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The time varying hydromagnetic flow between two infinite parallel porous plates is studied
with heat transfer considering the Hall effect and temperature dependent physical properties.
An exponential decaying pressure gradient is imposed in the axial direction and an external
uniform magnetic field as well as a uniform suction and injection are applied perpendicular to
the horizontal plates. A numerical solution for the governing non-linear coupled set of equations
of motion and the energy equation is adopted. The effects of the Hall current and the tem-
perature dependent viscosity and thermal conductivity on both the velocity and temperature
distributions are investigated.
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1. Introduction

The flow of an electrically conducting fluid between infinite horizontal paral-
lel plates, known as Hartmann flow, has interesting applications in magnetohy-
drodynamic (MHD) power generators and pumps etc. Hartmann and Laza-
rus [1] investigated the effect of a transverse uniform magnetic field on the
flow of a viscous incompressible electrically conducting fluid between two infi-
nite parallel plates. Exact solutions for the velocity fields were developed [2–5]
under different physical effects. Some exact and numerical solutions for the heat
transfer problem are derived in [6]. Soundalgekar et al. [7, 8] examined the
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effect of Hall currents on the steady MHD Couette flow with heat transfer. The
temperatures of the two plates were assumed constant [7] or varying along the
plates in the direction of the flow [8]. Attia [9] examined the effect of Hall
current on the velocity and temperature fields of an unsteady Hartmann flow
with uniform suction and injection applied perpendicular to the plates.
In these studies the physical properties are assumed to be constant, however

it is known that some physical properties are functions of temperature and as-
suming constant properties is a good approximation as long as small differences
in temperature are involved. More accurate prediction for the flow and heat
transfer can be achieved by considering the variation of the physical proper-
ties with temperature [10]. Klemp et al. [11] studied the effect of temperature
dependent viscosity on the entrance flow in a channel in the hydrodynamic
case. Attia and Kotb [12] solved the steady MHD fully developed flow and
heat transfer between two parallel plates with temperature dependent viscosity
which has been extended to the transient state by Attia [13]. The influence of
the dependence of the physical properties on temperature in the MHD Couette
flow between parallel plates was studied [14, 15].
In this work, the unsteady Hartmann flow of a viscous incompressible elec-

trically conducting fluid is investigated with heat transfer. The viscosity and
thermal conductivity of the fluid are assumed to vary with temperature and
the Hall current is considered. The fluid is flowing between two electrically in-
sulating porous plates and is acted upon by an exponential decaying pressure
gradient. A uniform suction and injection and an external uniform magnetic
field are applied normal the surface of the plates. The two plates are kept at two
constant but different temperatures and the viscous and Joule dissipations terms
are included in the energy equation. This configuration is a good approximation
of some practical situations such as heat exchangers, flow meters, and pipes that
connect system components. The flow and temperature distributions of both the
fluid and dust particles are governed by the coupled set of the momentum and
energy equations. The coupled set of non-linear equations of motion and the
energy equation are solved numerically using finite differences to determine the
velocity and temperature fields.

2. Formulation of the problem

The fluid flow is between two infinite horizontal parallel plates located at
the y = ±h planes. The two plates are porous, insulating and kept at two
constant but different temperatures T1 for the lower plate and T2 for the upper
one with T2 > T1. An exponential decaying pressure gradient is imposed in the
axial x-direction and a uniform suction from above and injection from below,
with velocity v0, are applied impulsively at t = 0. A uniform magnetic field B0,
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assumed unaltered, is applied perpendicular to the plates in the positive y-
direction. The Hall effect is considered and accordingly, a z-component of the
velocity is initiated. The viscosity and thermal conductivity of the fluid depend
on temperature exponentially and linearly, respectively while the viscous and
Joule dissipations are not neglected in the energy equation. The fluid motion
starts from rest at t = 0, and the no-slip condition at the plates implies that
the fluid velocity has neither a z- nor an x-component at y = ±h. The initial
temperature of the fluid is assumed to be equal to T1 as the temperature of the
lower plate. Since the plates are infinite in the x- and z-directions, the physical
quantities do not change in these directions which leads to one-dimensional
problem.
The flow of the fluid is governed by the Navier–Stokes equation

(2.1) ρ
Dv

Dt
= −∇p+∇ · (µ∇v) + J ∧B0,

where ρ is the density of the fluid, µ is the viscosity of the fluid, J is the current
density, and v is the velocity vector of the fluid, which is given by

v = u(y, t)i+ v0j+ w(y, t)k.

