Research Paper

Impact of Thermophoretic Transport of Al$_2$O$_3$ Nanoparticles on Viscoelastic Flow of Oil-Based Nanofluid over a Porous Exponentially Stretching Surface with Activation Energy

Christian John ETWIRE1, Ibrahim Yakubu SEINI2*, Rabiu MUSAH3
Oluwole Daniel MAKINDE4

1) Faculty of Mathematical Sciences
 University for Development Studies
 P.O. Box 24, Navrongo, UER, Ghana

2) School of Engineering
 University for Development Studies
 Nyankpala Campus, P.O. Box 1882, Tamale, Ghana
 *Corresponding Author e-mail: yakubuseini@yahoo.com

3) Faculty of Applied Sciences
 University for Development Studies
 P.O. Box 24, Navrongo, UER, Ghana

4) Faculty of Military Science
 Stellenbosch University
 Private Bag X2, Saldanha 7395, South Africa

The influence of thermophoretic transport of Al$_2$O$_3$ nanoparticles on heat and mass transfer in viscoelastic flow of oil-based nanofluid past porous exponentially stretching surface with activation energy has been examined. Similarity technique was employed to transform the governing partial differential equations into a coupled fourth-order ordinary differential equations which were reduced to a system of first-order ordinary differential equations and then solved numerically using the fourth-order Runge-Kutta algorithm with a shooting method. The results for various controlling parameters were tabulated and graphically illustrated. It was found that the thermophoretic transport of Al$_2$O$_3$ nanoparticles did not affect the rate of flow and heat transfer at the surface but it affected the rate of mass transfer of the nanofluid which decayed the solutal boundary layer thickness. This study also revealed that activation energy retards the rate of mass transfer which causes a thickening of the solutal boundary layer.

Key words: thermophoresis; activation energy; exponential stretching; deposition; nanofluid; thermophoretic.
Notations

\((x, y) \) – Cartesian coordinates,

\((u, v) \) – velocity components,

\(T_f \) – temperature of hot fluid,

\(T_\infty \) – free-stream temperature,

\(T_w \) – temperature of the sheet,

\(T \) – temperature of \(\text{Al}_2\text{O}_3 \) oil-based nanofluid,

\(k_f \) – thermal conductivity of oil,

\(k_s \) – thermal conductivity of \(\text{Al}_2\text{O}_3 \),

\(C \) – concentration of \(\text{Al}_2\text{O}_3 \) oil-based nanofluid,

\(C_\infty \) – free stream concentration of \(\text{Al}_2\text{O}_3 \) oil-based nanofluid,

\(D_B \) – Brownian diffusion coefficient,

\(c_p \) – specific heat at constant pressure,

\(k' \) – permeability of the porous media,

\(K^* \) – permeability parameter,

\(k_0 \) – coefficient of viscoelasticity,

\(\text{Le} \) – Lewis number,

\(h_f \) – heat transfer coefficient,

\(\text{Pr} \) – Prandtl number,

\(C_f \) – skin-friction coefficient,

\(\text{Re} \) – Reynolds number,

\(\text{Nu} \) – Nusselt number,

\(\text{Sh} \) – Sherwood number,

\(q_w \) – wall heat flux,

\(q_m \) – wall mass flux,

\(\dot{q} \) – volumetric heat generation,

\(\text{Bi} \) – Biot number,

\(E \) – activation energy parameter,

\(E_c \) – Eckert number,

\(U_\infty \) – free stream velocity of \(\text{Al}_2\text{O}_3 \) oil-based nanofluid,

\(n \) – fitted rate constant,

\(V_T \) – thermophoretic deposition velocity,

\(S \) – suction parameter.

