused by
a porous cone with viscous dissipation. They obtained the solutions by the
successive linearization method and found that the temperature changes lin-
early along the cone’s surface. The viscous dissipation effect on non-Newtonian
Casson fluid flow due to stretching sheet with variable thermal conductivity
was examined by Venkateswarlu and Satya Narayana [22]. They ob-
served that the heat and mass transfer rates are controlled by thermal con-
ductivity. Hayat et al. [23] presented the variable viscosity of non-Newtonian
Casson fluid flow through the stretching cylinder with viscous dissipation by
using the homotopic analysis. Radiation and viscous dissipation of nanofluid
flow with the magnetic field was inspected by Nayak [24]. Khan et al. [25],
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Hayat et al. [26], Ramesh [27] and Muhammad et al. [28] examined the vis-
cous dissipation and Joule heating of non-Newtonian fluid flows induced by
a magnetic field. Venkateswarlu et al. [29] evaluated the melting and viscous
dissipation effects on boundary layer flow over a moving surface with magnetic
field.

Viscoelastic fluid flow phenomena play an important role in various man-
ufacturing and engineering applications such as liquid crystals, carbon fibers,
crude oil, food and rheological processing. Viscous dissipation for a fluid with
suspended particles is equated to the viscous dissipation of a pure Newtonian
fluid, both being the same flow (same macroscopic velocity gradient). Ezzat and
Abd-Elaal [30] examined the viscoelastic boundary layer flow due to a porous
vertical surface. Their intention was to study the effects of cooling and heating
on viscoelastic fluids. The MHD viscoelastic fluid flow over a stretching sheet
with variable viscosity was researched by Prasad et al. [31]. The authors de-
rived the equations using the Runge-Kutta integration scheme together with
a shooting method and found that the skin friction decreased with a superior
magnetic field. Goyal and Bhargava [32] presented the numerical solution of
viscoelastic nanofluid flow due to a stretching sheet caused by slip and heat
source. The convective heat transfer of viscoelastic fluid flow due to a porous
permeable wedge with radiation and magnetic field was presented by Rashidi
et al. [33]. The authors found that the wedge angle enhances with heat transfer
to the fluid. Venkateswarlu and Satya Narayana [34] analyzed the vis-
coelastic fluid flow over a porous vertical surface with a magnetic field. They
derived the solutions by the regular perturbation method. The heat transfer of
viscoelastic fluid flow caused by a vertical stretching sheet with the magnetic
field was summarized by Li et al. [35]. They concluded that the characteristics
of viscoelastic flow and heat transfer are predicted by relaxation time. Bilal
et al. [36] implemented the two-dimensional viscoelastic fluids due to a stretch-
ing surface with the magnetic field. The authors used Λ = 0 and reduced the
formulation of the problem to classical Fourier’s problem. The stagnation point
flow of nanofluid due to a convectively heated stretching surface with the mag-
netic field was studied by Satya Narayana et al. [37]. Dessie and Kishan [39]
studied the variable viscosity and viscous dissipation effects on MHD flow over
a stretching sheet. Besthapu et al. [40] studied the convection flow of MHD
nanofluid over an exponentially stretching surface due to viscous dissipation by
using the finite difference scheme.

Motivated by the works mentioned above, this work aims to investigate
a Walter’s liquid-B fluid model for free convective flow due to a porous vertical
plate with constant suction and a heat source. The velocity and temperature
are presented graphically for various values of the parameters. Further, the skin
friction and the Nusselt number are studied via graphs and tables.
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The Walters’s liquid-B fluid model of constitutive equation is

(1.1) σik = σik − pgik and σik = 2η0e
ik − 2k0e

ik,

where p is the isotropic pressure, Vi is the velocity vector, σik is the stress tensor,
and gik is the metric tensor of a fixed coordinate system Xi.

The contravariant form of eik is given by

(1.2) eik = vmeikm − vkeimm − viemkm +
∂eik

∂t
.

The converted derivative of the deformation rate tensor eik is defined by

(1.3) 2eik = vi,k + vk,i.

The limiting viscosity η0 at the small rate of shear is given by

(1.4) η =

∞̂

0

N(τ) dτ and k0 =

∞̂

0

τN(τ) dτ,

where N(τ) is the relaxation spectrum. This idealized model is a valid approxi-
mation of Walters’s liquid-B model B taking very short memories into account
so that terms involving

(1.5)

∞̂

0

tnN(τ) dτ, n ≥ 2

are neglected.

2. Mathematical formulation

Consider a two-dimensional unsteady MHD flow of a viscoelastic fluid past
a semi-infinite tilted porous plate. Let α be the angle and which is made by the
vertical plate. The x-axis is taken along the plate and the y-axis is considered
normal to the plate. A uniform magnetic field of strength B0 is applied along
the y-axis normal to the plate. Assume that, initially, the fluid and plate are
at the same temperature in a stationary condition. At the time t > 0, the plate
is given an impulsive motion in the direction of flow against gravity with the
constant velocity U0 and the plate temperature varies linearly with time.