If the Hall term is retained, the current density J is given by the generalized
Ohm’s law [4]

(2.2) J = σ(v ∧B0 − β(J ∧B0)),

where σ is the electric conductivity of the fluid and β is the Hall factor [4].
Equation (2.2) may be solved in J to yield

(2.3) J ∧B0 = − σB2
0

1 +m2
((u+mw)i+ (w −mu)k),

where m is the Hall parameter and m = σβB0. Thus, the two components of
the momentum equation (2.1) read

ρ
∂u

∂t
+ ρv0

∂u

∂y
= Ge−αt + µ

∂2u

∂y2
+

∂µ

∂y

∂u

∂y
− σB2

0

1 +m2
(u+mw),(2.4)

ρ
∂w

∂t
+ ρv0

∂w

∂y
= µ

∂2w

∂y2
+

∂µ

∂y

∂w

∂y
− σB2

0

1 +m2
(w −mu).(2.5)

It is assumed that the pressure gradient is applied at t = 0 and the fluid starts
its motion from rest. Thus

(2.6)1 t = 0: u = w = 0.
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For t > 0, the no-slip condition at the plates implies that

y = −h : u = w = 0,(2.6)2

y = h : u = w = 0.(2.6)3

The energy equation describing the temperature distribution for the fluid is
given by [15]

(2.7) ρcp
∂T

∂t
+ ρcpv0

∂T

∂y
=

∂

∂y

(
k
∂T

∂y

)

+ µ

[(
∂u

∂y

)2

+

(
∂w

∂y

)2
]
+

σB2
0

1 +m2
(u2 + w2),

where T is the temperature of the fluid, cp is the specific heat at constant
pressure of the fluid, and k is thermal conductivity of the fluid. The last two
terms in the right side of Eq. (2.7) represent the viscous and Joule dissipations
respectively.
The temperature of the fluid must satisfy the initial and boundary conditions,

(2.8)

t = 0: T = T1,

t > 0: T = T1, y = −h,

t > 0: T = T2, y = h.

The viscosity of the fluid is assumed to vary with temperature and is de-
fined as, µ = µ0f1(T ). By assuming the viscosity to vary exponentially with
temperature, the function f1(T ) takes the form [7], f1(T ) = exp(−a1(T − T1)).
In some cases a1 may be negative, i.e. the coefficient of viscosity increases with
temperature [7, 15]. Also the thermal conductivity of the fluid is varying with
temperature as k = k0f2(T ). We assume linear dependence for the thermal con-
ductivity upon the temperature in the form k = k0[1 + b1(T − T1)] [16], where
the parameter b1 may be positive or negative [16].
Introducing the following non-dimensional quantities,

(x̂, ŷ, ẑ) =
(x, y, z)

h
, t̂ =

tµ0

ρh2
,

Ĝ =
ρG

h2µ2
0

, (û, ŵ) =
(u,w)ρh

µ0
,

θ =
T − T1

T2 − T1
,
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where

f̂1(θ) = e−a1(T2−T1)θ = e−aθ, a is the viscosity variation parameter,

f̂2(θ) = 1 + b1(T2 − T1)θ = 1 + bθ, b is the thermal conductivity variation

parameter,

S = ρv0h/µ0 is the suction parameter,

Ha2 = σB2
0h

2/µ0, Ha is the Hartmann number,

Pr = µ0cp/k0 is the Prandtl number,

Ec = µ2
0/h

2cpρ
2(T2 − T1) is the Eckert number.

