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The paper deals with a proposition of obtaining an analytical solution for a beam on
elastic foundation. The main objective of presented work was stability analysis of the axially
compressed beam. The analytical model was proposed. Shape function for inhomogeneous
properties of the foundation was assumed. The Galerkin method was used to calculate the
values of critical forces. Main conditions have been defined. The critical loads as a function of
geometric and mechanical properties of the beam as well as inhomogeneous properties of the
elastic foundation have been calculated.
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1. Introduction

The construction-foundation interaction is a major problem in the design of
beams and other structures. The researchers describe several analytical models
of beams resting on elastic foundation. Most of them are so complex that it
reduces their practical application.

The problem of beams resting on elastic foundation is often found in the
design of variety of constructions, e.g. buildings (frames and constructions), rail-
roads, airports, highways, sports fields, parking lots, storage capacities as well
as dams and embankments. In addition, they have also found the application
in geotechnical engineering, marine engineering, bio-mechanics, harbour works,
buried gas pipeline systems as well as constructions of machine foundations. The
assumption of beams on an elastic foundation was first introduced and described
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by Winkler in 1867. The beam lies on elastic foundation when, under applied
external loads, the reaction forces of the foundation are proportional at every
point to the deflection of the beam at this point.

Beams supported on elastic foundation appear in a variety of technical prob-
lems. The derivation of the differential equation has been derived from the as-
sumption that the supporting medium obeys the Hooke’s law. In this theory, it is
assumed that the effect of the foundation is the same as that of a great number of
small springs and therefore that the reaction of the foundation is proportional to
the local deflection. If such a foundation is subjected to a partially distributed
surface loading, q, the springs will not be affected beyond the loaded region.
A number of studies in the area of foundation-structure interaction have been
conducted on the basis of Winkler hypothesis for its simplicity. The Winkler
model is very simple but it does not accurately represents the characteristics of
many practical foundations. One of the most important deficiencies of the Win-
kler model is that a displacement discontinuity appears between the loaded and
the unloaded part of the foundation surface. In practise, the foundation surface
does not show any discontinuity.

Buckling is characterized by a sudden sideways failure of a structural member
subjected to loads, where the compressive stress at the point of failure is less
than the ultimate compressive stress that the material is capable of withstand-
ing. Buckling analysis has been conducted by various amount of researchers.
The analysis included local and global buckling as well as pre- and post-buckling
state. Thermal post-buckling analysis of anisotropic beams on an elastic foun-
dation was described by Li and Qiao [1]. Deformation and buckling of a hinged
buckled beam resting on an elastic foundation and subjected to a midpoint force
was investigated by Hung and Chen [2]. In this work, all the initial stable
configurations under different elastic foundation stiffness were determined. The
analysis revealed that the initial stable configuration of the elastically supported
buckled beam may be symmetric or asymmetric with respect to the centre line.
The problems of buckling loads and natural frequencies of homogeneous beam
on an elastic foundation were studied by Zhang et al. [3] where exact solu-
tions were made. The comparison of analytical and numerical results related to
buckling of beams on an elastic foundation was presented by Griffiths and
Bee [4]. Static and dynamic analysis of buckling of functionally graded beam
on an elastic foundation, subjected to uniform temperature rise loading and uni-
form compression, was conducted by Ghiasian et al. [5]. Post-buckling analysis
of an axially loaded elastic beam resting on a linearly elastic medium was con-
sidered by Challamel [6]. The post-buckling analysis of thin-walled beams
subjected to an axial compressive load and resting on Winkler-type continu-
ous elastic foundation was formulated by Kameswara Rao and Mirza [7].
Post-buckling analysis of a column on an elastic foundation was discussed by
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Kounadis et al. [8]. The investigation revealed that the critical state of perfect
columns was a symmetric bifurcation point. Buckling analysis of elastic beams
embedded in granular media was carried out by Mojdehi et al. [9]. Buckling
loads of beams with different flexural rigidity, length, and boundary conditions
within granular media of different depths were determined. The energy method
was used to predict the buckling load with the use of a series of springs along
the length of the beam based on a beam on an elastic foundation. Good agree-
ment between the experimental results and the theoretical model was obtained.
Torsional post-buckling analysis of thin-walled open section clamped beam sup-
ported on Winkler-Pasternak foundation was performed by Kameswara Rao
and Bhaskara Rao [10]. The beam was subjected to an axial compressive
load. The point of bifurcation for a clamped beam was calculated. In addition,
the influence of continuous Winkler-Pasternak elastic foundation on the tor-
sional post-buckling behaviour of the beam was performed. The analysis of bend-
ing, buckling, and vibration of a carbon nanotube-reinforced composite beams
was described by Wattanasakulpong and Ungbhakorn [11]. The beams
resting on Pasternak elastic foundation, including a shear layer and Winkler
springs, were considered. It was found for buckling that the critical buckling
loads increase with the increase of the stiffness of the springs. Buckling anal-
ysis of nanocomposite Timoshenko beams reinforced by single-walled carbon
nanotubes and resting on an elastic foundation was investigated by Yas and
Samadi [12]. Critical buckling loads were obtained for the beams with different
boundary conditions. Post-buckling and nonlinear free vibration analysis of ge-
ometrically imperfect functionally graded beams resting on a nonlinear elastic
foundation was presented by Yaghoobi and Torabi [13]. The material prop-
erties of functionally graded beams were assumed to be graded in the thickness
direction. The assumptions of small strain and deformation have been used.
The analysis of a steady-state response of an uniform infinite Euler-Bernoulli
elastic beam resting on Pasternak elastic foundation was conducted by Froio
et al. [14]. The beam was subjected to a concentrated load moving at constant
velocity. The Fourier transform technique has been applied to derive an univer-
sal fully parametric analytical solution. In addition, analysis of the influence of
the moving load velocity, the Pasternak modulus, and the damping ratio on the
beam-foundation response has been made. The recursive differentiation method
(RDM) has been introduced and employed by Hassan and Doha [15] to ob-
tain analytical solutions for static and dynamic stability parameters of beams
resting on two-parameter foundations in various different end conditions. The
analysis revealed that the critical load of the first buckling mode was not always
the smallest critical load in contrast to that common fact in the case of beams
without foundation. The critical load of a higher mode may be smaller than the
critical load of a lower buckling mode. Post-buckling analysis of beams made
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of functionally graded materials, resting on a non-linear elastic foundation, and
subjected to an axial force was investigated by Yaghoobi and Torabi [16].
The influence of foundation parameters, axial force, end supports, and material
inhomogeneity on the post-buckling behaviour of beams has been taken under
consideration. The analysis revealed that an increase in the values of the shearing
layer stiffness results in decreasing the hardening characteristic of the beam.