The equations of the flow can be written as:

∂v′

∂y′
= 0,(2.1)

∂u′

∂t′
+ V ′

∂u′

∂y′
=ν

∂2u′

∂y′2
− k0
ρ

{
∂3u′

∂y′2∂t′
+ V ′

∂3u′

∂y′3

}
+ gβ

(
T ′−T ′∞

)
−σβ

2
0

ρ
u′,(2.2)



RADIATIVE MHD WALTER’S LIQUID-B FLOW PAST. . . 379

(2.3)
∂T ′

∂t′
+ V ′

∂T ′

∂y′
= K

∂2T ′

∂y′2
− 1

ρCp

∂qr
∂y′

+
ν

Cp

{
∂u′

∂y′

}2

−
{

1

4

∂u′

∂y′
∂3u′

∂y′∂t′
+ V ′

∂u′

∂y′
∂2u′

∂y′2

}
− Q0

ρCp

(
T ′ − T ′∞

)
,

where ρ is the fluid density, ν is the kinematic viscosity, σ is a fluid electrical
conductivity, β is the thermal coefficient of expansion, g is the acceleration due
to gravity, k is thermal conductivity, T ′ is the temperature of the plate, T ′∞ is
the free stream temperature, qr is the radiative heat flux along the y-direction,
k0 is the viscoelastic parameter, Cp is the specific heat at constant pressure,
x′, y′ represent the distances along and perpendicular to the plate and t′ is the
time, and u′, v′ are the velocity components along x′ and y′, respectively.

The initial and boundary conditions are

(2.4)
u′ = 0, V ′ = −V0, T ′w = T ′w + ε(T ′w − T ′∞)eiω

′t′ at y′ = 0,

u′ →∞, T ′ → T ′∞ as y′ →∞,

where V0 is a constant of integration, and a negative sign indicates that the
suction is towards the plate.

The radiative heat flux qr under the Rosseland approximation, is

(2.5) qr = −4σ1∂T
′4

3k1∂y′
,

where k1 is the mean absorption coefficient and σ1 is the Stefan-Boltzmann
constant.

Assume that the temperature difference within the flow is so small that T
′4

can be expressed as a linear function of T ′. This is obtained by expanding T
′4 in

a Taylor series about T ′∞ and neglecting the higher-order terms, so we obtain:

(2.6) T
′4 ∼= 4T

′3
∞T
′ − 3T

′4
∞.

Using Eqs (2.5) and (2.6) in Eq. (2.3), the equation of energy becomes

(2.7)
∂T ′

∂t′
+ V ′

∂T ′

∂y′
= K

∂2T ′

∂y′2
+

16σ1T
′3
∞

3k1

∂2T ′

∂y′2
+

ν

Cp

(
∂u

∂y

)2

− k0
{

1

4

∂u′

∂y′
∂3u′

∂y′∂t′
+ V ′

∂u′

∂y′
∂2u′

∂y′2

}
− Q0

ρCp

(
T ′ − T ′∞

)
.
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The suitable non-dimensional variables are defined as:

(2.8)

y =
y′V0
ν
, t =

t′V 2
0

4ν
, φ =

Q0ν

ρCpV 2
0

,

T =
T ′ − T ′∞
T ′w − T ′∞

, k1 =
k0V

2
0

ρν2
, Ec =

V 2
0

Cp (T ′w − T ′∞)
,

Pr =
ν

K
, u =

u′

V0
, K =

k0
ρCp

,

N =
kk1

4σ1T ′3∞
, M =

σB2
0ν

ρV 2
0

, Gr =
gβν(T ′w − T ′∞)

V 2
0

.

Using Eq. (2.8), we get the following non-dimensional equations:

(2.9)
1

4

∂u

∂t
− ∂u

∂y
=
∂2u

∂y2
− k1

{
1

4

∂3u

∂y2∂t
− ∂3u

∂y3

}
+ GrT −Mu,

(2.10)
1

4
Pr

∂T

∂t
− Pr

∂T

∂y
= β1

∂2T

∂y2
− Pr Ec

{
∂u

∂y

}2

− k1 Pr

{
1

4

∂u

∂y

∂2u

∂y∂t
− ∂u

∂y

∂2u

∂y2

}
− 1

4
ϕPrT,

where β1 =
(
3N+Pr
3N ()

)
, Ec is the Eckert number, Gr is the Grashof number,

M is the magnetic number, Pr is the Prandtl number, ϕ is the heat source
parameter, k1 is the viscoelastic parameter, N is the radiation parameter, and
K is the thermal conductivity.

The modified boundary conditions are

(2.11)
u = 0; T = 1 + εeiωt at y = 0,

u→ 0; T → 0 as y →∞.

For solving Eqs (2.9) and (2.10), we can use the perturbation technique
and the parameter ε � 1, the temperature and velocity field in the region are
considered as:

(2.12)
u(y, t) = εeiωtu1(y) + u0(y),

T (y, t) = εeiωtT1(y) + T0(y).
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On substituting Eqs (2.12) in Eqs (2.9) and (2.10) and equating the like
powers of ε, we obtain:

k1u
′′′
0 + u′′0 + u′0 −Mu0 = −GrT0,(2.13)

k1

{
u′′′1 −

iω

4
u′′1

}
+ u′′1 + u′1 −

{
iω

4
+M

}
u1 = GrT1,(2.14)

(2.15) β1T
′′
0 + PrT ′0 −

1

4
PrφT0 = −Ec Pr

(
u′0
)2 − k1 Pru′0u

′′
0,

(2.16) β1T
′′
1 + PrT ′1 −

1

4
Pr (ϕ− iω)T1 = −2Ec Pru′0u

′
1

+ k1 Pr

{
iω

4
u′0u

′
1 − u′1u′′0 − u′0u′′

}
,

where the prime denotes the differentiation with respect to y.
The corresponding boundary conditions are

(2.17)
u0 = 0, u1 = 0, T0 = 1, T1 = 1 at y = 0,

u0 → 0, u1 → 0, T0 → 0, T1 → 0 as y →∞.

In order to solve Eqs (2.13) to (2.16), we use the multi-parameter perturba-
tion technique and assume Ec� 1, thus we write

(2.18)
u0 = u00(y) + Ecu01(y), T0 = T00(y) + EcT01(y),

u1 = u10(y) + Ecu11(y), T1 = T10(y) + EcT11(y).