Equations (2.4) to (2.8) read (the hats are dropped for simplicity)

∂u

∂t
+ S

∂u

∂y
= Ge−αt + f1(θ)

∂2u

∂y2
+

∂f1(θ)

∂y

∂u

∂y
− Ha2

1 +m2
(u+mw),(2.9)

∂w

∂t
+ S

∂w

∂y
= f1(θ)

∂2w

∂y2
+

∂f1(θ)

∂y

∂w

∂y
− Ha2

1 +m2
(w −mu),(2.10)

t = 0: u = w = 0,

t > 0: y = −1, u = w = 0,(2.11)

t > 0: y = 1, u = w = 0,

∂θ

∂t
+ S

∂θ

∂y
=

1

Pr
f2(θ)

∂2θ

∂y2
+

1

Pr

∂f2(θ)

∂y

∂θ

∂y
(2.12)

+ Ec f1(θ)

[(
∂u

∂y

)2

+

(
∂w

∂y

)2
]
+
EcHa2

1 +m2
(u2 +w2),

t = 0: θ = 0,

t > 0: θ = 0, y = −1,(2.13)

t > 0: θ = 1, y = 1.

Equations (2.9), (2.10), and (2.12) represent a system of coupled non-linear
partial differential equations which are solved numerically under the initial and
boundary conditions (2.11) and (2.13) using the method of finite differences.
A linearization technique is first applied to replace the nonlinear terms at a lin-
ear stage, with the corrections incorporated in subsequent iterative steps until
convergence is reached. Then the Crank–Nicolson implicit method is used at two
successive time levels [17]. An iterative scheme is used to solve the linearized
system of difference equations. The solution at a certain time step is chosen as an
initial guess for next time step and the iterations are continued till convergence,
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within a prescribed accuracy. Finally, the resulting block tridiagonal system is
solved using the generalized Thomas-algorithm [17]. Finite difference equations
relating the variables are obtained by writing the equations at the mid point of
the computational cell and then replacing the different terms by their second or-
der central difference approximations in the y-direction. The diffusion terms are
replaced by the average of the central differences at two successive time-levels.
The computational domain is divided into meshes each of dimension ∆t and ∆y
in time and space, respectively. We define the variables A = ∂u/∂y, B = ∂w/∂y
and H = ∂θ/∂y to reduce the second order differential equations (2.9), (2.10)
and (2.12) to first-order differential equations which take the form

(2.14)
(
ui+1,j+1−ui,j+1+ui+1,j−ui,j

2

)
+S

(
Ai+1,j+1+Ai,j+1+Ai+1,j+Ai,j

4

)

= G exp

[
−α

(
ti+1 + ti

2

)]
+

(
f1(θ)i,j+1 + f1(θ)i,j

2

)

·
(
(Ai+1,j+1 +Ai,j+1)− (Ai+1,j +Ai,j)

2∆y

)
+

(
f1(θ)i,j+1 − f1(θ)i,j

∆y

)

·
(
Ai+1,j+1 +Ai,j+1 +Ai+1,j +Ai,j

4

)

− Ha2

1 +m2

(
ui+1,j+1 + ui,j+1 + ui+1,j + ui,j

4

)

− mHa2

1 +m2

(
wi+1,j+1 + wi,j+1 + wi+1,j + wi,j

4

)
,

(2.15)
(
wi+1,j+1−wi,j+1+wi+1,j−wi,j

2

)
+S

(
Bi+1,j+1+Bi,j+1+Bi+1,j+Bi,j

4

)

=

(
f1(θ)i,j+1 + f1(θ)i,j

2

)(
(Bi+1,j+1 +Bi,j+1)− (Bi+1,j +Bi,j)

2∆y

)

+

(
f1(θ)i,j+1 − f1(θ)i,j

∆y

)(
Bi+1,j+1 +Bi,j+1 +Bi+1,j +Bi,j

4

)