Greek Symbols

\(\tau_w \) – wall shear stress,

\(\mu_{nf} \) – dynamic viscosity of \(\text{Al}_2\text{O}_3 \) oil-based nanofluid,

\(\nu_f \) – kinematic viscosity of oil,

\(\rho_{nf} \) – density of \(\text{Al}_2\text{O}_3 \) oil-based nanofluid,

\(\alpha_f \) – thermal diffusivity of oil,

\(\rho_f \) – density of oil,

\(\rho_s \) – density of \(\text{Al}_2\text{O}_3 \),

\(\phi \) – solid volume fraction of \(\text{Al}_2\text{O}_3 \),

\((\rho_{cp})_{nf} \) – heat capacitance of \(\text{Al}_2\text{O}_3 \) oil-based nanofluid,
ψ – stream function,
α – variable viscoelastic parameter of Al$_2$O$_3$ oil-based nanofluid,
λ – internal heat generation parameter,
β – chemical reaction rate parameter,
σ – thermal conductivity parameter of Al$_2$O$_3$ oil-based nanofluid,
Γ – thermophoresis parameter,
ω – temperature difference parameter.

1. Introduction

Thermophoretic deposition of particles in lubricants is a major concern to automobile engineers. The accumulation of these particles depletes the lifetime performance of lubricants and increases their viscosity index leading to high fuel consumption. Thermophoresis is a phenomenon observed in mixtures of mobile particles where the different particle types exhibit different responses to the force of a temperature gradient known as thermophoretic force. This force is used in precipitators, manufacture of optical fiber in vacuum deposition processes and transport mechanism in fouling [1]. In addition, it is useful in accelerating drug delivery, manipulating single biological macro-molecules and separating different polymer particles in field flow fractionation [2].

Transport of thermophoretic particles occurs in many industrial and engineering processes such as exhaust gas recirculation coolers, electrical conduction, combustion chambers, and solar cells [3]. It is also common in tribological coating, thermoelectric devices, energy conservation and generation, semi-conductor devices, ion plating, sputter deposition, metallized film, molecular vapor deposition, magnetic films, diffusion barrier and lamp reflectors [4]. As a result, current research is directed at studying the effects of thermophoretic particle deposition phenomena and its impact on the heat and mass transfer characteristics of flow.

Thermophoresis and chemical reaction effects on magnetohydrodynamic (MHD) Darcy-Forchheimer mixed convection in a fluid saturated porous media with thermal-diffusion and diffusion-thermo effects were studied and reported in [5]. The effects of Brownian motion and thermophoresis on MHD mixed convection stagnation-point flow of a nanofluid toward a stretching vertical sheet in porous media with variable viscosity reacting flow were presented in [6]. The thermophoretic effect on a rotating cone in a porous medium with thermal radiation was reported in [7]. The effect of Brownian motion and thermophoresis on a nonlinear stretching permeable sheet in a nanofluid was reported by Falana et al. [8]. Raju et al. [9] investigated the thermophoresis effect on a radiating inclined permeable moving plate in the presence of chemical reaction and heat absorption.
Activation energy is a requirement in the initiation of a chemical reaction. It is the minimum amount of energy a reactive species must possess in order to undergo a specific reaction and is a very useful concept in chemical, geothermal and petrochemical engineering processes. The problem of heat and mass transfer mechanisms with activation energy has attracted the considerable interest of researchers. The boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy was studied in [10], the effects of exothermic chemical reaction with Arrhenius activation energy in [11] and the non-uniform heat source or sink on MHD stagnation point flow of a Casson fluid over a nonlinear stretching sheet with variable fluid properties and slip conditions in [12]. The MHD mixed convection stagnation point flow with binary chemical reaction and activation energy over an inclined stretching sheet and Carreau fluid was presented in [13].

In the automobile industry, the depositions of particles into lubricants occur as a result of soot seeping into the engine oil sump through the piston rings. The high concentration of particulate in the engine oil erodes lubricated surfaces, imparting on the heat transfer within the lubrication boundary due to increase viscosity and friction effects. This causes severe engine wear which could lead to low engine performance. With the discovery of nanotechnology [14], the thermophysical properties of fluids are improved by introducing nano-sized particles into the fluid [15]. Similarly, the effect of Brownian motion and thermophoresis on nanofluids stretching in Jaffrey fluid model was discussed in [16] while the activation energy in Couette-Poiseuille flow of a nanofluid in the presence of chemical reaction and convective boundary conditions was reported in [17]. Variable thermophysical properties of thermophoretic viscoelastic fluid flow past a vertical surface were reported in [18].