Using Eqs (2.18) in Eqs (2.13) to (2.16) and equating the coefficient of like
powers of Ec we get the following sets of differential equations:

k1u
′′′
00 + u′′00 + u′00 −Mu00 = −GrT00,(2.19)

k1u
′′′
01 + u′′01 + u′01 −Mu01 = −GrT01,(2.20)

k1

{
u′′′10 −

iω

4
u′′10

}
+ u′′10 + u′10 −

{
M +

iω

4

}
u10 = −GrT10,(2.21)

k1

{
u′′′11 −

iω

4
u′′11

}
+ u′′11 + u′11 −

{
M +

iω

4

}
u11 = −GrT11,(2.22)

β1T
′′
00 + PrT ′00 −

1

4
PrφT00 = 0,(2.23)
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β1T
′′
01 + PrT ′01 −

1

4
PrφT00 = −Pr

(
u′00
)2 − k1 Pru′00u

′′
00,(2.24)

β1T
′′
10 + PrT ′10 −

1

4
Pr (φ− iω)T10 = 0,(2.25)

(2.26) β1T
′′
11 + PrT ′11 −

Pr (ϕ− iω)

4
T11 = −2 Pru′00u

′
10

+ k1 Pr

{
iω

4
u′00u

′
10 − u′10u′′00 − u′00u′′10

}
.

The equivalent boundary conditions are

(2.27)

u00 = 0, u01 = 0, u10 = 0, u11 = 0

T00 = 1, T01 = 0, T10 = 1, T11 = 0

}
at y = 0,

u00 → 0, u01 → 0, u10 → 0, u11 → 0

T00 → 0, T01 → 0, T10 → 0, T11 → 0

}
as y →∞.

To solve Eqs (2.19) to (2.26), we consider very small values of k1 so that the
velocity and the temperature field can be expressed as:

(2.28)

u00 = u000(y) + k1u001(y) + o(k21), T00 = T000(y) + k1T001(y) + o(k21),

u01 = u010(y) + k1u011(y) + o(k21), T10 = T100(y) + k1T101(y) + o(k21),

u10 = u100(y) + k1u101(y) + o(k21), T01 = T010(y) + k1T011(y) + o(k21),

u11 = u110(y) + k1u111(y) + o(k21), T11 = T110(y) + k1T111(y) + o(k21).

Substituting Eqs (2.28) into Eqs (2.19) to (2.26), we obtain the following
sets of ordinary differential equations:

u′′000 + u′000 −Mu000 = −GrT000,(2.29)

u′′001 + u′00 + u′001 −Mu001 = u′′′000 −GrT001,(2.30)

u′′010 + u′010 −Mu010 = −GrT010,(2.31)

u′′011 + u′011 −Mu011 = −u′′′0110 −GrT011,(2.32)

u′′100 + u′100 −
{
M +

iω

4

}
u100 = GrT100,(2.33)

u′′101 + u′101 −
{
M +

iω

4

}
u101 = u′′′100 +

iω

4
u′′100 −GrT101,(2.34)
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u′′110 + u′110 −
{
M +

iω

4

}
u110 = GrT110,(2.35)

u′′111 + u′111 −
{
M +

iω

4

}
u111 = −u′′′110 +

iω

4
u′′110 −GrT111,(2.36)

β1T
′′
000 + PrT ′000 −

1

4
PrφT000 = 0,(2.37)

β1T
′′
001 + PrT ′001 −

1

4
PrφT001 = 0,(2.38)

β1T
′′
010 + PrT ′010 −

1

4
PrφT010 = −Pr

(
u′000

)2
,(2.39)

β1T
′′
011 + PrT ′011 −

1

4
PrφT011 = −2 Pru′000u

′
001 − Pru′000u

′′
000,(2.40)

β1T
′′
100 + PrT ′100 −

1

4
Pr (φ− iω)T100 = 0,(2.41)

β1T
′′
101 + PrT ′101 −

1

4
Pr (φ− iω)T101 = 0,(2.42)

β1T
′′
110 + PrT ′110 −

1

4
Pr (φ− iω)T110 = −2 Pru′000u

′
100,(2.43)

β1T
′′
111 + PrT ′111 −

1

4
Pr(ϕ− iω)T111 = −2 Pr(u′000u

′
101 + u′100u

′
001)(2.44)

+

{
iω

4
u′000u

′
100 − u′100u′′000 − u′000u′′100

}
.

The modified boundary conditions are as follows:

(2.45)

u000 = 0, u001 = 0, u010 = 0, u011 = 0

u100 = 0, u101 = 0, u110 = 0, u111 = 0

T000 = 1, T001 = 0, T100 = 1, T101 = 0

T010 = 1, T011 = 0, T110 = 1, T111 = 0


at y = 0,

u000 → 0, u001 → 0, u010 → 0, u011 → 0

u100 → 0, u101 → 0, u110 → 0, u111 → 0

T000 → 0, T001 → 0, T100 → 0, T101 → 0

T010 → 0, T011 → 0, T110 → 0, T111 → 0

 as y →∞.
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Solving the differential Eqs (2.29) to (2.44), subject to the boundary condi-
tions (2.45), we get the solutions for velocity and temperature