− Ha2

1 +m2

(
wi+1,j+1 + wi,j+1 + wi+1,j + wi,j

4

)

+
mHa2

1 +m2

(
ui+1,j+1 + ui,j+1 + ui+1,j + ui,j

4

)
,
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(2.16)
(
θi+1,j+1−θi,j+1+θi+1,j−θi,j

2∆t

)
+S

(
Hi+1,j+1+Hi,j+1+Hi+1,j+Hi,j

4

)

=

(
f2(θ)i,j+1 + f2(θ)i,j

2Pr

)(
(Hi+1,j+1 +Hi,j+1)− (Hi+1,j +Hi,j)

2∆y

)

+

(
f2(θ)i,j+1 − f2(θ)i,j

∆y

)(
Hi+1,j+1 +Hi,j+1 +Hi+1,j +Hi,j

4Pr

)

− Ec
(
f1(θ)i,j+1 + f1(θ)i,j

2

)(
(Ai+1,j+1 +Ai,j+1 +Ai+1,j +Ai,j)

2

)

·
(
Ai+1,j+1 +Ai,j+1 +Ai+1,j +Ai,j

2

)

+ Ec
(
f1(θ)i,j+1 + f1(θ)i,j

2

)(
(Bi+1,j+1 +Bi,j+1 +Bi+1,j +Bi,j)

2

)

·
(
Bi+1,j+1 +Bi,j+1 +Bi+1,j +Bi,j

2

)

+
EcHa2

1 +m2

(
ui+1,j+1 + ui,j+1 + ui+1,j + ui,j

2

)

·
(
ui+1,j+1 + ui,j+1 + ui+1,j + ui,j

2

)

+
EcHa2

1 +m2

(
wi+1,j+1 + wi,j+1 + wi+1,j + wi,j

2

)

·
(
wi+1,j+1 + wi,j+1 + wi+1,j + wi,j

2

)
.

The variables with bars are given initial guesses from the previous time steps and
an iterative scheme is used at every time to solve the linearized system of differ-
ence equations. All calculations have been carried out for the non-dimensional
variables and parameters given by: G = 5, α = 1, Pr = 1, and Ec = 0.2.
Grid-independence studies show that the computational domain 0 < t < ∞
and −1 < y < 1 can be divided into intervals with step sizes ∆t = 0.0001 and
∆y = 0.005 for time and space respectively. Smaller step sizes do not show any
significant change in the results. Convergence of the scheme is assumed when
all of the unknowns u, w, A, B, θ and H for the last two approximations differ
from unity by less than 10−6 for all values of y in −1 < y < 1 at every time step.
Less than 7 approximations are required to satisfy this convergence criteria for
all ranges of the parameters studied here.
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3. Results and discussion

Figure 1 show the time development of the profiles of the velocity and tem-
perature for Ha = 1, m = 3, S = 0, a = 0.5 and b = 0.5. The velocity and
temperature distributions do not reach steady state monotonically as shown in
figure. They increase with time up till a maximum value and then decrease up to
the steady state under the effect of the decaying pressure gradient. The velocity
component u reaches steady state faster than w which, in turn, reaches steady
state faster than θ. This is expected as u is the source of w, while both u and
w are sources of θ.

a) b)

c)

Fig. 1. The evolution of the profile of: a) u; b) w; c) θ
(Ha = 3, m = 3, S = 1, a = 0.5, b = 0.5).

