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The effect of rotation and suspended particles on the stability of an incompressible Wal-
ters’ (model B′) fluid heated from below under a variable gravity field in a porous medium
is considered. By applying a normal mode analysis method, the dispersion relation has been
derived and solved numerically. It is observed that the rotation, gravity field, suspended par-
ticles, and viscoelasticity introduce oscillatory modes. For stationary convection, the rotation
has a stabilizing effect and suspended particles are found to have a destabilizing effect on the
system, whereas the medium permeability has a stabilizing or destabilizing effect on the system
under certain conditions. The effect of rotation, suspended particles, and medium permeability
has also been shown graphically.
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Notations

q – velocity of fluid,

p – pressure,

g – gravitational acceleration vector,

g – gravitational acceleration,

k – wave number of disturbance,

p1 – thermal Prandtl number,

Pl – dimensionless medium permeability.
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Greek symbols

ǫ – medium porosity,

ρ – fluid density,

µ – fluid viscosity,

µ′ – fluid viscoelasticity,

υ – kinematic viscosity,

υ′ – kinematic viscoelasticity,

κ – thermal diffusitivity,

α – thermal coefficient of expansion,

β – adverse temperature gradient,

θ – perturbation in temperature,

δ – perturbation in respective physical quantity,

ζ – Z-component of vorticity,

Ω – rotation vector having components (0, 0, Ω).

1. Introduction

A detailed account of the thermal instability of a Newtonian fluid under
varying assumptions of hydrodynamics and hydromagnetics has been given by
Chandrasekhar [1]. Lapwood [2] has studied the convective flow in a porous
medium using the linearized stability theory. The Rayleigh instability of a ther-
mal boundary layer in flow through a porous medium has been considered by
Wooding [15], whereas Scanlon and Segel [7] have considered the effect
of suspended particles on the onset of Be’nard convection and found that the
critical Rayleigh number was reduced solely because the heat capacity of the
pure gas was supplemented by the particles. The suspended particles were thus
found to destabilize the layer. Sharma [8] has studied thermal instability of
a viscoelastic fluid in hydromagnetics.
Sharma and Sunil [9] have studied thermal instability of an Oldroydian vis-

coelastic fluid with suspended particles in hydromagnetics in a porous medium.
There are many viscoelastic fluids that cannot be characterized by Maxwell’s or
Oldroyd’s constitutive relations. One such class of fluids is Walters’ (model B′)
viscoelastic fluid having relevance both in the chemical technology and indus-
try. Walters’ [14] reported that the mixture of polymethyl methacrylate and
pyridine at 25◦C containing 30.5 g of polymer per litre with density 0.98 g per
litre behaves very nearly as the Walters (model B′) viscoelastic fluid. Walters’
(model B′) viscoelastic fluid forms the basis for the manufacture of many im-
portant polymers and useful products.
Stommel and Fedorov [13] and Linden [3] have remarked that the length

scalar characteristic of double diffusive convecting layers in the ocean may be
sufficiently large, so that the Earth’s rotation might be important in their forma-
tion. Moreover, the rotation of the Earth distorts the boundaries of a hexagonal
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convection cell in a fluid through a porous medium, and the distortion plays
an important role in extraction of energy in geothermal regions. The problem
of thermal instability of a fluid in a porous medium is of importance in geo-
physics, soil sciences, ground water hydrology, and astrophysics. The scientific
importance of the field has also increased because hydrothermal circulation is
the dominant heat transfer mechanism in the development of a young oceanic
crust (Lister, [4]).
Thermal instability of a fluid layer under a variable gravitational field heated

from below or above is investigated analytically by Pradhan and Samal [5].
Although the gravity field of the Earth is varying with the height from its
surface, we usually neglect this variation for laboratory purposes and treat the
field as constant. However, this may not be the case for large scale flows in the
ocean, atmosphere, or mantle. It can become imperative to consider gravity as
a quantity varying with distance from the centre of the Earth.
Sharma andRana [10] have studied thermal instability of a Walters’ (model