u000 = A1e
m2y +A2e

m6y,

u001 = A3e
m6y +A4e

m2y +A5e
m8y,

u010 = A6e
m10y +A7e

2m6y +A8e
2m2y +A9e

(m2+m6)y +A10e
m12y,

u011 = A11e
m12y +A12e

m10y +A13e
2m6y +A14e

2m2y +A15e
(m2+m6)y

+A16e
m14y +A17e

(m2+m8)yA18e
(m2+m6)y +A19e

2m2y +A20e
(m8+m6)y

+A21e
2m6y +A22e

(m2+m6)y +A23e
2m2y +A24e

(m2+m6)y

+A25e
(m2+m6)y +A26e

2m6y +A27e
m16y,

u100 = Z1e
m1y,

u101 = Z2e
m1y + Z3e

m1y,

u110 = A28e
(m1+m2)y +A29e

(m1+m2)y +A30e
m7y +A31e

m9y,

u111 = A32e
m9y +A33e

(m1+m2)y +A34e
(m1+m2)y +A35e

m7y +A36e
m9y

+A37e
(m1+m2)y +A38e

(m1+m2)y +A39e
m7y +A40e

m9y +A41e
(m1+m2)y

+A42e
(m1+m2)y +A43e

(m1+m2)y +A44e
(m1+m2)y +A45e

(m1+m6)y

+A46e
(m1+m2)y +A47e

(m1+m8)y +A48e
(m1+m2)y +A49e

(m1+m6)y

+A50e
(m1+m2)y +A51e

(m1+m6)y +A52e
(m1+m6)y +A53e

m9y,

T000 = em2y,

T001 = 0,

T010 = B1e
2m6y +B2e

2m2y +B3e
(m2+m6)y +B4e

m10y,

T011 = B5e
(m2+m8)y +B6e

(m2+m6)y +B7e
2m2y +B8e

(m6+m8)y +B9e
2m6y

+B10e
(m2+m6)y +B11e

2m2y +B12e
(m2+m6)y +B13e

(m2+m6)y

+B14e
2m6y +B15e

m14y,

T100 = em1y,

T101 = 0,

T110 = B16e
(m1+m2)y +B17e

(m1+m2)y +B18e
m7y,
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T111 = B19e
(m1+m2)y +B20e

(m1+m2)y +B21e
(m1+m2)y +B22e

(m1+m2)y

+B23e
(m1+m6)y +B24e

(m1+m2)y +B25e
(m1+m8)y +B26e

(m1+m2)y

+B27e
(m1+m6)y +B28e

(m1+m2)y +B29e
(m1+m6)y +B30e

(m1+m2)y

+B31e
(m2+m6)y +B32e

m9y.

In view of the above, Eq. (2.28) then becomes

u0 = A1e
m2y +A2e

m6y + k1 (A3e
m6y +A4e

m2y +A5e
m8y)

+ Ec
[
A6e

m10y +A7e
2m6y +A8e

2m2y +A9e
(m2+m6)y +A10e

m12y

+ k1 {A11e
m12y +A12e

m10y +A13e
2m6y +A14e

2m2y +A15e
(m2+m6)y

+A16e
m14y +A17e

(m2+m8)y +A18e
(m2+m6)y +A19e

2m2y +A20e
(m8+m6)y

+A21e
2m6y +A22e

(m2+m6)y +A23e
2m2y +A24e

(m2+m6)y +A25e
(m2+m6)y

+A26e
2m6y +A27e

m16y
}]

,

T0 = em2y+Ec
[
B1e

2m6y +B2e
2m2y +B3e

(m2+m6)y +B4e
m10y+k1

{
B5e

(m2+m8)y

+B6e
(m2+m6)y +B7e

2m2y +B8e
(m6+m8)y +B9e

2m6y +B10e
(m2+m6)y

+B11e
2m2y +B12e

(m2+m6)y +B13e
(m2+m6)y +B14e

2m6y +B15e
m14y

}]
,

u1 = C1e
m1y + k1 (C2e

m1y + C3e
m1y) + Ec

{
A28e

(m1+m2)y +A29e
(m1+m2)y

+A30e
m7y +A31e

m9y + k1

(
A32e

m9y +A33e
(m1+m2)y +A34e

(m1+m2)y

+A35e
m7y +A36e

m9y +A37e
(m1+m2)y + +A38e

(m1+m2)y +A39e
m7y

+A40e
m9y +A41e

(m1+m2)y +A42e
(m1+m2)y +A43e

(m1+m2)y

+A44e
(m1+m2)y +A45e

(m1+m6)y +A46e
(m1+m2)y +A47e

(m1+m8)y

+A48e
(m1+m2)y +A49e

(m1+m6)y +A50e
(m1+m2)y +A51e

(m1+m6)y

+A52e
(m1+m6)y +A53e

m9y
)}
,

T1 = em1y + Ec
{
B16e

(m1+m2)y +B17e
(m1+m2)y +B18e

m7y + k1

(
B19e

(m1+m2)y

+B20e
(m1+m2)y +B21e

(m1+m2)y +B22e
(m1+m2)y +B23e

(m1+m6)y

+B24e
(m1+m2)y +B25e

(m1+m8)y +B26e
(m1+m2)y +B27e

(m1+m6)y

+B28e
(m1+m2)y +B29e

(m1+m6)y +B30e
(m1+m2)y

+B31e
(m2+m6)y +B32e

m9y
}
.
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In view of the above, Eq. (2.12) becomes

u(y, t) = εeiωt
{
C1e

m1y + k1 (C2e
m1y + C3e

m1y) + Ec
{
A28e

(m1+m2)y

+A29e
(m1+m2)y +A30e

m7y +A31e
m9y + k1

(
A32e

m9y +A33e
(m1+m2)y

+A34e
(m1+m2)y +A35e

m7y +A36e
m9y +A37e

(m1+m2)y +A38e
(m1+m2)y

+A39e
m7y +A40e

m9y +A41e
(m1+m2)y +A42e

(m1+m2)y +A43e
(m1+m2)y

+A44e
(m1+m2)y +A45e

(m1+m6)y +A46e
(m1+m2)y +A47e

(m1+m8)y

+A48e
(m1+m2)y +A49e

(m1+m6)y +A50e
(m1+m2)y +A51e

(m1+m6)y

+A52e
(m1+m6)y +A53e

m9y
)}}

+
{
A1e

m2y +A2e
m6y + k1

(
A3e

m6y

+A4e
m2y +A5e

m8y
)