Figure 2 presents the time progression of the velocity component u at the
centre of the channel (y = 0) for different values of m and a and for b = 0,
S = 0 and Ha = 3. The figure indicates that u increases with m for all values
of a which can be attributed to the fact that an increment in m decreases the
effective conductivity (σ/(1 + m2)) and then decreases the magnetic resistive
force. The figure depicts also that the effect of a on u depends on the parameter
m and becomes more clear for higher m.
Figure 3 shows the time progression of the velocity component w at the

centre of the channel (y = 0) for different values of m and a and for b = 0,
S = 0 and Ha = 3. The figure indicates that w increases with increasing m for
all values of a as w is a result of the Hall effect. Although the Hall current is the
source for w, Fig. 3 shows that, at small times, for large values of m, an increase
in m produces a decrease in w. This can be understood by discussing the term
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a) b)

c)

Fig. 2. The evolution of u at y = 0 for various values of a and m:
a) m = 0; b) m = 1; c) m = 5 (Ha = 3, S = 0, b = 0).

a) b)

Fig. 3. The evolution of w at y=0 for various values of a and m:
a) m = 1; b) m = 5 (Ha = 3, S = 0, b = 0).

(−(w − mu)/(1 + m2)) in Eq. (2.10), which is the source term of w. At small
times w is very small and this term may be approximated to (mu/(1 + m2)),
which decreases with increasing m if m > 1. Figure 3 presents also that the time
required for w to reach its steady state value increases with increasing m and
that w and its steady state time increase as a result of increasing a.
Figure 4 shows the time progression of the temperature θ at the centre of the

channel for different values of m and a when b = 0 and Ha = 3. The variation
of θ with m is shown to depend on t. When m > 1, increasing m decreases
θ slightly at small times but increases θ at large times. This is because when
t is small, u and w are small and an increment in m results in an increase in
u but a decrease in w, so the Joule dissipation which is proportional also to
(1/(1 + m2)) decreases. When t is large, u and w increase with increasing m
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a) b)

c)

Fig. 4. The evolution of θ at y = 0 for various values of a and m:
a) m = 0; b) m = 1; c) m = 5 (Ha = 3, S = 0, b = 0).

and so do the Joule and viscous dissipations. It is difficult to predict the effect
of a on θ, because while increasing a increases the velocities and the velocity
gradients, it decreases the function f1. All the same, Fig. 4 shows that increasing
a increases θ and its effect is more apparent for higher values of m.
Figure 5 shows the time progression of θ at the centre of the channel for

different values of m and b when a = 0, S = 0 and Ha = 3. The figure indicates
that increasing b increases θ and its steady state time for all m. This occurs as

a) b)

c)

Fig. 5. The evolution of θ at y = 0 for various values of b and m:
a) m = 0; b) m = 1; c) m = 5 (Ha = 3, S = 0, a = 0).
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the centre of the channel acquires heat by conduction from the upper hot plate.
The parameter b has no significant effect on u or w in spite of the coupling
between the momentum and energy equations as depicted in figure.
Table 1 shows the dependence of the steady state temperature at the centre

of the channel on a and m for b = 0 and S = 0. It is observed that θ increases
with increasing m or a, as increasing m decreases damping forces and increasing
a decreases viscosity. Both effects increase u, w and their gradients and hence
the dissipations. Table 2 shows the variation of θ at the centre of the channel
with m and b for a = 0, S = 0 and Ha = 1. The dependence of θ on m is
explained by the same argument used in discussing Table 1. Table 2 indicates
that increasing b increases θ since the centre acquires temperature by conduction
from the upper hot plate. Table 3 presents the variation of θ with a and b for

Table 1. Variation of the steady state temperature θ at y = 0 for various values
of m and a (Ha = 1, b = 0).

θ m = 0.0 m = 0.5 m = 1.0 m = 3.0 m = 5.0

a = −0.5 0.5142 0.5144 0.5146 0.5152 0.5153

a = −0.1 0.5179 0.5183 0.5189 0.5201 0.5204

A = 0.0 0.5191 0.5195 0.5201 0.5271 0.5221

A = 0.1 0.5203 0.5207 0.5216 0.5235 0.5239

A = 0.5 0.5261 0.5269 0.5286 0.5333 0.5345

Table 2. Variation of the steady state temperature θ at y = 0 for various values
of m and b (Ha = 1, a = 0).