From the available literature, the influence of thermophoretic particle deposition on heat and mass transfer characteristics of oil-based nanofluid is limited. The convectional thermophoresis particle depositions in oil lead to low thermal conductivity, particle sedimentation and excessive pressure drop.

This study examines the impact of thermophoretic transport of Al$_2$O$_3$ nanoparticles on heat and mass transfer in a viscoelastic flow of oil-based nanofluid over an exponentially stretching porous surface with activation energy.

2. Mathematical model

Consider a two-dimensional steady incompressible flow of dielectric and chemically reacting viscoelastic Al$_2$O$_3$ oil-based nanofluid over a permeable exponentially stretching plate with heat and mass transfer by convection in the presence of thermophoretic transport and activation energy. The x-axis is taken along the direction of the porous exponentially stretching plate while the y-axis is
taken normal to it (Fig. 1). A stream of cold Al$_2$O$_3$ oil-based nanofluid at the free stream temperature T_∞ moves over the upper surface of the plate with a uniform free stream velocity U_∞ and free stream concentration C_∞ while the lower surface of the plate is heated by convection from a hot fluid at temperature $T_f (T_W = T_\infty + T_0 e^{x/2L})$, which provides a heat transfer coefficient h_f with concentration $C_W = C_\infty + C_0 e^{x/2L}$. The Al$_2O_3$ oil-based nanofluid in contact with the lower surface of the plate generates heat internally at a volumetric rate \dot{q}. The velocity of the exponentially stretching plate is $u_w(x) = U_0 e^{x/L}$ directed along the x-axis.

It is assumed that both the oil and Al$_2$O$_3$ nanoparticles are in thermal equilibrium with no slip between them. The variation of density in the Al$_2$O$_3$ oil-based nanofluid is taken into account using the Boussinesq approximation. The continuity, momentum and energy equations modeling the flow problem are

\begin{align}
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} &= 0, \\
\frac{u}{\partial x} + \frac{v}{\partial y} &= \frac{\mu_{nf}}{\rho_{nf}} \frac{\partial^2 u}{\partial y^2} - \frac{\mu_{nf}}{\rho_{nf} k'} u - \frac{k_0}{\rho_{nf}} \left(\frac{v \partial^3 u}{\partial y^3} + u \frac{\partial^3 u}{\partial x \partial y^2} + \frac{\partial u}{\partial x} \frac{\partial^2 u}{\partial y^2} - \frac{\partial u}{\partial y} \frac{\partial^2 u}{\partial x \partial y} \right), \\
\frac{u}{\partial x} + \frac{v}{\partial y} &= \frac{1}{(\rho c_p)_{nf}} \frac{\partial}{\partial y} \left(k_{nf}(T) \frac{\partial T}{\partial y} \right) + \frac{\mu_{nf}}{(\rho c_p)_{nf}} \left(\frac{\partial u}{\partial y} \right)^2 \\
&\quad + \frac{k_0}{(\rho c_p)_{nf}} \left(u \frac{\partial^2 u}{\partial x \partial y} + v \frac{\partial^2 u}{\partial y^2} \right) + \dot{q},
\end{align}
\[
(2.4) \quad u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D_B \frac{\partial^2 C}{\partial y^2} - K_r^2 (C - C_\infty) \left(\frac{T}{T_\infty} \right)^n e \left(- \frac{E_a}{K^* T} \right) \\
- \frac{\partial}{\partial y} (V_T (C - C_\infty)),
\]

where \(u \) and \(v \) are \(x \) and \(y \) components of velocities respectively, \(\mu_{nf} \) is the dynamic viscosity of Al\(_2\)O\(_3\) oil-based nanofluid, \(k_{nf}(T) \) is the temperature-dependent thermal conductivity of Al\(_2\)O\(_3\) oil-based nanofluid, \(\rho_{nf} \) is the density of Al\(_2\)O\(_3\) oil-based nanofluid, \(k' \) is the permeability of the porous media, \(k_0 \) is the coefficient of viscoelasticity, \(T \) is the temperature of Al\(_2\)O\(_3\) oil-based nanofluid, \((\rho c_p)_{nf} \) is the heat capacitance of Al\(_2\)O\(_3\) oil-based nanofluid, \(C \) is the concentration of Al\(_2\)O\(_3\) oil-based nanofluid, \(D_B \) is the Brownian diffusion coefficient, and \(V_T \) is the thermophoretic deposition velocity. The term \(K_r^2 (C - C_\infty) \left(\frac{T}{T_\infty} \right)^n e \left(- \frac{E_a}{K^* T} \right) \) in Eq. (2.4) denotes Arrhenius expression where \(K_r^2 \) is the chemical reaction rate constant, \(E_a \) is the activation energy, \(K^* = 8.61 \cdot 10^{-5} \text{ eV/K} \) is the permeability parameter, and \(n \) is the fitted rate constant which lies in the range \(-1 < n < 1\).

