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The subject of presented analytical and numerical investigation is the stability of an axially
compressed beam on an elastic foundation. The shape function of the foundation was assumed.
The formula was supplemented with the offset parameter. The critical values of loads were
calculated and presented as a function of geometric and mechanical properties of the beam
and nonsymmetrical properties of the elastic foundation. The highest values of critical loads
can be obtained for the highest values of shape parameter and the lowest values of amplitudes
of shape function. The values of critical loads increase with the increase of the value of the
offset parameter.
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1. Introduction

The foundation-structure interaction is an essential obstacle in the design of
a variety of constructions, e.g., buildings (reinforced concrete beams resting on
elastic foundation), railroads [1] (underlays), airports, highways, sports fields,
parking lots, storage capacities, as well as dams and embankments. Further-
more, they have also found applications in geotechnical engineering (improved
subgrade or roadbase performance), marine engineering, bio-mechanics, harbor
works, buried gas pipeline systems along with constructions of machine foun-
dations. The researchers describe diverse analytical models of beams resting on
elastic foundation. A plain mechanical representation of elastic foundation was
first presented by Winkler. A number of considerations in the area of foundation-
structure interaction have been conducted based on the Winkler hypothesis due
to its simplicity and clarity.
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Buckling is one of the most disadvantageous types of loss of construction
stability. The study of buckling of beams resting on elastic foundation has been
presented by several researchers. Mode-jumping instabilities in the post-buckling
of a beam on a partial nonlinear foundation was described by Zhang and Mur-
phy [2]. Mode jumping is an instability phenomenon in the post-buckling region,
which causes a sudden change in the equilibrium configuration [2]. The analysis
acknowledged that certain asymmetric partial foundation configurations could
facilitate the smooth transition rather than mode jumping. Mode jumping can
be averted by configuring the asymmetric partial foundation. The stability of
Euler-Bernoulli beam-columns resting on a two-parameter elastic foundation
was investigated by Palacio-Betancur and Aristizabal-Ochoa [3]. The in-
fluence of the elastic foundation with alternating properties was discussed. The
obtained results were compared with those available in the literature. Buckling
of beam-columns on two-parameter elastic foundations was studied by Mat-
sunaga [4]. The outcome of shear deformation, depth change, and rotatory
inertia were performed. Buckling stresses of a beam-column with a rectangular
cross-section and subjected to axial stresses were obtained. Thermal buckling
and post-buckling of a homogeneous Euler-Bernoulli beam resting on a nonlinear
elastic foundation were presented by Li and Batra [5]. The influence of a tem-
perature rise on buckling was determined analytically with the use of the linear
problem analysis. The post-buckling survey of beams was prepared and analyzed
using the shooting method. The analysis revealed that the nonlinear foundation
stiffness parameter does not affect the buckling temperature. In addition, it does
not affect the post-buckling deformations. Buckling investigation of nonuniform
beams on a partial variable elastic foundation was introduced by Zhang et al.
[6]. The Hencky bar-chain model was used for calculations. The model allowed
to obtain results by solving algebraic equations instead of a differential equa-
tion. The formulae of the stiffness of the internal spring, end spring, and the
stiffness of the elastic foundation were obtained. The impact of the length and
stiffness of the foundation on the buckling load was also taken into the considera-
tion. The analysis confirmed that the length parameter of the elastic foundation
has a momentous influence on the mode shapes. Buckling analysis of a double-
functionally graded Timoshenko beam system on a Winkler-Pasternak elastic
foundation was carried out by Deng et al. [7]. Two beams were connected by
the elastic component. The elastic foundation was presented in the form of two
layers: the Winkler layer and a shearing layer. The influence of gradient parame-
ter, foundation parameters, axial load, and connecting stiffness on the buckling
load were considered. It can be concluded from the analysis that the buck-
ling load decreases with the increase of the gradient parameter. In addition, for
different foundation parameters, the outcome of the stiffness of the shear layer on
buckling load was similar to the outcome of the Winkler layer stiffness. The eva-
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luation of buckling of nonuniform and axially functionally graded Timoshenko
nanobeams on a Winkler-Pasternak foundation were formulated by Robinson
and Adali [8]. It was discovered that the buckling load decreases with the in-
crease of a nonlocal parameter and also depends on the boundary conditions
and the elastic foundation. Moreover, the influence of Winkler and Pasternak
foundations on the values of buckling loads was disparate for nonlocal beams.
Buckling analysis of an axially loaded elastic beam on a linearly elastic nonlocal
foundation (Reissner foundation) was conducted by Challamel et al. [9]. Ana-
lytical and numerical results were obtained. The higher-order boundary condi-
tions did not have a considerable influence on the buckling results. The influence
of imperfection modes on the buckling and post-buckling of a beam on a non-
linear foundation were described by Eltaher et al. [10]. The beam was resting
on a nonlinear elastic foundation and was subjected to an axial load and har-
monically distributed force. The values of critical buckling loads were obtained.
It was observed in the analysis that the beams with cosine type of geometric
imperfections have greater values of buckling loads than beams with sine type
of imperfections. Additionally, the values of the elastic foundation parameters
(nonlinear) did not influence the buckling loads.