B′) viscoelastic fluid in the presence of a variable gravity field and rotation in
a porous medium. Sharma and Rana [11] have also studied the thermosolu-
tal instability of Rivlin-Ericksen rotating fluid in the presence of a magnetic
field and variable gravity field in a porous medium. Recently, Sharma and
Gupta [12] have studied the effect of rotation on thermal convection of microp-
olar fluids in the presence of suspended particles, whereas Rana and Kango [6]
have studied the effect of rotation on thermal instability of a compressible Wal-
ters’ (model B′) viscoelastic fluid in a porous medium.
Keeping in mind the importance in various applications mentioned above,

our interest in the present paper is to study the effect of rotation and suspended
particles on the stability of an incompressible Walters’ (model B′) fluid heated
from below under a variable gravity field in a porous medium.

2. Formulation of the problem and perturbation equations

Here we consider an infinite, horizontal, incompressible Walters’ (model B′)
viscoelastic fluid of the depth d, bounded by the planes z = 0 and z = d in
an isotropic and homogeneous medium of porosity ǫ and permeability k1, which
is acted upon by a uniform rotation Ω(0, 0, Ω) and variable gravity g(0, 0,−g),
where g = λg0, g0(> 0) is the value of g at z = 0, and λ can be positive or
negative as the gravity increases or decreases upwards from its value g0. This
layer is heated from below such that a steady adverse temperature gradient

β

(
=

∣∣∣∣
dT

dz

∣∣∣∣
)
is maintained. The character of equilibrium of this initial static

state is determined by supposing that the system is slightly disturbed and then
following its further evolution.
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Schematic Sketch of Physical Situation

Let ρ, υ, υ′, p, ǫ, T , α, and q(0, 0, 0), denote, respectively, the density, kine-
matic viscosity, kinematic viscoelasticity, pressure, medium porosity, tempera-
ture, thermal coefficient of expansion, and velocity of the fluid. The equations
expressing the conservation of momentum, mass, temperature, and equation of
state for the Walters’ (model B′) viscoelastic fluid are as follows:

(2.1)
1

ǫ

[
∂q

∂t
+

1

ǫ
(q.∇) q

]
= − 1

ρ0
∇p+ g

(
1 +

δρ

ρ0

)

− 1

k1

(
υ − υ′

∂

∂t

)
q +

2

ǫ
(q ×Ω) +

K ′N

ρ0ǫ
(qd − q),

(2.2) ∇.q = 0,

(2.3) E
∂T

∂t
+ (q.∇)T +

mNCpt

ρ0Cf

[
ǫ
∂

∂t
+ qd.∇

]
T = κ∇2T,

and

(2.4) ρ = ρ0 [1− α(T − T0)] ,

where the suffix zero refers to values at the reference level z = 0.



EFFECT OF ROTATION AND SUSPENDED PARTICLES. . . 59

Here qd(x, t) and N(x, t) denote the velocity and number density of the
particles, respectively, qd = (l, r, s), x = (xyz), K = 6πηρυ, where η is the
Stokes drag coefficient, where η is the particle radius and,

E = ǫ+ (1− ǫ)

(
ρscs
ρ0cf

)

is constant, κ is the thermal diffusivity, and ρs, cs, ρ0, cf denote the density and
heat capacity of the solid (porous) matrix and fluid, respectively.
If mN is the mass of particles per unit volume, then the equations of motion

and continuity for the particles are as follows:

mN

[
∂qd
∂t

+
1

ǫ
(qd.∇) qd

]
= K ′N (q − qd) ,(2.5)

ǫ
∂N

∂t
+∇. (Nqd) = 0.(2.6)