The boundary conditions on the surface of the plate are

\[
(2.5) \quad u(x, 0) = U_0 e^{x/L}, \quad v(x, 0) = -v_w, \quad -k_f \frac{\partial T}{\partial y} (x, 0) = h_f [T_w - T(x, 0)], \quad C = C_w \quad \text{at} \quad y = 0.
\]

The boundary conditions far away from the surface of the plate are

\[
(2.6) \quad u(x, \infty) \to 0, \quad \frac{\partial u(x, \infty)}{\partial y} \to 0, \quad T(x, \infty) \to T_\infty, \quad C \to C_\infty, \quad \text{as} \quad y \to \infty.
\]

The temperature-dependent thermal conductivity \(k_{nf}(T) \) and the thermal thermophoretic deposition \(V_T \) are defined respectively as

\[
(2.7) \quad k_{nf}(T) = k_{nf} \left(1 + \frac{T - T_\infty}{T_w - T_\infty} \right) \quad \text{and} \quad V_T = -\gamma v_f \frac{\partial T}{T_r \partial y},
\]

where \(k_{nf} \) is the thermal conductivity oil-based nanofluid, \(\gamma \) is the thermophoresis coefficient, and \(v_f \) is the kinematic viscosity of the oil. The properties of the nanofluid with spherical sized Al\(_2\)O\(_3\) nanoparticles are defined in [19] as

\[
(2.8) \quad \mu_{nf} = \frac{\mu_f}{(1 - \varphi)^{2.5}}, \quad k_{nf} = \frac{(k_s + 2k_f) - 2\varphi (k_f - k_s)}{(k_s + 2k_f) + \varphi (k_f - k_s)}, \quad \frac{(\rho c_p)_{nf}}{\rho_{nf}} = \frac{(1 - \varphi) (\rho c_p)_f + \varphi (\rho c_p)_s}{\rho_f + \varphi \rho_s},
\]
where \(\rho_f \) and \(\rho_s \) are the densities of the oil and solid volume fraction of Al\(_2\)O\(_3\) respectively, \(\varphi \) is the solid volume fraction of Al\(_2\)O\(_3\), \(k_f \) and \(k_s \) are the thermal conductivities of the oil and Al\(_2\)O\(_3\) nanoparticles respectively, and \(\mu_f = v_f \rho_f \) is the dynamic viscosity of the oil.

3. Similarity Transformations

The stream function \(\psi(x, y) \) is defined in the usual way as

\[
(3.1) \quad u = \frac{\partial \psi}{\partial y} \quad \text{and} \quad v = -\frac{\partial \psi}{\partial x}.
\]

Equation (3.1) satisfies the continuity Eq. (2.1) automatically.

A similarity solution of Eqs (2.1)–(2.5) is achieved by defining an independent dimensionless variable \(\eta \), a stream function \(\psi \), in terms of a dependent variable \(f(\eta) \), a dimensionless temperature \(\theta(\eta) \) and a dimensionless concentration \(\phi(\eta) \) as

\[
(3.2) \quad \eta = y \sqrt{\frac{U_0}{2Lv_f}} e^{x/2L}, \quad \psi = \sqrt{2Lv_f U_0} f(\eta) e^{x/2L},
\]

\[
\theta(\eta) = \frac{T - T_\infty}{T_0} e^{x/2L}, \quad \phi(\eta) = \frac{C - C_\infty}{C_0} e^{x/2L}.
\]