Beams on elastic foundations were also investigated by Borák and Mar-
cián [11]. Betti’s theorem was used for clarifying the problem. The reaction
forces, produced by the deflection of the beam, were assumed to be contin-
uously distributed in the supporting medium. The fundamental formulae for
the beam on elastic foundation were introduced [11]. Analytical approach for the
closed form solution of continuous beams on two-parameter elastic foundations
was studied by Aslami and Akimov [12]. The general form of the governing
equation was reduced to an arrangement of first-order differential equations
with constant coefficients. Different boundary conditions were considered. The
bending of beams on a three-parameter elastic foundation was discussed by
Avramidis and Morfidis [13]. Parametric evaluation of elastically supported
beams of infinite and finite length was carried out, and correlations were made
between one, two or three-parameter foundation models and more accurate 2D
finite element models. The solutions disclosed the advantages of the Kerr-type
foundation model compared to one or two-parameter models [13]. Beams on
a three-parameter elastic foundation were also presented by Morfidis [14].
The mathematical analogy of a beam on elastic supports as a beam on an elas-
tic foundation was determined by Sato et al. [15]. The authors proposed the
hypothesis that a beam on equidistant elastic supports can be considered as
a beam on elastic foundation in static and free vibration problems. In order to
verify these considerations, the deflections and bending moments of the beams,
when the concentrated load was acting at the center of these beams, as well
as natural frequencies and modal shapes were compared with each other. No



80 I. WSTAWSKA et al.

significant distinctions were observed. The mesh-free method, called the radial
point interpolation method, was carried out by Binesh [16] to analyze a beam
on a two-parameter elastic foundation. The beam and the foundation were de-
signed separately. Karamanlidis and Prakash [17] as well as Morfidis and
Avramidis [18] performed finite element solutions for beams resting on an elas-
tic foundation. The analysis of propagation of a flexural wave in the periodic
beam on elastic foundations was conducted by Yu et al. [19]. The number of
waves and their characteristic were discussed. Parametric instability of an inex-
tensional beam on an elastic foundation was described by Wang et al. [20]. The
beam was also assumed to be subjected to the uniformly distributed harmonic
excitation.

Various foundation models were analyzed. Taking into account the paramet-
ric instability, the parameters of diverse foundations have an influence on modes
of the nonlinear response of the beam. The problem of beams resting on the elas-
tic foundation was studied by several researchers. They assumed that the phy-
sical model of the foundation is presented as a great number of small springs.
In this case, the results of calculations are dependent on the characteristics of
springs. Models of structures, available in the literature, describe the properties
of elastic foundations as constant parameters. The authors introduced a ge-
neralization of common models of elastic foundation by adopting its variable
properties.