+ Ec
[
A6e

m10y +A7e
2m6y +A8e

2m2y +A9e
(m2+m6)y

+A10e
m12y + k1

{
A11e

m12y +A12e
m10y +A13e

2m6y +A14e
2m2y

+A15e
(m2+m6)y +A16e

m14y +A17e
(m2+m8)y +A18e

(m2+m6)y +A19e
2m2y

+A20e
(m8+m6)y +A21e

2m6y +A22e
(m2+m6)y +A23e

2m2y +A24e
(m2+m6)y

+A25e
(m2+m6)y +A26e

2m6y +A27e
m16y

}]}
,

T (y, t) = εeiωt
{
em1y + Ec

{
B16e

(m1+m2)y +B17e
(m1+m2)y +B18e

m7y

+ k1

(
B19e

(m1+m2)y +B20e
(m1+m2)y +B21e

(m1+m2)y +B22e
(m1+m2)y

+B23e
(m1+m6)y +B24e

(m1+m2)y +B25e
(m1+m8)y +B26e

(m1+m2)y

+B27e
(m1+m6)y +B28e

(m1+m2)y +B29e
(m1+m6)y +B30e

(m1+m2)y

+B31e
(m2+m6)y +B32e

m9y
)}}

+
{
em2y + Ec

[
B1e

2m6y +B2e
2m2y

+B3e
(m2+m6)y +B4e

m10y + k1

{
B5e

(m2+m8)y +B6e
(m2+m6)y +B7e

2m2y

+B8e
(m6+m8)y +B9e

2m6y +B10e
(m2+m6)y +B11e

2m2y +B12e
(m2+m6)y

+B13e
(m2+m6)y +B14e

2m6y +B15e
m14y

}]}
.
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The skin friction coefficient Cf is given as:

Cf =

(
∂u

∂y

)
y=0

= εeiωt
{
C1m1 + k1(C2 + C3)m1 + Ec

{
(A28 +A29)(m1 +m2)

+A30m7 +A31m9 + k1

(
(A33 +A34 +A37 +A38 +A41 +A42 +A43 +A44

+A46 +A48 +A50)(m1 +m2) + (A35 +A37)m7 + (A32 +A36 +A39 +A40

+A53)m9 + (A45 +A49 +A51 +A52)(m1 +m6) +A47(m1 +m8)
)}}

+
{
A1m2 +A2m6 + k1(A3m6 +A4m2 +A5m8) + Ec

[
A6m10 + 2A7m6 + 2A8m2

+A9(m2 +m6) +A10m12 + k1

{
A11m12 +A12m10 + 2(A13 +A21 +A26)m6

+ 2(A14 +A19 +A23)m2 + (A15 +A18 +A22 +A24 +A25)(m2 +m6)

+A16m14 +A17(m2 +m8) +A20(m6 +m8) +A27m16

}]}
.

The heat transfer rate in terms of Nusselt number is given as:

Nu =

(
∂T

∂y

)
y=0

= εeiωt
{
m1 + Ec

{
(B16 +B17)(m1 +m2) +B18m7

+ k1

(
(B19 +B20 +B21 +B22 +B24 +B26 +B28 +B30)(m1 +m2)

+ (B23 +B27 +B29)(m1 +m6) +B25 (m1 +m8) +B31 (m2 +m6) +B32m9

)}}
+
{
m2+Ec

[
2B1m6+2B2m2+B3(m2+m6)+B4m10+k1

{
(B6+B10+B12+B13)

(m2 +m6) +B5(m2 +m8) + 2(B7 +B11)m2 +B8(m6 +m8)

+ 2(B9 +B14)m6 +B15m14

}]}
.

3. Results and discussion

The purpose of this study is to present the effects of non-Newtonian parame-
ter on the unsteady MHD flow. Additionally, heat transfer characteristics as the
effects of other parameters are discussed. Figures 1 to 6 represent the velo-
city (u) and temperature (T ) profiles against y for various values of the Eckert
number Ec, the Grashof number Gr, the Hartmann number M , the radiation
parameter N , the heat source parameter Q, and the Prandtl number Pr for both
the Newtonian and non-Newtonian cases. Further, the non-Newtonian effect is
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exhibited through the non-dimensional parameter k1. The corresponding result
of Newtonian fluid is obtained by setting k1 = 0. It is worth mentioning that
these results coincide with the results obtained by Sahoo et al. [5] (Tables 1
and 2 depict the magnetic field values for the shear stress and the radiation pa-
rameter for the heat transfer rate. It is clear that the shear stress increases while
the heat transfer rate decreases with the increasing value of the non-Newtonian
parameter k1 compared with the Newtonian fluid for different values).

Table 1. The shear stress for different values of magnetic field.

M
k1 = 0 k1 = 0.02 k1 = 0.04

Choudhury,
Dey [38]

Present
study

Choudhury,
Dey [38]

Present
study

Choudhury,
Dey [38]

Present
study

0.5 4.5312 4.86568 5.4147 5.53129 7.0162 7.98745

1.0 5.9017 5.45638 6.6149 6.90173 8.4562 8.56439

1.5 6.5601 6.89656 7.7206 8.16016 9.8214 9.12568

2.0 7.0548 7.15436 8.8283 9.05485 10.2073 10.3567

Table 2. The heat transfer rate for different values of radiation.