The analysis of buckling of beams resting on an elastic foundation was pre-
sented by various amount of researchers. Most of them assume that the physical
model of the foundation is presented as a great number of small springs. This
assumption may cause some substantial difficulties in analytical solutions. In all
cases, the calculations are dependent on the characteristics of springs. The most
important factors that affect the properties of beams on an elastic foundation
are stiffness of springs, their position as well as their distance from the supports.
In addition, most problems related to beams on an elastic foundation are solved
with the use of Winkler model. The modelling of foundation with the use of Win-
kler theory was considered insufficient in various technical problems. The main
disadvantage is the fact that it overlooks the shear interaction between the spring
elements. The authors did not find the articles which present the elastic foun-
dation in a different form than the system of springs. In presented work, the
authors proposed new analytical solution for homogeneous beams on an elastic
foundation. The elastic foundation has been described by a mathematical func-
tion. The shape of elastic foundation is conditioned by the form of the graph of
the assumed function. In this case, the elastic foundation can be described by
any function which is in accordance with boundary conditions. Different shapes
of the foundations can be considered.

The main objective of presented work is to elaborate the mathematical model
of the homogeneous beam and to investigate the influence of geometric and
mechanical parameters of the beam as well as inhomogeneous parameters of the
elastic foundation on the behaviour of the structure. The main issue of this work
is the analysis and the calculation of the values of critical loads of homogeneous
beam with inhomogeneous properties of the foundation. Analytical model was
studied. The scheme of considered beam, geometry, and load is shown in Fig. 1.
The beam is subjected to compressive axial force F0. The work presents original

Fig. 1. The scheme of homogeneous beam.
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approach to the problem of beams on an elastic foundation. Original function of
deflection has been proposed.

2. analytical model of the beam

The model is derived with linear mechanical properties of the homogeneous
beam. The scheme of the beam is shown in Fig. 1.

Differential equation of the beam is as follows:

(2.1) EJz
d4v

dx4
+ F0

d2v

dx2
= −qf (x),

where qf (x) is the intensity of load – reaction of the elastic foundation
[

N
mm

]
and qf (x) = c(x) · v(x); c(x) is the property – foundation constant

[
N

mm2

]
, v(x)

– deflection of the beam [mm].
Therefore, the differential equation (2.1) can be written in the following form:

(2.2) EJz
d4v

dx4
+ F0

d2v

dx2
+ c(x) · v(x) = 0.