This work deals with the analysis and the calculations of the values of criti-
cal loads of homogeneous beam with variable properties of the foundation. An
analytical model is studied. The beam with a symmetrical shape function was
presented by the authors in [21]. The presented research refers to the nonsym-
metrical shape function that designates the shape of the elastic foundation. The
formula is supplemented with the offset parameter relative to the right end of
the beam. The value of the offset parameter for the symmetrical function is
equal to p = 0. In addition, the numerical analysis is prepared and performed.
Sample analytical and numerical calculations are carried out, showing a good
agreement between the results obtained for both models. The scheme of con-
sidered beam, geometry, and load is shown in Fig. 1. The beam is subjected to
a compressive axial force F0. The work describes an original approach to the
problem of beams on elastic foundations. The original shape function, which
represents the characteristics of the elastic foundation, is presented. In addition,
the original function of deflection is proposed.

2. Analytical model of the beam

The model is derived with linear mechanical properties of the homogeneous
beam. The scheme of the beam is shown in Fig. 1.
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Fig. 1. The scheme of the homogeneous beam.

The differential equation of the beam is as follows:

(2.1) EJz
d4v

dx4
+ F0

d2v

dx2
= −qf (x),

where qf (x) is the intensity of load – reaction of the elastic foundation [N/mm]
and qf = c(x) ·v(x), where c(x) is the property – foundation constant (a mathe-
matical function describing the shape of the elastic foundation) [N/mm2], and
v(x) is the deflection of the beam [mm].

Therefore, the differential Eq. (2.1) can be written in the following form:

(2.2) EJz
d4v

dx4
+ F0

d2v

dx2
+ c(x) · v(x) = 0.

The shape function, which represents variable properties of the elastic foun-
dation, is assumed as:

(2.3) c(x) = c0 − c1sink(πξ),

where ξ = x
L (L – length of the beam, ξ – dimensionless length of the beam),

0 ≤ ξ ≤ 1, and k is a natural number.
Initially, it was assumed that the shape of the function (2.3) is symmetrical

for both ends of the beam [21]. Figure 2 presents the function for variable values
of parameter k. The figure demonstrates that parameter k is the essential factor
that affects the shape of the function (2.3).

The shape function is a variable in this model. The function (2.3) has been
supplemented with the parameter p – the offset parameter – relative to one end
of the beam (Fig. 3). The offset of the function was assumed relative to the right
end of the beam (nonsymmetrical properties of the elastic foundation). The new
shape function is in the following form:

(2.4) c(x) = c0 − c1sink [π(ξ − p)].
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Fig. 2. The shape of the function (2.3) for variable values of parameter k
(symmetrical properties of the foundation).

Fig. 3. The shape of the function (2.3) for variable values of parameters k and p
(nonsymmetrical properties of the foundation).

The function of deflection of the homogeneous beam is assumed in the fol-
lowing form:

(2.5) v(x) = va · sin(mπξ) · sinn(πξ),

where va is the amplitude of the deflection, andm and n are the natural numbers.
Therefore, Eq. (2.2) can be rewritten in the following form:

Φ(ξ) = π4EJz
va
L4
· f4(ξ) + F0 · π2

va
L2
· f2(ξ)

+
{
c0 − c1 sink[π(ξ − p)]

}
· va sin(mπξ) sinn(πξ) = 0,
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which gives

(2.6) Φ(ξ) =
π4EJz
L4

· f4(ξ) +
F0 · π2

L2
· f2(ξ)

+
{
c0 − c1 sink[π(ξ − p)]

}
· sin(mπξ) sinn(πξ) = 0,

where f2 and f4 are the derivates of the Eq. (2.5) of the second and fourth-order,
respectively.

The critical value of load (2.14) will be calculated with the use of the Galerkin
method. The main assumed condition of this method is as follows:

(2.7)

1ˆ

0

Φ(ξ) · sin(mπξ) sinn(πξ) dξ = 0.