N
k1 = 0 k1 = 0.02 k1 = 0.04

Choudhury,
Dey [38]

Present
study

Choudhury,
Dey [38]

Present
study

Choudhury,
Dey [38]

Present
study

0.2 3.5312 3.534257 5.8147 5.813875 7.0162 7.115842

0.4 2.9017 2.917746 4.5149 4.525890 6.4562 6.467392

0.6 2.5601 2.560834 3.8206 3.821743 5.8214 5.835914

0.8 2.0548 2.055962 3.2283 3.235972 5.2073 5.216073

The Eckert number Ec expresses the relationship between the kinetic energy
in the flow and the enthalpy. It embodies the conversion of kinetic energy into
internal energy by work done against the viscous fluid stress. Figure 1 illustrate
the effect of Ec (i.e., viscous dissipation effect) on the velocity and temperature
profiles, respectively. It is clear that both the fluid profiles u and T increase
with variations of Ec. The Eckert number expresses the relation between the
kinetic energy in the flow and the enthalpy. It embodies the conversion of kinetic
energy into internal energy by work done against viscous fluid stresses. This is
caused by the increase in the kinetic energy caused by viscous dissipation in the
boundary layer, which leads to a small temperature gradient. Therefore, the fluid
temperature increases the thermal buoyancy effects, which induces more flow
along the path. Further, Ec implies that the kinetic energy is large, resulting in
an increased vibration of the fluid leading to an increased collision of the fluid
molecules and increases the dissipation of heat in the boundary layer region
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a) b)

Fig. 1. Velocity (a) and temperature (b) profiles for different values of Ec.

hence an increase in T is observed. Interestingly, it also noticed that the thermal
boundary layer thickness is increased in the presence of viscous dissipation.

Figure 2 shows that the velocity rises steeply near the vertical wall as Gr is
increased. The fluid moving away from the wall, across-flow in the velocity is in-
duced and turns to zero at a slower rate for small Gr. Hence, the velocity and
thermal boundary reduce as Gr increases, causing the fluid temperature to re-
duce at every point other than the wall.

a) b)

Fig. 2. Velocity (a) and temperature (b) profiles for different values of Gr.

The effect of the magnetic field parameter M on the velocity and temper-
ature profiles for both the Newtonian and non-Newtonian cases is shown in
Fig. 3. It is observed that in both the cases (i.e., k1 = 0 and k1 6= 0), the fluid
velocity and temperature increased with increasing of M . Thus, the presence
of a Hartmann number generates a Lorentz force, which diminishes the velocity
field, while it enhances the temperature of the fluid. Moreover, from the physical
point of view, the Lorentz force increases and an increase of the magnetic field
becomes stronger, which ultimately slows down the fluid flow and increases the
temperature.
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a) b)

Fig. 3. Velocity (a) and temperature (b) profiles for different values of M .

Figure 4 shows the velocity and temperature profiles for different values of N .
Increasing the radiation parameter N produces significant decreases in the ther-
mal condition of the fluid temperature, which consequently induces more fluid
in the boundary layer through buoyancy effect causing the velocity in the fluid to
decrease. Further, both the hydromagnetic boundary layer and thermal boun-
dary layer thicknesses were observed to decrease as a result of increasing N .

a) b)

Fig. 4. Velocity (a) and temperature (b) profiles for different values of N .

The Prandtl number Pr is defined as the ratio of momentum diffusivity to
thermal diffusivity. Figure 5 shows the behavior of velocity and temperature for
different values of Pr. It is observed in Fig. 5a that an increase in the Pr means
a slow rate of thermal diffusion for the non-Newtonian fluid, but the opposite
effect is observed for the Newtonian fluid. Further, it is observed that an increase
in Pr causes a decrease of the thermal boundary layer thickness. The reason is
that smaller values of Pr are equivalent to an increase in the thermal conductivity
of the fluid. Therefore, heat is able to diffuse away from the heated surface
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a) b)

Fig. 5. Velocity (a) and temperature (b) profiles for different values of Pr.

more rapidly for higher values of Pr. In heat transfer problems, the Prandtl
number controls the relative thickening of momentum and thermal boundary
layers. When the Prandtl number is small, it means that heat diffuses quickly
compared to the velocity (momentum), which means that for liquid metals, the
thickness of the thermal boundary layer is much bigger than the momentum
boundary layer. Hence, the Prandtl number can be used to increase the rate of
cooling in conducting flows.

The influence of heat source parameter Q on the fluid velocity and tempera-
ture profiles is displayed, respectively, in Figs. 6a and 6b. The fluid velocity rises
with increasing values of Q. Further, it is noted for these plots that the temper-
ature of the fluid decreases with an increase in Q. It is also observed that the
magnitude in the case Q is larger compared with the case when the heat source
is present in the system. Therefore, we can conclude that the heat enhancement
phenomenon can be controlled very efficiently by adding the heat source into
the system. This result is very significant for the flow in which the heat transfer
is given an utmost importance.

a) b)

Fig. 6. Velocity (a) and temperature (b) profiles for different values of Q.
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4. Conclusions

The presented analysis produced the following results for the velocity and
temperature profiles of the flow field:

(i) Velocity rises steeply near the vertical wall as the Grashof number is in-
creased.

(ii) For both the Newtonian and non-Newtonian cases, the fluid profiles of
velocity (u) and (T ) increase with increasing Prandtl and Eckert numbers
and magnetic field parameter.

(iii) The fluid velocity increases while the fluid temperature decreases with the
increase of the heat source parameter.

