Engineering Transactions, 69, 4, pp. 337–352, 2021
10.24423/EngTrans.1320.20210908

Texture Evolution of Magnesium Alloy AZ31B Subjected to Severe Plastic Deformation

Karol FRYDRYCH
Institute of Fundamental Technological Research, Polish Academy of Sciences
Poland

The paper presents the simulations of texture evolution of the AZ31B Mg alloy subjected to equal channel angular pressing (ECAP) and rotary swaging (RS) processes. It is shown that using the crystal plasticity (CP) parameters obtained by curve fitting conducted on simple mechanical tests with the aid of the evolutionary algorithm, it is possible to correctly predict the texture evolution in both processes. The influence of the initial texture as well as the CP parameters is discussed.
Keywords: crystal plasticity; rotary swaging; ECAP; magnesium alloys; AZ31B; severe plastic deformation
Full Text: PDF
Copyright © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

References

Fu H., Ge B., Xin Y., Wu R., Fernandez C., Huang J., Peng Q., Achieving high strength and ductility in magnesium alloys via densely hierarchical double contraction nanotwins, Nano letters, 17(10): 6117–6124, 2017, doi: 10.1021/acs.nanolett.7b02641.

Agnew S.R., Yoo M.H., Tomé C.N., Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y, Acta Materialia, 49(20), 4277–4289, 2001, doi: 10.1016/S1359-6454(01)00297-X.

Clausen B., Tomé C.N., Brown D.W., Agnew S.R., Reorientation and stress relaxation due to twinning: Modeling and experimental characterization for Mg, Acta Materialia, 56(11): 2456–2468, 2008, doi: 10.1016/j.actamat.2008.01.057.

Ebeling T., Hartig Ch., Laser T., Bormann R., Material law parameter determination of magnesium alloys, Materials Science and Engineering: A, 527(1–2): 272–280, 2009, doi: 10.1016/j.msea.2009.07.072.

Herrera-Solaz V., Llorca J., Dogan E., Karaman I., Segurado J., An inverse optimization strategy to determine single crystal mechanical behavior from polycrystal tests: Application to AZ31 Mg alloy, International Journal of Plasticity, 57: 1–15, 2014, doi: 10.1016/j.ijplas.2014.02.001.

Frydrych K., Modelling of microstructure evolution of high specific strength metals subjected to severe plastic deformation processes [in Polish: Modelowanie ewolucji mikrostruktury metali o wysokiej wytrzymałości właściwej w procesach intensywnej deformacji plastycznej], Ph.D. thesis, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland, 2017, doi: 10.13140/RG.2.2.32354.56008.

Frydrych K., Maj M., Urbański L., Kowalczyk-Gajewska K., Twinning-induced anisotropy of mechanical response of AZ31B extruded rods, Materials Science and Engineering: A, 771: 138610, 2020, doi: 10.1016/j.msea.2019.138610.

Frydrych K., Libura T., Kowalewski Z., Maj M., Kowalczyk-Gajewska K., On the role of slip, twinning and detwinning in magnesium alloy AZ31b sheet, Materials Science and Engineering A, 813: 141152, 2021, doi: 10.1016/j.msea.2021.141152.

Segal V.M., Methods of stress-strain analysis in metalforming, Sc.D. Thesis, Physical-Technical Institute Academy of Sciences of Belorus, Minsk, USSR, 1979.

Segal V.M., Materials processing by simple shear, Materials Science and Engineering: A, 197(2): 157–164, 1995, doi: 10.1016/0921-5093(95)09705-8.

Eddahbi M., del Valle J.A., Péerez-Prado M.T., Ruano O.A., Comparison of the microstructure and thermal stability of an AZ31 alloy processed by ECAP and large strain hot rolling, Materials Science and Engineering: A, 410–411: 308–311, 2005, doi: 10.1016/j.msea.2005.08.081.

Agnew S.R., Mehrotra P., Lillo T.M., Stoica G.M., Liaw, P.K., Texture evolution of five wrought magnesium alloys during route A equal channel angular extrusion: Experiments and simulations, Acta Materialia, 53(11): 3135–3146, 2005, doi: 10.1016/j.actamat.2005.02.019.

Agnew S.R., Mehrotra P., Lillo T.M., Stoica G.M., Liaw P.K., Crystallographic texture evolution of three wrought magnesium alloys during equal channel angular extrusion, Materials Science and Engineering: A, 408(1–2): 72–78, 2005, doi: 10.1016/j.msea.2005.07.052.

del Valle J.A., Carreño F., Ruano O.A., Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling, Acta Materialia, 54(16): 4247–4259, 2006, doi: 10.1016/j.actamat.2006.05.018.

Wu L., Stoica G.M., Liao H.-H, Agnew S.R., Payzant E.A., Wang G., Fielden D., Chen L., Liaw P.K., Fatigue-property enhancement of magnesium alloy, AZ31B, through equal-channel-angular pressing, Metallurgical and Materials Transactions A, 38(13): 2283–2289, 2007, doi: 10.1007/s11661-007-9123-8.