The general solution is defined in the following form:

(2.8)
(π
L

)2
EJz · J4 − F0 · J2 +

(
L

π

)2

· J0 = 0,

from which

(2.9) F0 =
1

J2

[
J4 · FEuler +

(
L

π

)2

· J0

]
,

where

FEuler =
π2EJz
L2

,(2.10)

J4 =

(
1

π

)4
1ˆ

0

d4ṽ

dξ4
· sin(mπξ) · sinn(πξ) dξ,(2.11)

J2 = −
(
1

π

)2
1ˆ

0

d2ṽ

dξ2
· sin(mπξ) · sinn(πξ) dξ,(2.12)

J0 =

1ˆ

0

{
c0 − c1 sink[π(ξ − p)]

}
· [sin(mπξ) sinn(πξ)]2 dξ,(2.13)

where ṽ is the dimensionless value of deflection.
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The critical load F0,CR is a function of geometric parameters and mechanical
properties of the homogeneous beam as well as nonsymmetrical properties of the
elastic foundation. The function is in the following form:

(2.14) F0,CR = min
m,n

J4 · FEuler +
(
L
π

2
)
· J0

J2

.
The homogeneous beam is resting on the elastic foundation. The presented

foundation is flat, but it has a variable intensity of the reaction. The intensity
is similar to the intensities of common foundations, e.g., soil foundations. The
soil is flat, but it also has a variable structure. It can be denser locally.

3. Results

Sample analytical values of critical loads and stresses in a function of variable
parameters m and n have been performed for the following data: c0 = 10 MPa,
E = 200 000 MPa, L = 1200 mm, Jz = 240 mm4, and A = 180 mm2. The
results for diverse proportions of c1/c0 (amplitudes of shape function) as well
as k (shape parameter) and p (offset parameter) are presented in Tables 1–3.

Table 1. Critical values of loads for the homogeneous beam on the elastic foundation
with various properties (k = 5).

c1/c0 0.2 0.4 0.6 0.8 p

F0,CR [kN] 42.721 40.118 36.579 32.853

0.1σCR [MPa] 237.3 222.9 203.2 182.5

m 8 8 7 7

n 1 2 3 3

F0,CR [kN] 43.267 41.407 39.547 37.249

0.2σCR [MPa] 240.4 230 219.7 206.9

m 8 8 8 7

n 1 1 1 1

F0,CR [kN] 43.954 42.781 41.608 40.436

0.3σCR [MPa] 244.2 237.7 231.2 224.6

m 8 8 8 8

n 1 1 1 1

F0,CR [kN] 44.591 44.055 43.519 42.984

0.4σCR [MPa] 247.7 244.8 241.8 238.8

m 8 8 8 8

n 1 1 1 1
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Table 2. Critical values of loads for the homogeneous beam on the elastic foundation
with various properties (k = 15).

c1/c0 0.2 0.4 0.6 0.8 p

F0,CR [kN] 43.567 41.916 40.092 37.731

0.1σCR [MPa] 242 232.9 222.7 209.6

m 8 8 8 7

n 1 2 2 3

F0,CR [kN] 43.969 42.811 41.653 40.495

0.2σCR [MPa] 244.3 237.8 231.4 225

m 8 8 8 8

n 1 1 1 1

F0,CR [kN] 44.465 43.804 43.143 42.482

0.3σCR [MPa] 247 243.4 239.7 236

m 8 8 8 8

n 1 1 1 1

F0,CR [kN] 44.876 44.626 44.376 44.126

0.4σCR [MPa] 249.3 247.9 246.5 245.1

m 8 8 8 8

n 1 1 1 1

Table 3. Critical values of loads for the homogeneous beam on the elastic foundation
with various properties (k = 30).