(iv) Increasing the radiation parameter produces significant decreases in the ve-
locity and thermal condition of the fluid temperature.

Highlights
• Energy conversion is an application for thermal systems.
• Thermal energy enhancement is observed for various values of relevant

parameters.
• The results are examined and compared with other studies.

Appendix

m1 = −
Pr +

√
Pr2 +β1 Pr (φ− iω)

2β1
, m2 = −Pr +

√
Pr2 +β1 Prφ

2β1
,

m3 = −
(

1 +
√

1 + 4M + iω
)
/2, m4 = −Pr +

√
Pr2 +β1 Prφ

2β1
,

m5 = −
Pr +

√
Pr2 +β1 Pr (φ− iω)

2β1
, m6 = −(1 +

√
1 + 4M)/2,

m7 = −
Pr +

√
Pr2 +β1 Pr (φ− iω)

2β1
, m8 = −(1 +

√
1 + 4M)/2,

m9 = −
Pr +

√
Pr2 +β1 Pr (φ− iω)

2β1
, m10 = −Pr +

√
Pr2 +β1 Prφ

2β1
,

m11 = −
(

1 +
√

1 + 4M + iω
)
/2, m12 = −(1 +

√
1 + 4M)/2,



RADIATIVE MHD WALTER’S LIQUID-B FLOW PAST. . . 393

m14 = −Pr +
√

Pr2 +β1 Prφ

2β1
, m16 = −(1 +

√
1 + 4M)/2,

A1 =
−Gr

m2
2 +m2 −M

, A2 = −A1,

A3 =
−A2m

3
6

m2
6 +m6 −M

, A4 =
−A1m

3
2

m2
2 +m2 −M

,

A5 = −(A3 +A4), A6 =
−GrB4

m2
10 −m10 −M

,

A7 = − GrB1

4m2
6 + 2m6 −M

, A8 =
−GrB2

4m2
2 + 2m2 −M

,

A9 =
−GrB3

(m2 +m6)2 +m2 +m6 −M
, A10 = − (A6 +A7 +A8 +A9) ,

A11 =
−A10m

3
12

m2
12 +m12 −M

, A12 =
−A6m

3
10

m2
10 +m10 −M

,

A13 =
−8A7m

3
6

4m2
6 + 2m6 −M

, A14 =
−8A8m

3
2

4m2
2 + 2m2 −M

,

A15 =
−A9(m2 +m6)

3

(m2 +m6)2 +m2 +m6 −M
, A16 =

−B15

m2
14 +m14 −M

,

A17 =
−B5

(m2 +m8)2 +m2 +m8 −M
, A18 =

−B6

(m2 +m6)2 +m2 +m6 −M
,

A19 =
−B7

4m2
2 + 2m2 −M

, A20 =
−B8

(m6 +m8)2 +m6 +m8 −M
,

A21 =
−B9

4m2
6 + 2m6 −M

, A22 =
−B10

(m2 +m6)2 +m2 +m6 −M
,

A23 =
−B11

4m2
2 + 2m2 −M

, A24 =
−B12

(m2 +m6)2 +m2 +m6 −M
,

A25 =
−B13

(m2 +m6)2 +m2 +m6 −M
, A26 =

−B14

4m2
6 + 2m6 −M

,

A27 = −(A11 +A12 +A13 +A14 +A15 +A16 +A17 +A18 +A19 +A20

+A21 +A22 +A23 +A24 +A25 +A26),
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A28 =
GrB16

(m1 +m2)
2 + (m1 +m2)−

(
M + iω

4

) ,
A29 =

GrB17

(m1 +m2)
2 + (m1 +m2)−

(
M + iω

4

) ,
A30 =

GrB18

m2
7 +m7 −

(
M + iω

4

) ,
A31 = − (A28 +A29 +A30) ,

A32 = − A31m
3
9

m2
9 +m9 −

(
M + iω

4

) ,
A33 = − A28 (m1 +m2)

3

(m1 +m2)
2 + (m1 +m2)−

(
M + iω

4

) ,
A34 = − A29 (m1 +m2)