Substituting relevant terms into Eqs (2.1)–(2.5) yields the coupled ordinary differential equations as

\[
(3.3) \quad \frac{\rho_f}{(1 - \varphi)^{2.5} \left[(1 - \varphi) \rho_f + \varphi \rho_s \right]} f'''' + f f'' - 2 f'^2 - 2K^* \frac{\rho_f}{(1 - \varphi)^{2.5} \left[(1 - \varphi) \rho_f + \varphi \rho_s \right]} f'
\]

\[- \frac{\rho_f \alpha}{(1 - \varphi) \rho_f + \varphi \rho_s} \left[3 f' f'' - \frac{3}{2} f'^2 - \frac{1}{2} f f''' \right] = 0,
\]

\[
(3.4) \quad \frac{(k_s + 2k_f) - 2\varphi (k_f - k_s)}{(k_s + 2k_f) + \varphi (k_f - k_s)} \left[(1 + \sigma \theta) \theta'' + \sigma \theta'^2 \right]
\]

\[+ \frac{(1 - \varphi)(\rho c_p)_f + \varphi (\rho c_p)_s}{(\rho c_p)_f} \Pr (f \theta' - f' \theta)
\]

\[+ \frac{\Pr Ec}{(1 - \varphi)^{2.5}} f'' + \Pr Ec \alpha \left(\frac{3}{2} f' f'' - \frac{1}{2} f f'' f' \right) + 2 \lambda e^{-\eta} = 0,
\]
\[\phi'' - \text{Pr} \, Le \, f' \phi + \text{Pr} \, Le \, f \phi' - 2 \, \text{Pr} \, Le \, \beta (1 + \omega \theta)^n \, e^{-\frac{A}{1 + \omega \theta}} \phi + \text{Pr} \, Le \, \Gamma (\theta' \phi' + \phi \theta'') = 0 \]

subject to the boundary conditions:

\[f'(0) = 1, \quad f(0) = S, \quad \theta'(0) = -\text{Bi}(1 - \theta(0)), \quad \phi(0) = 1, \quad \text{at} \quad \eta = 0, \]

\[f'(\infty) \rightarrow 0, \quad f''(\infty) \rightarrow 0, \quad \theta(\infty) \rightarrow 0, \quad \phi(\infty) \rightarrow 0, \quad \text{as} \quad \eta \rightarrow \infty, \]

where the prime symbol denotes differentiation with respect to \(\eta \), \(K^* = \frac{\nu f L}{k^\prime U_0 e^{x/L}} \) is the permeability parameter, \(\alpha = \frac{k_0 U_0 e^{x/L}}{L \mu_f} \) is the local viscoelastic parameter, \(S = \frac{V_w}{\sqrt{\frac{U_0}{2L \nu_f} e^{x/2L}}} \) is the local suction parameter, \(\text{Pr} = \frac{\nu_f}{\alpha_f} \) is the Prandtl number, \(\text{Bi} = \frac{h_f}{k_f \sqrt{\frac{U_0}{2L \nu_f} e^{x/2L}}} \) is the local Biot number, \(\lambda = \frac{L \dot{q}_v e^{x/2L}}{k_f T_0 U_0 e^{x/2L}} \) is the local internal heat generation parameter, \(\beta = \frac{L K^2 e^{x/2L} r}{U_0 e^{x/L}} \) is the local chemical reaction rate parameter, \(\text{Le} = \frac{\alpha_f}{D_B} \) is the Lewis number, \(\sigma = \frac{Q T_0 e^{x/2L}}{T_w - T_\infty} \) is the local thermal conductivity parameter, \(\Gamma = \frac{T_0 e^{x/2L}}{T_r} \) is the local thermophoresis parameter, \(\omega = \frac{T_0 e^{x/2L}}{T_\infty} \) is the local temperature difference parameter, \(E = \frac{E_a}{k_f T_\infty} \) is the activation energy parameter, and \(\text{Ec} = \frac{U_0^2 e^{3x/2L}}{k_f (C_p f)} \) is the local Eckert number.