c1/c0 0.2 0.4 0.6 0.8 p

F0,CR [kN] 43.986 42.845 41.488 40.130

0.1σCR [MPa] 244.4 238 230.5 222.9

m 8 8 8 8

n 1 1 2 2

F0,CR [kN] 44.274 43.421 42.568 41.715

0.2σCR [MPa] 246 241.2 236.5 231.8

m 8 8 8 8

n 1 1 1 1

F0,CR [kN] 44.668 44.210 43.752 43.294

0.3σCR [MPa] 248.2 245.6 243.1 240.5

m 8 8 8 8

n 1 1 1 1

F0,CR [kN] 44.975 44.824 44.673 44.521

0.4σCR [MPa] 249.9 249 248.2 247.3

m 8 8 8 8

n 1 1 1 1
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It can be inferred that critical values of loads are dependent on the values of
parameter k and c1/c0 ratio. The highest values of critical loads can be obtained
for the highest values of k – the shape parameter and the lowest values of c1/c0
ratio – amplitudes of the shape function.

The offset parameter also affects the values of critical loads. The critical
loads increase with the increase of the values of parameter p, i.e., a higher value
of load should be applied to the beam in order to obtain similar values of the
parameters as in the case of a symmetrical structure. The highest value (in
the studied area) is equal to F0,CR = 45.030 kN and was acquired for k = 50
and c1/c0 = 0.2 (p = 0.4). The results for different proportions of c1/c0 as well
as parameters k and p are also summarized in Figs. 4–6.

Fig. 4. The influence of parameter p on the values of critical loads (k = 1).

Fig. 5. The influence of parameter p on the values of critical loads (k = 10).

The charts confirm the preceding assumptions. The highest values of critical
loads can be obtained for the highest values of parameter k (the shape para-
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Fig. 6. The influence of parameter p on the values of critical loads (k = 50).

meter) and the lowest values of c1/c0 ratio (amplitudes of the shape function).
The offset parameter also affects the values of critical loads. The critical loads
increase with the increase of the values of parameter p.

4. Numerical model of the beam

Sample analytical values of critical loads in a function of alternating param-
eters of the elastic foundation are depicted for the following data: b = 45 mm,
t = 4 mm, E = 200 000 MPa, L = 1200 mm, A = 180 mm2, Jz = 240 mm4.
The results for disparate proportions of c1/c0 (amplitudes of the shape function)
and k (the shape parameter) are computed. The numerical analysis is divided
into symmetrical and nonsymmetrical ones.

Linear buckling analysis of the homogeneous beam is performed. Varied
parameters of the elastic foundation and its symmetry/asymmetry are taken
into the consideration. The values of critical loads and buckling modes are ob-
tained. The finite element analysis is carried out with the use of SolidWorks soft-
ware. The compressive force is applied to the beam’s axial plane (Fig. 1). The
elastic foundation is substituted by 24 (symmetrical analysis) and 48 (nonsym-
metrical analysis) elastic supports with the values of stiffness calculated based
on formulae (2.3) and (2.4), respectively. The entire geometrical model includes
301 668 nodes and 108 881 finite elements. The size of an individual element is
set to 2 mm with a tolerance equal to 0.1 mm. SOLID elements are applied
to model the beam. The elements are defined in the form of the tetrahedron
by 10 nodes (a parabolic tetrahedral element with 4 corner nodes, 6 mid-side
nodes, and 6 edges) having three degrees of freedom at each node: translations
in the nodal x, y, and z orthogonal directions. The bonded contact between the
elements is adopted. Compatible mesh is used for the buckling analysis.
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The boundary conditions follow from the supports:
• pinned support – the displacements in two perpendicular directions have

been blocked,
• roller support – the displacements have been blocked in a perpendicular

direction to the plane, in which the support can be moved.