3

(m1 +m2)
2 + (m1 +m2)−

(
M + iω

4

) ,
A35 = − A30m

3
7

m2
7 +m7 −

(
M + iω

4

) ,
A36 =

1

4

iωA31m
2
9

m2
9 +m9 −

(
M + iω

4

) ,
A37 =

1

4

iωA28 (m1 +m2)
2

(m1 +m2)
2 + (m1 +m2)−

(
M + iω

4

) ,
A38 =

1

4

iωA29 (m1 +m2)
2

(m1 +m2)
2 + (m1 +m2)−

(
M + iω

4

) ,
A39 =

1

4

iωA30m
2
1

m2
7 +m7 −

(
M + iω

4

) ,
A40 = − GrB31

m2
9 +m9 −

(
M + iω

4

) ,
A41 = − GrB19

(m1 +m2)
2 + (m1 +m2)−

(
M + iω

4

) ,
A42 = − Gr B20

(m1 +m2)
2 + (m1 +m2)−

(
M + iω

4

) ,
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A43 = − GrB21

(m1 +m2)
2 + (m1 +m2)−

(
M + iω

4

) ,
A44 = − GrB22

(m1 +m2)
2 + (m1 +m2)−

(
M + iω

4

) ,
A45 = − GrB23

(m1 +m6)
2 + (m1 +m6)−

(
M + iω

4

) ,
A46 = − GrB24

(m1 +m2)
2 + (m1 +m2)−

(
M + iω

4

) ,
A47 = − GrB25

(m1 +m8)
2 + (m1 +m8)−

(
M + iω

4

) ,
A48 = − GrB26

(m1 +m2)
2 + (m1 +m2)−

(
M + iω

4

) ,
A49 = − GrB27

(m1 +m6)
2 + (m1 +m6)−

(
M + iω

4

) ,
A50 = − GrB28

(m1 +m2)
2 + (m1 +m2)−

(
M + iω

4

) ,
A51 = − GrB29

(m1 +m6)
2 + (m1 +m6)−

(
M + iω

4

) ,
A52 = − GrB30

(m1 +m2)
2 + (m1 +m2)−

(
M + iω

4

) ,
A53 = − GrB31

(m2 +m6)
2 + (m2 +m6)−

(
M + iω

4

) ,
A54 = − GrB32

m2
9 +m9 −

(
M + iω

4

) ,
A55 = −(A32 +A33 +A34 +A35 +A36 +A37 +A38 +A39 +A40 +A41 +A42 +A43

+A44 +A45 +A46 +A47 +A48 +A49 +A50 +A51 +A52 +A53 +A54),

B1 =
−4A2

2 Prm3
6

16β1m2
6 + 8 Prm6 − Prϕ

,

B2 =
−4A2

1 Prm3
2

16β1m2
2 + 8 Prm2 − Prϕ

,
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B3 =
−8A1A2 Prm2m6

4β1(m2 +m6)2 + 8 Pr(m2 +m6)− Prϕ
,

B4 = − (B1 +B2 +B3) ,

B5 =
−8A1A5 Prm2m8

4β1(m2 +m8)2 + 4 Pr(m2 +m8)− Prϕ
,

B6 =
−8A1A3 Prm2m6

4β1(m2 +m6)2 + 4 Pr(m2 +m6)− Prϕ
,

B7 =
−8A1A4 Prm2

2

16β1m2
2 + 8 Prm2 − Prϕ

,

B8 =
−8A2A5 Prm8m6

4β1(m8 +m6)2 + 4 Pr(m8 +m6)− Prϕ
,

B9 =
−8A2A3 Prm2

6

16β1m2
6 + 8 Prm6 − Prϕ

,

B10 =
−8A2A4 Prm2m6

4β1(m2 +m6)2 + 4 Pr(m2 +m6)− Prϕ
,

B11 =
−4A2

1 Prm3
2

16β1m2
2 + 8 Prm2 − Prϕ

,

B12 =
−4A1A2 Prm2

6m62

4β1(m2 +m6)2 + 4 Pr(m2 +m6)− Prϕ
,

B13 =
−4A1A2 Prm2

2m6

4β1(m2 +m6)2 + 4 Pr(m2 +m6)− Prϕ
,

B14 =
−4A2

2 Prm3
6

16β1m2
6 + 8 Prm6 − Prϕ

,

B15 = −(B5 +B6 +B7 +B8 +B9 +B10 +B11 +B12 +B13 +B14),

B16 = − 2 PrA1m2C1

β1 (m1 +m2)
2 + Pr (m1 +m2)− 1

4 Pr (φ− iω)
,

B17 = − 2 PrA2m6C1

β1 (m1 +m2)
2 + Pr (m1 +m2)− 1

4 Pr (φ− iω)
,

B18 = (1−B16 +B17),
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B19 −
2 PrA1m2C2

β1 (m1 +m2)
2 + Pr (m1 +m2)− 1

4 Pr (ϕ− iω)
,

B20 = − 2 PrA2m6C2

β1 (m1 +m2)
2 + Pr (m1 +m2)− 1

4 Pr (φ− iω)
,

B21 = − 2 PrA1m2C3

β1 (m1 +m2)
2 + Pr (m1 +m2)− 1

4 Pr (φ− iω)
,

B22 = − 2 PrA2m6C3

β1 (m1 +m2)
2 + Pr (m1 +m2)− 1

4 Pr (φ− iω)
,

B23 = − 2 PrA3C1

β1 (m1 +m6)
2 + Pr (m1 +m6)− 1

4 Pr (φ− iω)
,

B24 = − 2 PrA4C1

β1 (m1 +m2)
2 + Pr (m1 +m2)− 1

4 Pr (φ− iω)
,

B25 = − 2 PrA5C1

β1 (m1 +m8)
2 + Pr (m1 +m8)− 1

4 Pr (φ− iω)
,

B26 =
1

4

i ωm1m6A2C1

β1 (m1 +m2)
2 + Pr (m1 +m2)− 1

4 Pr (φ− iω)
,

B27 =
1

4

iωm1m6A2C1

β1 (m1 +m6)
2 + Pr (m1 +m6)− 1

4 Pr (ϕ− iω)
,

B28 = − m1m
2
2A1C1

β1 (m1 +m2)
2 + Pr (m1 +m2)− 1

4 Pr (φ− iω)
,

B29 = − m1m
2
6A2C1

β1 (m1 +m6)
2 + Pr (m1 +m6)− 1

4 Pr (φ− iω)
,

B30 = − m2m
2
1A1C1

β1 (m1 +m2)
2 + Pr (m1 +m2)− 1

4 Pr (φ− iω)
,

B31 = − m6m
2
1A2C1

β1 (m1 +m6)
2 + Pr (m1 +m6)− 1

4 Pr (φ− iω)
,

B32 = −(B19 +B20 +B21 +B22 +B23 +B24 +B25 +B26 +B27 +B28

+B29 +B30 +B31),
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C1 =
G

m2
1 +m1 −

(
M + iω

4

) , C2 =
C1m

3
1

m2
1 +m1 −

(
M + iω

4

) ,
C3 =

1

4

iωC1m
2
1

m2
1 +m1 −

(
M + iω

4

) .
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