The presence of particles adds an extra force term proportional to the velocity
difference between particles and fluid, and appears in the equation of motion
(2.1). Since the force exerted by the fluid on the particles is equal and opposite
to that exerted by the particles on the fluid, there must be an extra force term,
equal in magnitude but opposite in sign, in the equations of motion for the
particles (2.6). The buoyancy force on the particles is neglected. Interparticles’
reactions are not considered either since we assume that the distance between
the particles is quite large as compared to their diameters. These assumptions
have been used in writing the equations of motion (2.6) for the particles.
The initial state of the system is taken to be quiescent layer (no settling)

with a uniform particle distribution number. The initial state is as follows:

(2.7)
q = (0, 0, 0), qd = (0, 0, 0),

T = −βz + T0, ρ = ρ0(1 + αβz), N0 = constant

and is an exact solution to the governing equations.
Let q(u, v, w), qd(l, r, s), θ, δp, and δρ denote the perturbations, respectively,

in fluid velocity q(0, 0, 0), particle velocity qd(0, 0, 0), temperature T , pressure
p, and density ρ.
The change in density δρ caused by the perturbation θ in temperature is

given by:

(2.8) δρ = −αρ0θ.



60 G.C. RANA, S. KUMAR

The linearized perturbation equations governing the motion of fluids are as
follows:

1

ǫ

∂q

∂t
= − 1

ρ0
∇δp − g

δρ

ρ0
− 1

k1

(
υ − υ′

∂

∂t

)
q(2.9)

+
K ′N

ǫ
(qd − q) +

2

ǫ
(q ×Ω) ,

∇q = 0,(2.10)

(
m

K ′

∂

∂t
+ 1

)
qd = q,(2.11)

(E + bǫ)
∂θ

∂t
= β (w + bs) + κ∇2θ,(2.12)

where b =
mNCpt

ρ0Cf
, and w, s are the vertical fluid and particles velocity.

In the Cartesian form, Eqs. (2.9)–(2.12) with the help of Eq. (2.8) can be
expressed as follows:

(2.13)
1

ǫ

(
m

K ′

∂

∂t
+ 1

)
∂u

∂t
= − 1

ρ0

(
m

K ′

∂

∂t
+ 1

)
∂

∂x
(δp)

− 1

k1

(
υ − υ′

∂

∂t

)(
m

K ′

∂

∂t
+ 1

)
u− mN

ǫρ0

∂u

∂t
+

2

ǫ

(
m

K ′

∂

∂t
+ 1

)
Ωv,

(2.14)
1

ǫ

(
m

K ′

∂

∂t
+ 1

)
∂v

∂t
= − 1

ρ0

(
m

K ′

∂

∂t
+ 1

)
∂

∂y
(δp)

− 1

k1

(
υ − υ′

∂

∂t

)(
m

K ′

∂

∂t
+ 1

)
v − mN

ǫρ0

∂v

∂t
+

2

ǫ

(
m

K ′

∂

∂t
+ 1

)
Ωu,

(2.15)
1

ǫ

(
m

K ′

∂

∂t
+ 1

)
∂w

∂t
= − 1

ρ0

(
m

K ′

∂

∂t
+ 1

)
∂

∂z
(δp)

− 1

k1

(
υ − υ′

∂

∂t

)(
m

K ′

∂

∂t
+ 1

)
w − mN

ǫρ0

∂w

∂t
+ g

(
m

K ′

∂

∂t
+ 1

)
αθ,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,(2.16)

(E + bǫ)
∂θ

∂t
= β (w + bs) + κ∇2θ.(2.17)
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Operating Eqs. (2.13) and (2.14) by
∂

∂x
and

∂

∂y
, respectively, adding them and

using Eq. (2.16), we get:

(2.18)
1

ǫ

(
m

K ′

∂

∂t
+ 1

)
∂

∂t

(
∂w

∂z

)
=

1

ρ0

(
m

K ′

∂

∂t
+ 1

)(
∇2 − ∂2

∂z2

)
δp

− 1

k1

(
υ − υ′

∂

∂t

)(
m

K ′

∂

∂t
+ 1

)(
∂w

∂z

)
− mN

ǫρ0

∂

∂t

(
∂w

∂z

)

− 2

ǫ

(
m

K ′

∂

∂t
+ 1

)
Ωζ,

where ζ =
∂v

∂x
− ∂u

∂y
is the z-component of vorticity.