4.1. Symmetrical analysis

The first analysis concerned the symmetrical properties of the elastic foun-
dation (symmetry relative to the plane passing through the center of the beam’s
length). Initially, the values of the differences between the calculations obtained
with the use of the analytical and numerical methods did not differ significantly
in the analyzed range. For the amplitude of c(x) function equal to 0.1, the dif-
ference was equal to 1.93%, while for the maximum analyzed value c1/c0 = 0.8,
it was equal to 1.07% (k = 1). With the increase of the values of parameter k,
higher discrepancies in the values of critical loads are observed. This distinction
appeared for the highest analyzed values of the amplitude c1/c0 and resulted
from simplifications in the FE model. In the analytical solution, the model of the
elastic foundation is presented in the form of Eqs. (2.3) and (2.4). These equa-
tions are the mathematical description of the studied phenomenon. The shape
of the elastic foundation is influenced by the c1/c0 amplitude and the shape pa-
rameter k. The higher the value of these two parameters, the peak on the graph
of the function (2.3) or (2.4) is smaller and narrower, and thus it can be easily
omitted in numerical calculations.

The investigation of the results for the values of parameter k indicates high
compatibility between analytical and numerical calculations. Both for the mini-
mum and maximum values of parameters k and c1/c0, the difference has not al-
tered in a significant way. In the entire range of research, the difference between
the results (analytical and numerical) did not exceed 3.2%, while for the para-
meter k the highest difference was equal to 9.5%. Sample results of the conducted
investigation are presented in Tables 4–7.

Table 4. The values of critical loads for the beam on the elastic foundation with variable
properties obtained with the use of analytical and numerical solution (k = 5).

c1/c0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F analytical
0,CR [kN] 43.820 42.481 40.941 39.110 36.949 34.703 32.444 29.466

FFE
0,CR [kN] 43.029 41.866 40.431 38.727 36.738 34.364 31.572 28.079

δ [%] 1.81 1.45 1.25 0.98 0.57 0.98 2.69 4.71
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Table 5. The values of critical loads for the beam on the elastic foundation with variable
properties obtained with the use of analytical and numerical solution (k = 15).

c1/c0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F analytical
0,CR [kN] 44.271 43.412 42.337 41.262 39.584 37.849 36.115 34.381

FFE
0,CR [kN] 43.386 42.669 41.750 40.625 38.940 36.895 34.380 31.204

δ [%] 2.0 1.71 1.39 1.54 1.63 2.52 4.8 9.24

Table 6. The values of critical loads for the beam on the elastic foundation with variable
properties obtained with the use of analytical and numerical solution (k = 30).

c1/c0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F analytical
0,CR [kN] 44.509 43.892 43.190 42.400 41.054 39.614 38.173 36.733

FFE
0,CR [kN] 43.556 43.087 42.503 41.577 40.113 38.317 36.110 33.396

δ [% ] 2.14 1.83 1.59 1.94 2.29 3.27 5.4 9.08

Table 7. The values of critical loads for the beam on the elastic foundation with variable
properties obtained with the use of analytical and numerical solution (k = 50).

c1/c0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

F analytical
0,CR [kN] 44.675 44.223 43.771 43.102 41.814 40.526 39.238 37.949

FFE
0,CR [kN] 43.664 43.351 42.977 42.092 40.813 39.252 37.363 35.092

δ [% ] 2.26 1.97 1.81 2.34 2.39 3.14 4.78 7.53

Based on the conducted research, it can be concluded that the buckling
modes of a homogeneous beam are similar to each other. The main objective of
the numerical analysis was to find the buckling modes as well as the values
of critical loads and compare them with the results obtained with the use of the
analytical solution. In most cases, this mode was the second buckling load for
the homogeneous beam. When it comes to investigating the evaluation of the
values of critical loads, the calculation and analysis of all buckling modes help
to find the weakest points of the FE model. According to this, the model can
be modified to prevent buckling in a given mode.

4.2. Nonsymmetrical analysis

The second analysis concerned the nonsymmetrical properties of the elastic
foundation. The function (2.3) has been supplemented with the parameter p –
the offset parameter – relative to one end of the beam (the value of the parameter
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for symmetrical analysis was equal to p = 0). Sample results of conducted studies
are presented in Tables 8–11.