Beausir B., Suwas S., Tóth L.S., Neale K.W., Fundenberger J.-J., Analysis of texture evolution in magnesium during equal channel angular extrusion, Acta Materialia, 56(2): 200–214, 2008, doi: 10.1016/j.actamat.2007.09.032.

Al-Maharbi M., Karaman I., Beyerlein I.J., Foley D., Hartwig K.T., Kecskes L.J., Mathaudhu S.N., Microstructure, crystallographic texture, and plastic anisotropy evolution in an Mg alloy during equal channel angular extrusion processing, Materials Science and Engineering: A, 528(25–26): 7616–7627, 2011, doi: 10.1016/j.msea.2011.06.043.

Figueiredo R.B., Langdon T.G., Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP, Journal of Materials Science, 45(17): 4827– 4836, 2010, doi: 10.1007/s10853-010-4589-y.

Ostapovets, A., Šedá P., Jäger A., Lejček P., New misorientation scheme for a visco-plastic self-consistent model: Equal channel angular pressing of magnesium single crystals, International Journal of Plasticity, 29: 1–12, 2012, doi: 10.1016/j.ijplas.2011.07.006.

Seipp S., Wagner M.F.-X., Hockauf K., Schneider I., Meyer L.W., Hockauf M., Microstructure, crystallographic texture and mechanical properties of the magnesium alloy AZ31B after different routes of thermo-mechanical processing, International Journal of Plasticity, 35: 155–166, 2012, doi: 10.1016/j.ijplas.2012.03.007.

Gu C.F., Tóth L.S., Field D., Fundenberger J.J., Zhang Y.D., Room temperature equal-channel angular pressing of a magnesium alloy, Acta Materialia, 61(8): 3027–3036, 2013, doi: 10.1016/j.actamat.2013.01.063.

Karami M., Mahmudi R., The microstructural, textural, and mechanical properties of extruded and equal channel angularly pressed Mg-Li-Zn alloys, Metallurgical and Materials Transactions A, 44(8): 3934–3946, 2013, doi: 10.1007/s11661-013-1699-6.

Biswas S., Singh D.S., Beausir B., Tóth L.S., Suwas S., Thermal response on the microstructure and texture of ECAP and cold-rolled pure magnesium, Metallurgical and Materials Transactions A, 46(6): 2598–2613, 2015, doi: 10.1007/s11661-015- 2846-z.

Gzyl M., Rosochowski A., Pesci, R., Olejnik L., Yakushina, E., Wood P., Mechanical properties and microstructure of AZ31B magnesium alloy processed by I-ECAP, Metallurgical and Materials Transactions A, 45(3): 1609–1620, 2014, doi: 10.1007/s11661-013-2094-z.

Gzyl M., Rosochowski A., Boczkal S., Qarni M.J., The origin of fracture in the I-ECAP of AZ31B magnesium alloy, Metallurgical and Materials Transactions A, 46(11): 5275–5284, 2015, doi: 10.1007/s11661-015-3069-z.

Ostapovets A., Molnár P., Jäger A., Visco-plastic self-consistent modelling of a grain boundary misorientation distribution after equal-channel angular pressing in an AZ31 magnesium alloy, Journal of Materials Science, 48(5): 2123– 2134, 2013, doi: 10.1007/s10853-012-6987-9.

Hutchinson J.W., Bounds and self-consistent estimates for creep of polycrystalline materials, Proceedings of the Royal Society of London A, 348(1652): 101–127, 1976, doi: 10.1098/rspa.1976.0027.

Molinari A., Canova G.R., Ahzi S., A self-consistent approach of the large deformation polycrystal visco-plasticity, Acta Metallurgica, 35(12), 2983–2994, 1987, doi: 10.1016/0001-6160(87)90297-5.

Lebensohn R.A., Tomé C.N.: A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys, Acta Metallurgica et Materialia, 41(9), 2611– 2624, 1993, doi: 10.1016/0956-7151(93)90130-K.

Frydrych K., Kowalczyk-Gajewska K., Grain refinement in the equal channel angular pressing process: simulations using the crystal plasticity finite element method , Modelling and Simulation in Materials Science and Engineering, 26(6): 065015, 2018, doi: 10.1088/1361-651X/aad46d.

Frydrych K., Kowalczyk-Gajewska K., Prakash A., On solution mapping and remeshing in crystal plasticity finite element simulations: application to equal channel angular pressing, Modelling and Simulation in Materials Science and Engineering, 27(7): 075001, 2019, doi: 10.1088/1361- 651X/ab28e3.

Minakowski P., Fluid model of crystal plasticity: numerical simulations of 2-turn equal channel angular extrusion, Technische Mechanik, 34(3–4): 213–221, 2014, doi: 10.24352/UB.OVGU-2017-063.

Rong L., Nie Z., Zuo T., 3D finite element modeling of cogging-down rotary swaging of pure magnesium square billet – revealing the effect of high-frequency pulse stroking, Materials Science and Engineering A, 464(1–2): 28–37, 2007, doi: 10.1016/j.msea.2007.01.086.