Operating Eqs. (2.15) and (2.18) by

(
∇2 − ∂2

∂z2

)
and

∂

∂z
, respectively, and

adding them to eliminate δp between these equations, we get:

(2.19)
1

ǫ

(
m

K ′

∂

∂t
+ 1

)
∂

∂t

(
∇2w

)
= − 1

k1

(
υ − υ′

∂

∂t

)(
m

K ′

∂

∂t
+ 1

)
∇2w

+ g

(
∂2

∂x2
+

∂2

∂y2

)(
m

K ′

∂

∂t
+ 1

)
αθ − mN

ǫρ0

∂

∂t

(
∇2w

)

− 2

ǫ

(
m

K ′

∂

∂t
+ 1

)
Ω
∂ζ

∂z
,

where ∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

Operating Eqs. (2.13) and (2.14) by − ∂

∂y
and

∂

∂x
, respectively, and adding

them, we get

(2.20)
1

ǫ

(
m

K ′

∂

∂t
+ 1

)
∂ζ

∂t
= − 1

k1

(
υ − υ′

∂

∂t

)(
m

K ′

∂

∂t
+ 1

)
ζ

− mN

ǫρ0

∂ζ

∂t
+

2

ǫ

(
m

K ′

∂

∂t
+ 1

)
Ω
∂w

∂z
.

3. The dispersion relation

Following the normal mode analyses, we assume that the perturbation quan-
tities have x, y, and t dependence of the form:

(3.1) [w, s, θ, ζ] = [W (z), S(z), Θ(z), Z(z)] exp (ikxx+ ikyy + nt) ,
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where kx and ky are the wave numbers in the x and y directions, k =
(
k2x + k2y

)1/2
is the resultant wave number, and n is the frequency of the harmonic distur-
bance, which is, in general, a complex constant.
Using expression (3.1) Eqs. (2.19), (2.20), and (2.17) become:

n

ǫ

[
d2

dz2
− k2

]
W = −gk2αΘ − 1

k1

(
υ − υ′n

)( d2

dz2
− k2

)
W(3.2)

− mNn

ǫρ0

(m
K ′
n+ 1

)
(
d2

dz2
− k2

)
W − 2Ω

ǫ

dZ

dz
,

n

ǫ
Z = − 1

k1

(
υ − υ′n

)
− mNn

ǫρ0

(m
K ′
n+ 1

)Z +
2Ω

ǫ

dW

dz
,(3.3)

(E + bǫ)nΘ = β (W + bS) + κ

(
d2

dz2
− k2

)
Θ.(3.4)

Equations (3.2)–(3.4) in a non-dimensional form become:
[
σ

ǫ

(
1 +

M

1 + τ1σ

)
+

1− Fσ

Pl

](
D2 − a2

)
W +

ga2d2αΘ

υ
+

2Ωd3

ǫυ
DZ = 0,(3.5)

[
σ

ǫ

(
1 +

M

1 + τ1σ

)
+

1− Fσ

Pl

]
Z =

(
2Ωd

ǫυ

)
DW,(3.6)

[(
D2 − a2

)
− E1p1σ

]
Θ = −βd

2

κ

(
B + τ1σ

1 + τ1σ

)
W,(3.7)

where we have put:

a = kd, σ =
nd2

υ
, τ =

m

K ′
, τ1 =

τυ

d2
,

M =
mN

ρ0
, E1 = E + bǫ, B = b+ 1, F =

υ′

d2
,

and Pl =
k1
d2
is the dimensionless medium permeability, p1 =

υ

κ
, is the thermal

Prandtl number.
Eliminating Θ and Z from Eqs. (3.5)–(3.7), we obtain:

(3.8)

[
σ

ǫ

(
1 +

M

1 + τ1σ

)
+

1− Fσ

Pl

] (
D2 − a2

) (
D2 − a2 − E1p1σ

)
W

− Ra2λ

(
B + τ1σ

1 + τ1σ

)
W +




TA
ǫ2
(
D2 − a2 − E1p1σ

)

σ

ǫ

(
1 +

M

1 + τ1σ

)
+

1− Fσ

Pl


D

2W = 0,
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where R =
g0αβd

4

υκ
, is the thermal Rayleigh number and TA =

(
2Ωd2

υ

)2

, is the

Taylor number.
Here we assume that the temperature at the boundaries is kept fixed, the

fluid layer is confined between two boundaries, and adjoining medium is electri-
cally non-conducting. The boundary conditions appropriate to the problem are
(Chandrasekhar, [1]):

(3.9) W = D2W = DZ = Θ = 0 at z = 0 and z = 1.

The case of two free boundaries, though a little artificial, is the most ap-
propriate for stellar atmospheres. Using the boundary conditions (3.9), we can
show that all the even order derivatives of W must vanish for z = 0 and z = 1,
and hence the proper solution of W characterizing the lowest mode is:

(3.10) W =W0 sin πz,

where W0 is a constant.
Substituting Eq. (3.10) in (3.8), we obtain the following dispersion relation:

(3.11) R1xλ =

[
iσ1
ǫ

(
1 +

M

1 + τ1π2iσ1

)
+

1− Fπ2iσ1
P

]

· (1 + x)(1 + x+ E1p1iσ1)

(
1 + τ1π

2iσ1
B + τ1π2iσ1

)

+

TA1

ǫ2
(1 + x+ E1p1iσ1)

iσ1
ǫ

(
1 +

M

1 + τ1π2iσ1

)
+

1− Fπ2iσ1
P

(
1 + τ1π

2iσ1
B + τ1π2iσ1

)
,

where

R1 =
R

π4
, TA1 =

TA
π4
, x =

a2

π2
, iσ1 =

σ

π2
, P = π2Pl.

Equation (3.11) is a required dispersion relation accounting for the effect
of suspended particles, medium permeability, variable gravity field, rotation on
the stability of a Walters’ (model B′) viscoelastic fluid heated from below in a
porous medium.

4. Stability of the system and oscillatory modes

Here we examine the possibility of oscillatory modes, if any, in a Walters’
(model B′) viscoelastic fluid due to the presence of suspended particles, rota-
tion, viscoelasticity, and variable gravity field. Multiplying Eq. (3.5) by W ∗, the
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complex conjugate of W , integrating over the range of z, and making use of
Eqs. (3.6)–(3.7) with the help of the boundary conditions (3.9), we obtain:

(4.1)

[
σ

ǫ

(
1 +

M

1 + τ1σ

)
+

1− Fσ

Pl

]
I1 −

αa2λg0κ

υβ

(
1 + τ1σ

∗

B + τ1σ∗

)

× (I2 + E1p1σ
∗I3) + d2

[
σ∗

ǫ

(
1 +

M

1 + τ1σ

)
+

1− Fσ∗

Pl

]
I4 = 0,

where

I1 =

1∫

0

(
|DW |2 + a2 |W |2

)
dz, I2 =

1∫

0

(
|DΘ|2 + a2 |Θ|2

)
dz,

I3 =

1∫

0

|Θ|2 dz, I4 =

1∫

0

|Z|2 dz.

The integral parts I1−I4 are all positive definite. Putting σ = iσi in Eq. (4.1),
where σi is real and equating the imaginary parts, we obtain:

(4.2) σi

[
1

ǫ

(
1 +

M

1 + τ21σ
2
i

)
− F

Pl

] (
I1 + d2I4

)
+
αa2λg0κ

υβ

·
[(

τ1(B − 1)

B2 + τ21σ
2
i

)
I2 +

B + τ21σ
2
i

B2 + τ21σ
2
i

E1p1I3

]
= 0.