Table 8. The values of critical loads for the beam on the elastic foundation with variable
properties obtained with the use of analytical and numerical solution (k = 1).

c1/c0 0.2 0.4 0.6 p

F analytical
0,CR [kN] 41.503 37.293 32.301

FFE
0,CR [kN] 40.549 36.321 31.092 0.1

δ [% ] 2.3 2.61 3.74

F analytical
0,CR [kN] 42.044 38.784 34.537

FFE
0,CR [kN] 40.341 35.888 30.591 0.2

δ [% ] 4.05 7.47 11.43

Table 9. The values of critical loads for the beam on the elastic foundation with variable
properties obtained with the use of analytical and numerical solution (k = 5).

c1/c0 0.2 0.4 0.6 p

F analytical
0,CR [kN] 42.721 40.118 36.579

FFE
0,CR [kN] 41.917 38.662 34.416 0.1

δ [% ] 1.88 3.63 5.91

F analytical
0,CR [kN] 43.267 41.407 39.547

FFE
0,CR [kN] 41.579 38.303 34.139 0.2

δ [% ] 3.9 7.5 13.67

Table 10. The values of critical loads for the beam on the elastic foundation with variable
properties obtained with the use of analytical and numerical solution (k = 10).

c1/c0 0.2 0.4 0.6 p

F analytical
0,CR [kN] 43.277 41.280 38.887

FFE
0,CR [kN] 42.341 39.823 38.990 0.1

δ [% ] 2.16 3.53 0.26

F analytical
0,CR [kN] 43.737 42.348 40.959

FFE
0,CR [kN] 44.489 44.348 44.291 0.2

δ [% ] 1.72 4.72 8.13
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Table 11. The values of critical loads for the beam on the elastic foundation with variable
properties obtained with the use of analytical and numerical solution (k = 15).

c1/c0 0.2 0.4 0.6 p

F analytical
0,CR [kN] 43.567 41.916 40.092

FFE
0,CR [kN] 45.078 45.053 45.023 0.1

δ [% ] 3.47 7.48 12.3

F analytical
0,CR [kN] 43.969 42.811 41.653

FFE
0,CR [kN] 45.100 45.099 45.099 0.2

δ [% ] 2.57 5.34 8.27

Throughout the conducted research, the difference between the results (ana-
lytical and numerical) did not exceed 13.67%. The peak on the graph of the
function c(x) for c1/c0 = 0.1 is the lowest, while for c1/c0 = 0.6 the function has
the highest peak (the deepest one). The form of the elastic foundation (narrow,
deep peak) is the main cause of errors in numerical method (especially in the
case of nonsymmetrical peak). If a calculation involves adding the high and low
number, the effect of the lower number may be lost if rounding off is applied.
During the nonsymmetrical analysis, the peak on the graph of the function c(x)
can be omitted by the software, especially for the highest values of the parameter
c1/c0.

The problem is solved for various sizes of finite elements. A satisfactory con-
vergence of the results is obtained, with a slight relative error in the software. In
addition, the other, completely different method (the Galerkin method) allowed
to obtain similar results. This fact proves the correctness of the methods used
in this work as well as the results obtained in calculations.

5. Conclusions

In the presented work, an original analytical solution for a homogeneous
beam on an elastic foundation was proposed. The elastic foundation was de-
scribed by a mathematical function. The shape of the elastic foundation was
conditioned by the form of the graph of the assumed function.

The subject of the presented investigation is the axially compressed beam
on an elastic foundation. The main objective of this work was the analysis of
critical loads of a homogeneous beam with variable (nonsymmetrical) mecha-
nical properties of the foundation. The work presents the original approach to
the problem of beams on elastic foundations. Original shape function, which
represents the shape of the foundation as well as the function of deflection
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were proposed. The critical values of loads were calculated. The examples of
calculations were shown. Moreover, the numerical FE analysis was performed.
Good agreement between the results obtained with both methods was observed.

For a nonsymmetrical beam, the highest values of critical loads can be
achieved for the highest values of parameter k and the lowest values of c1/c0
ratio. The value of parameter p was the variable. The values of critical loads
increased with the increase of the value of the offset parameter.
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