Shape function (Fig. 2) of inhomogeneous properties of the foundation is
assumed (property foundation function):

(2.3) c(x) = c0 − c1 sink(πξ),

where ξ = x
L (L – length of the beam) and 0� ξ � 1; k is a natural exponent.

Fig. 2. Shape function of c(x) parameter.

The higher value of parameter k, the narrower concavity the function has.
The higher value of c1 parameter, the deeper concavity the function has (Fig. 2).

The function of deflection of the homogeneous beam is assumed in the fol-
lowing form:

(2.4) v(x) = va · sin(mπξ) · sinn(πξ),

where m and n are natural numbers.
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It was assumed that the function (2.3) is symmetrical to both ends of the
beam (Fig. 2). Equation (2.4) can be written as follows:

(2.5) Φ(ξ) = π4EJz
va
L4
· f4(ξ) + F0 · π2

va
L2
· f2(ξ)

+ [c0 − c1sink(πξ)] · va sin(mπξ)sinn(πξ) = 0,

where f2 and f4 are derivatives of the Eq. (2.4) of second and fourth order
respectively.

The critical value of load (2.13) will be calculated using the Galerkin method.
The main condition of this method is as follows:

(2.6)
1ˆ

0

Φ(ξ) · sin(mπξ) sinn(πξ) dξ = 0.

General solution can be defined in the following form:

(2.7)
(π
L

)2
EJz · J4 − F0 · J2 +

(
L

π

)2

· J0 = 0,

from which

(2.8) F0 =
1

J2

[
J4 · FEULER +

(
L

π

)2

· J0

]
,

where

FEULER =
π2EJz
L2

,(2.9)

J4 =

(
1

π

)4
1ˆ

0

d4ṽ

dξ4
· sin(mπξ) · sinn(πξ) dξ,(2.10)

J2 = −
(

1

π

)2
1ˆ

0

d2ṽ

dξ2
· sin(mπξ) · sinn(πξ) dξ,(2.11)

J0 =

1ˆ

0

[
c0 − c1 sink(πξ)

]
[sin(mπξ) sinn(πξ)]2 dξ.(2.12)
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The critical load F0, cr (2.13) is a function of the geometrical and mechanical
properties of the homogeneous beam as well as inhomogeneous parameters of
the elastic foundation. The function is in the following form:

(2.13) F0, cr = min
m,n

J4 · FEULER +
(
L
π

2
)
· J0

J2

 .

Sample analytical values of critical loads (2.13) and stresses in a function of
variablem and n parameters were performed for the following data: c0 = 10 MPa,
E = 200 000 MPa, L = 1200 mm, Jz = 240 mm4, and A = 180 mm2. The results
for different proportions of c1/c0 (amplitudes of shape function) and k (shape
parameter) are presented in Tables 1–9.

The analytical calculations presented in Tables 1–9 refer to elastic foundation
with inhomogeneous mechanical properties. Comparing the elastic foundation with
constant mechanical properties (c1 = 0, then n = 0) and substitute to the
Eq. (2.13) the following data: J0 = 5, J2 = 32, J4 = 2048, and m = 8, critical

Table 1. Critical loads values for homogeneous beam with inhomogeneous properties
of elastic foundation for k = 1.

c1/c0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
F0, cr [kN] 43.221 41.316 39.404 36.779 34.154 31.530 28.179 24.585
σcr [MPa] 240.1 229.5 218.9 204.3 189.7 175.2 156.6 136.6

m 8 8 7 7 7 7 6 6
n 1 1 2 2 2 2 3 3

Table 2. Critical loads values for homogeneous beam with inhomogeneous properties
of elastic foundation for k = 3.

c1/c0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
F0, cr [kN] 43.602 42.078 40.364 38.279 35.868 33.490 30.972 27.402
σcr [MPa] 242.2 233.8 224.2 212.7 199.3 186.1 172.1 152.2

m 8 8 8 7 7 7 6 6
n 1 1 2 2 3 3 4 4

Table 3. Critical loads values for homogeneous beam with inhomogeneous properties
of elastic foundation for k = 5.

c1/c0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
F0, cr [kN] 43.820 42.481 40.941 39.110 36.949 34.703 32.444 29.466
σcr [MPa] 243.4 236 227.5 217.3 205.3 192.8 180.2 163.7

m 8 8 8 7 7 7 7 6
n 1 2 2 3 3 4 4 4
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Table 4. Critical loads values for homogeneous beam with inhomogeneous properties
of elastic foundation for k = 10.