Equation (4.2) implies that σi = 0 or σi 6= 0, which means that modes may be
non-oscillatory or oscillatory. The oscillatory modes are introduced due to the
presence of rotation, gravity field, suspended particles, and viscoelasticity.

5. The stationary convection

For the stationary convection, putting σ = 0 in Eq. (3.11) reduces it to:

(5.1) R1 =
1 + x

λxB

[
1 + x

P
+
TA1

ǫ2
P

]
,

which expresses the modified Rayleigh number R1 as a function of the dimen-
sionless wave number x and the parameters TA1 , B, P ; and then the Walters’
(model B′) viscoelastic fluid behaves like an ordinary Newtonian fluid, since the
viscoelastic parameter F vanishes with σ.
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To study the effects of suspended particles, rotation, and medium perme-

ability, we examine the behavior of
dR1

dB
,
dR1

dTA1

, and
dR1

dP
analytically.

Equation (5.1) yields:

(5.2)
dR1

dB
= − 1 + x

λxB2

[
1 + x

P
+
TA1

ǫ2
P

]
,

which is negative implying thereby that the effect of suspended particles is to
destabilize the system when the gravity increases upwards from its value g0 (i.e.,
λ > 0).
From Eq. (5.1), we also get:

(5.3)
dR1

dTA1

=
1 + x

λxBǫ2
P,

which shows that rotation has a stabilizing effect on the system when the gravity
increases upwards from its value g0 (i.e., λ > 0).
It is evident from Eq. (5.1) that:

(5.4)
dR1

dP
= −1 + x

λxB

[
1 + x

P 2
− TA1

ǫ2

]
.

From Eq. (5.4), we observe that the medium permeability has a destabilizing

effect when
1 + x

P 2
>
TA1

ǫ2
, and it has a stabilizing effect when

1 + x

P 2
<
TA1

ǫ2
,

when the gravity increases upwards from its value g0 (i.e., λ > 0 ).

In the absence of rotation and for a constant gravity field,
dR1

dP
is always

negative implying thereby the destabilizing effect of the medium permeability.
The dispersion relation (5.1) is analyzed numerically. Graphs have been plot-

ted by giving some numerical values to the parameters, to depict the stability
characteristics.
In Fig. 1, Rayleigh number R1 is plotted against suspended particles B for

λ = 2, TA1 = 5, ǫ = 0.5, P = 0.2 for fixed wave numbers x = 0.2, x = 0.5,
and x = 0.8. For the wave numbers x = 0.2, x = 0.5, and x = 0.8, suspended
particles have a destabilizing effect.
In Fig. 2, Rayleigh number R1 is plotted against rotation TA1 for B = 3,

λ = 2, ǫ = 0.5, P = 0.2 for fixed wave numbers x = 0.2, x = 0.5, and x = 0.8.
This shows that rotation has a stabilizing effect for fixed wave numbers x = 0.2,
x = 0.5, and x = 0.8.
In Fig. 3, Rayleigh number R1 is plotted against the medium permeability

P for B = 3, λ = 2, ǫ = 0.5, TA1 = 5 for fixed wave numbers x = 0.2, x = 0.5,
and x = 0.8. This shows that the medium permeability has a destabilizing effect
for P = 0.1 to 0.3, and has a stabilizing effect for P = 0.3 to 1.0.
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Fig. 1. Variation of Rayleigh number R1 with suspended particles B for λ = 2, TA1
= 5,

ǫ = 0.5, P = 0.2 for fixed wave numbers x = 0.2, x = 0.5, and x = 0.8.

Fig. 2. Variation of Rayleigh number R1 with rotation TA1
for B = 3, λ = 2, ǫ = 0.5,

P = 0.2 for fixed wave numbers x = 0.2, x = 0.5, and x = 0.8.