θ m = 0.0 m = 0.5 m = 1.0 m = 3.0 m = 5.0

b = −0.5 0.4562 0.4568 0.4579 0.4605 0.4611

b = −0.1 0.5077 0.5081 0.5089 0.5106 0.5109

B = 0.0 0.5191 0.5195 0.5201 0.5217 0.5221

B = 0.1 0.5295 0.5298 0.5304 0.5319 0.5322

B = 0.5 0.5609 0.5611 0.5616 0.5626 0.5628

Table 3. Variation of the steady state temperature θ at y = 0 for various values
of a and b (Ha = 1, m = 3).

θ a = −0.5 a = −0.1 a = 0.0 a = 0.1 a = 0.5

b = −0.5 0.4593 0.4579 0.4605 0.4634 0.4792

b = −0.1 0.5035 0.5089 0.5106 0.5125 0.5232

B = 0.0 0.5152 0.5201 0.5217 0.5235 0.5333

B = 0.1 0.5258 0.5304 0.5319 0.5335 0.5426

B = 0.5 0.5580 0.5615 0.5626 0.5639 0.5707
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large and small values of Ha and for large and small values of m and for Ha = 1
and m = 3. Increasing a or b increases θ as explained above.
Figures 6, 7, and 8 show the time progression of the velocity components u

and w and the temperature θ, respectively, at the centre of the channel (y = 0)
for different values of S and a when Ha = 3, m = 3, and b = 0. Figures 6 and 7
show that increasing S decreases both u and w for all a due to the convection
of the fluid from regions in the lower half to the centre which has higher fluid

a) b)

c)

Fig. 6. The evolution of u at y = 0 for various values of a and S:
a) S = 0; b) S = 1; c) S = 2 (Ha = 3, m = 3, b = 0).

a) b)

c)

Fig. 7. The evolution of w at y = 0 for various values of a and S:
a) S = 0; b) S = 1; c) S = 2 (Ha = 3, m = 3, b = 0).
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a) b)

c)

Fig. 8. The evolution of θ at y = 0 for various values of a and S:
a) S = 0; b) S = 1; c) S = 2 (Ha = 3, m = 3, b = 0).

speed. It is also indicated that the influence of the parameter a on u and w
becomes more apparent for lower values of the parameter S. Figure 8 indicates
that increasing the suction parameter decreases the temperature θ for all a as
a result of the influence of convection in pumping the fluid from the cold lower
half towards the centre of the channel.
Figure 9 shows the evolution of the temperature θ at the centre of the channel

(y = 0) for different values of S and b when Ha = 3,m = 3, and a = 0. The figure

a) b)

c)

Fig. 9. The evolution of θ at y = 0 for various values of b and S:
a) S = 0; b) S = 1; c) S = 2 (Ha = 3, m = 3, a = 0).
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indicates that increasing S decreases θ for all b. Figure 9a shows that, for S = 0,
the variation of θ with the parameter b depends on time as shown before in
Fig. 5c for higher values of the Hall parameter m. Figures 9b and 9c present an
interesting effect for the suction parameter in the suppression of the crossover
points of the θ − t graph corresponding to various values of b. It is also seen
that the effect of increasing the parameter b on θ is more pronounced for higher
values of suction velocity.

4. Conclusions

The time varying MHD flow between two parallel plates was investigated
considering the Hall current. The viscosity and thermal conductivity of the fluid
are assumed to be temperature dependent. The effects of the Hartmann number
Ha, the Hall parameter m, the viscosity variation parameter a and the thermal
conductivity variation parameter b on the velocity and temperature fields at
the centre of the channel are discussed. Introducing the Hall term gives rise to
a velocity component w in the z-direction and affects the main velocity u in
the x-direction. It is found that the parameter a has a marked effect on the
velocity components u and w for all values of m. However, the parameter b has
no significant effect on u or w. The results show that the effect of the parameter
m on θ depends on t. For small time t, θ decreases with increasing m, but when
t is large, or at steady state, θ increases with increasing m. The effect of the
parameter m on the steady state time is ignored.
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