Moumi E., Ishkina S., Kuhfuss B., Hochrainer T., Struss A., Hunkel M., 2D-simulation of material flow during infeed rotary swaging using finite element method, Procedia Engineering, 81: 2342–2347, 2014, doi: 10.1016/j.proeng.2014.10.331.

Knauer E., Freudenberger J., Marr T., Kauffmann A., Schultz L., Grain refinement and deformation mechanisms in room temperature severe plastic deformed Mg-AZ31, Metals, 3(3): 283–297, 2013, doi: 10.3390/met3030283.

Gan W.M., Huang Y.D., Wang R., Wang G.F., Srinivasan A., Brokmeier H.-G., Schell N., Kainer K. U., Hort N., Microstructures and mechanical properties of pure Mg processed by rotary swaging, Materials and Design, 63: 83–88, 2014, doi: 10.1016/j.matdes.2014.05.057.

Martynenko N.S., Luk'yanova E.A., Morozov M.M., Yusupov V.S., Dobatkin S.V., Estrin Y.Z., A study of the structure, mechanical properties and corrosion resistance of magnesium alloy WE43 after rotary swaging, Metal Science and Heat Treatment, 60(3–4): 253–258, 2018, doi: 10.1007/s11041-018-0269-3.

Tomé C.N., Lebensohn R.A., Manual for Code Visco-Plastic Self-Consistent (VPSC), Version 7b, Tech. rep., Los Alamos National Laboratory, 2007, https://public.lanl.gov/lebenso/VPSC7c_manual.pdf.

Kowalczyk-Gajewska K., Modelling of texture evolution in metals accounting for lattice reorientation due to twinning, European Journal of Mechanics – A/Solids, 29(1): 28– 41, 2010, doi: 10.1016/j.euromechsol.2009.07.002.

Kowalczyk-Gajewska, K., Micromechanical modelling of metals and alloys of high specific strength, IFTR Reports 1/2011, pp. 1–299, 2011.

Kowalczyk-Gajewska K., Sztwiertnia K., Kawałko, J., Wierzbanowski K., Wroński K., Frydrych K., Stupkiewicz S., Petryk H., Texture evolution in titanium on complex deformation paths: Experiment and modelling, Materials Science and Engineering: A, 637: 251–263, 2015, doi: 10.1016/j.msea.2015.04.040.

Frydrych K., Kowalczyk-Gajewska K.: Microstructure evolution in cold-rolled pure titanium: modeling by the three-scale crystal plasticity approach accounting for twinning, Metallurgical and Materials Transactions A, 49(8): 3610–3623, 2018, doi: 10.1007/s11661-018-4676-2.

Asaro R.J., Needleman A., Overview no 42 Texture development and strain hardening in rate dependent polycrystals, Acta Metallurgica, 33(6): 923–953, 1985, doi: 10.1016/0001-6160(85)90188-9.

Van Houtte P., Simulation of the rolling texture and shear texture of brass by the Taylor theory adapted for mechanical twinning, Acta Metallurgica, 26(4): 591–604, 1978, doi: 10.1016/0001-6160(78)90111-6.

Tomé C.N., Lebensohn R.A., Kocks U.F.: A model for texture development dominated by deformation twinning: application to zirconium alloy, Acta Metallurgica et Materialia, 39(11): 2667–2680, 1991, doi: 10.1016/0956-7151(91)90083-D.

Salem A.A., Kalidindi S.R., Semiatin S.L., Strain hardening due to deformation twinning in α-titanium: Constitutive relations and crystal plasticity modeling, Acta Materialia, 53(12): 3495–3502, 2005, doi: 10.1016/j.actamat.2005.04.014.

Hielscher R., Schaeben H., A novel pole figure inversion method: specification of the MTEX algorithm, Journal of Applied Crystallography, 41(6): 1024–1037, 2008, doi: 10.1107/S0021889808030112.

Biswas S., Brokmeier H.-G., Fundenberger J.-J., Suwas S.: Role of deformation temperature on the evolution and heterogeneity of texture during equal channel angular pressing of magnesium, Materials Characterization, 102: 98–102, 2015, doi: 10.1016/j.matchar.2015.02.021.

Krywopusk N.M., Kecskes L.J., Weihs T.P., Microstructural characterization of pure Mg and AZ31B processed by ECAE, Materials Characterization, 158: 109950, 2019, doi.org/10.1016/j.matchar.2019.109950.

Frydrych K., Kowalczyk-Gajewska K.,A three-scale crystal plasticity model accounting for grain refinement in FCC metals subjected to severe plastic deformations, Materials Science and Engineering: A, 658: 490–502, 2016, doi: 10.1016/j.msea.2016.01.101.

Frydrych K., Simulations of grain refinement in various steels using the three-scale crystal plasticity model, Metallurgical and Materials Transactions A, 50(10): 4913–4919, 2019, doi: 10.1007/s11661-019-05373-z.

Gzyl M.Z., Rosochowski A., Milenin A., Olejnik, L., Modelling microstructure evolution during equal channel angular pressing of magnesium alloys using cellular automata finite element method, Computer Methods in Materials Science, 13(2): 357–363, 2013, https://strathprints.strath.ac.uk/id/eprint/43378.




DOI: 10.24423/EngTrans.1320.20210908