c1/c0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
F0, cr [kN] 44.114 43.068 41.820 40.513 38.577 36.641 34.705 32.770
σcr [MPa] 245.1 239.3 232.3 225.1 214.3 203.6 192.8 182.1

m 8 8 8 7 7 7 7 7
n 1 2 2 4 4 4 4 4

Table 5. Critical loads values for homogeneous beam with inhomogeneous properties
of elastic foundation for k = 15.

c1/c0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
F0, cr [kN] 44.271 43.412 42.337 41.262 39.584 37.849 36.115 34.381
σcr [MPa] 246 241.2 235.2 229.2 219.9 210.3 200.6 191

m 8 8 8 8 7 7 7 7
n 1 2 2 2 4 4 4 4

Table 6. Critical loads values for homogeneous beam with inhomogeneous properties
of elastic foundation for k = 20.

c1/c0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
F0, cr [kN] 44.373 43.620 42.694 41.738 40.252 38.651 37.050 35.449
σcr [MPa] 246.5 242.3 237.2 231.9 223.6 214.7 205.8 196.9

m 8 8 8 8 7 7 7 7
n 1 1 2 2 4 4 4 4

Table 7. Critical loads values for homogeneous beam with inhomogeneous properties
of elastic foundation for k = 30.

c1/c0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
F0, cr [kN] 44.509 43.892 43.190 42.400 41.054 39.614 38.173 36.733
σcr [MPa] 247.3 243.8 240 235.6 228.1 220.1 212.1 204.1

m 8 8 8 8 7 7 7 7
n 1 1 2 2 4 4 4 4

Table 8. Critical loads values for homogeneous beam with inhomogeneous properties
of elastic foundation for k = 40.

c1/c0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
F0, cr [kN] 44.603 44.080 43.543 42.860 41.511 40.162 38.813 37.465
σcr [MPa] 247.8 244.9 242 238.1 230.6 223.1 215.6 208.1

m 8 8 8 7 7 7 7 7
n 1 1 2 4 4 4 4 4
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Table 9. Critical loads values for homogeneous beam with inhomogeneous properties
of elastic foundation for k = 50.

c1/c0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
F0, cr [kN] 44.675 44.223 43.771 43.102 41.814 40.526 39.238 37.949
σcr [MPa] 248.2 245.7 243.2 239.5 232.3 225.1 218 210.8

m 8 8 8 7 7 7 7 7
n 1 1 1 4 4 4 4 4

Fig. 3. The influence of k parameter and the c1/c0 ratio on critical loads values.

Fig. 4. The influence of c1/c0 ratio and k parameter on critical loads values.
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loads values were calculated. The values are the same as calculated on the basis
of Eq. (2.13) and referred to the inhomogeneous mechanical properties. The
critical load value for constant and inhomogeneous properties of the beam is
equal F ◦0, cr = 43.852 kN.

The results presented in the tables above are summarized in Figs 3 and 4.
It can be concluded that critical loads values are dependent on the values of
k parameter (shape parameter) and c1/c0 ratio (amplitudes of shape function).
The highest values of critical loads (2.13) can be obtained for the highest values
of k parameter and the lowest values of c1/c0 ratio. The highest value is equal
F ◦0, cr = 44.675 kN and was obtained for k = 50 and c1/c0 = 0.1.

3. Conclusions

The problem of beams resting on elastic foundation was presented by various
amount of researchers. They assume that the physical model of the foundation
is presented as a great number of small springs. In this case, the results of
calculations are dependent on the characteristics of springs. The article presents
new approach to the problem of beams resting on an elastic foundation. The
model of the foundation has been presented as a mathematical function which
is on accordance with boundary conditions. The elastic foundation can be freely
modeled. The only required condition is to apply the appropriate mathematical
equation in order to determine the shape of the foundation.

The main issue of this work is the analysis and estimation the critical loads
values of homogeneous beam on elastic foundation with inhomogeneous mechan-
ical properties. Differential equation of the beam, according to Winkler model,
was presented. Shape (of elastic foundation) and deflection functions were as-
sumed. The work presents original approach to the problem of beams on elastic
foundation. Original function of deflection (2.4) has been proposed. The criti-
cal loads values were calculated. The examples of calculations were shown. The
values were calculated numerically and they were the same as those calculated
on the basis of Eq. (2.13) and referred to the inhomogeneous mechanical prop-
erties. In order to increase the critical load value of the beam, k parameter has
to be increased. It must be noticed that analytical values of critical loads are
calculated in a function of variable m and n parameters. Therefore, appropriate
values must be chosen so that the results are consistent with Eq. (2.13).
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