Fig. 3. Variation of Rayleigh number R1 with the medium permeability P for B = 3, λ = 2,
ǫ = 0.5, TA1

= 5 for fixed wave numbers x = 0.2, x = 0.5, and x = 0.8.
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6. Conclusions

The effect of rotation and suspended particles on the stability of an incom-
pressible Walters’ (model B′) fluid heated from below under a variable grav-
ity field in a porous medium has been investigated. For the stationary con-
vection, it has been found that the rotation has a stabilizing effect for λ > 0
and destabilizing effect for λ < 0, opposite to the Newtonian fluids. Suspended
particles are found to have a destabilizing effect on the system as the gravity
increases upwards from its value g0 (i.e., for λ > 0) and a stabilizing effect
as the gravity decreases upwards from its value g0 (i.e., for λ < 0), whereas
the medium permeability has a destabilizing/stabilizing effect on the system for
1 + x

P 2
>
TA1

ǫ2

/
1 + x

P 2
<
TA1

ǫ2
as the gravity increases upwards from its value g0

(i.e., for λ > 0). The presence of rotation, gravity field, suspended particles, and
viscoelasticity introduces oscillatory modes. The effects of rotation, suspended
particles, and medium permeability on thermal instability have also been shown
graphically.

References

1. Chandrasekhar S., Hydrodynamic and Hydromagnetic Stability, Dover Publication,
York, 1981.

2. Lapwood E.R., Convection of a fluid in a porous medium, Proc. Camb. Phil. Soc., 44,
508–519, 1948.

3. Linden P.F., Salt fingers in a steady shear flow, Geophysics Fluid Dynamics, 6, 1–27,
1974.

4. Lister C.R.B., On the thermal balance of a mid ocean ridge, Geophysics. J. Roy. Astr.
Soc., 26, 515–535, 1972.

5. Pradhan G.K., Samal P.C., Thermal instability of a fluid layer under variable body
forces, J. Math. Anal. Appl., 122, 487–498, 1987.

6. Rana G.C., Kango S.K., Effect of rotation on thermal instability of compressible Wal-
ters’ (model B’) elastico-viscous fluid in porous medium, JARAM, 3, 44–57, 2011.

7. Scanlon J.W., Segel L.A., Effect of suspended particles on onset of Be’nard convection,
Phys. Fluids, 16, 1573–78, 1973.

8. Sharma R.C., Thermal instability of viscoelastic fluid in hydromagnetics, Acta Physica
Hungarica, 38, 293–298, 1975.

9. Sharma R.C., Sunil, Thermal instability of an Oldroydian viscoelastic fluid with sus-
pended particles in hydromagnetics in porous medium, J. of Polymer Plastic Technology
and Engineering, 33, 323–339, 1994.

10. Sharma V., Rana G.C., Thermal instability of a Walters’ (model B′) elastico-viscous
fluid in the presence of variable gravity field and rotation in porous medium, J. Non-
Equilib. Thermodyn., 26, 31–40, 2001.



68 G.C. RANA, S. KUMAR

11. Sharma V., Rana G.C., Thermosolutal instability of a Walters’ (model B′) elastico-
viscous rotating fluid in the presence of magnetic field and variable gravity field in porous
medium, Proc. Nat. Acad. Sci. INDIA, 73, 93–111, 2003.

12. Sharma V., Gupta S., Effect of rotation on thermal convection of micropolar fluids in
the presence of suspended particles, Arch. Mech., 60, 403–419, 2008.

13. Stomel H., Fedorov K.N., Small scale structure in temperature and salinity near Timor
and Mindanao, Tellus, 19, 306–325, 1967.

14. Walters K., The solution of flow problems in the case of materials with memory,
J. Mecanique, 1, 469–778, 1962.

15. Wooding R.A., Rayleigh instability of a thermal boundary layer in flow through a porous
medium, J. Fluid Mech., 9, 183–192, 1960.

Received September 28, 2011.