The parameters of engineering importance are the skin-friction coefficient \((C_f) \), the Nusselt number \((\text{Nu}) \) and the Sherwood number \((\text{Sh}) \) which are defined respectively as

\[C_f = \frac{\tau_w}{\rho_f u_w^2}, \quad \text{Nu} = \frac{x q_w}{k_f (T_w - T_\infty)}, \quad \text{and} \quad \text{Sh} = \frac{x q_m}{D_B (C_w - C_\infty)}, \]

where \(\tau_w \) is the wall shear stress, \(q_w \) is the wall heat flux, and \(q_m \) is the wall mass flux which are given respectively by:

\[\tau_w = \left[\mu_n f \frac{\partial u}{\partial y} + \frac{k_0}{\rho_n f} \left(u \frac{\partial^2 u}{\partial x \partial y} + v \frac{\partial^2 u}{\partial y^2} - 2 \frac{\partial u \partial v}{\partial y \partial y} \right) \right]_{y=0}, \]

\[q_w = -k_n f \frac{\partial T}{\partial y} \bigg|_{y=0}, \]

\[q_m = -D_B \frac{\partial C}{\partial y} \bigg|_{y=0}. \]
Substituting Eq. (3.8) into Eq. (3.7) yields

\[
C_f = \sqrt{\frac{1}{2Re_x}} \left[\left(\frac{1}{(1-\varphi)^2.5} + \frac{7\alpha}{2((1-\varphi)\rho_f + \varphi\rho_s)} \right) f''(0) \right. \\
\left. - \frac{\alpha S}{2((1-\varphi)\rho_f + \varphi\rho_s)} f'''(0) \right],
\]

(3.9)

\[
Nu = -\frac{x}{L} \left(k_s + 2k_f \right) \left(k_f + \varphi(k_f - k_s) \right) \sqrt{\frac{Re_x}{2}} \theta'(0),
\]

\[
Sh = -\frac{x}{L} \sqrt{\frac{Re_x}{2}} \phi'(0),
\]

where \(Re_x = \frac{U_wL}{v_f} \) is the local Reynolds number.

4. Numerical Procedure

The coupled order nonlinear ordinary differential equations were reduced to a system of first-order ordinary differential equations by letting

\[
f = x_1, \quad f' = x_2, \quad f'' = x_3, \quad f''' = x_4,
\]

\[
\theta = x_5, \quad \theta' = x_6, \quad \phi = x_7, \quad \phi' = x_8.
\]

Substituting into Eqs (3.3)–(3.6) yields the required first-order system of ordinary differential equations as

\[
f' = x'_1 = x_2,
\]

\[
f'' = x'_2 = x_3,
\]

\[
f''' = x'_3 = x_4,
\]

\[
f'''' = x'_4 = \frac{2}{x_1} \left[3x_2 x_4 - \frac{3}{2} x_3^2 - \frac{(1-\varphi)\rho_f + \varphi\rho_s}{\rho_f\alpha} \right. \\
\left. \cdot \left(x_4 + \frac{(1-\varphi)^{2.5}}{\rho_f} \left((1-\varphi)\rho_f + \varphi\rho_s \right) \left(x_1 x_3 - 2x_2^2 \right) - 2K^*x_2 \right) \right].
\]

(4.2)
\[\theta' = x_6,\]
\[\theta'' = x_6' = -\frac{1}{(1 + \sigma x_5)} \left[\sigma x_6^2 + \frac{(k_s + 2k_f) + \varphi (k_f - k_s)}{(k_s + 2k_f) - 2\varphi (k_f - k_s)} \right] \left((1 - \varphi) (\rho c_p)_f + \varphi (\rho c_p)_s \right) Pr (x_1 x_6 - x_2 x_5) + \frac{Pr Ec}{(1 - \varphi)^{2.5}} x_3^2 \]
\[+ \text{Pr Ec} \alpha \left(\frac{3}{2} x_2 x_3^2 - \frac{1}{2} x x_3 x_4 \right) + 2\lambda e^{-\eta} \right] ,\]

\[\phi' = x_8,\]
\[\phi'' = x_8' = \text{Pr Le} x_2 x_7 - \text{Pr Le} x_1 x_8 2 \text{Pr Le} \beta (1 + \omega x_5) e^{-\frac{x}{1 + \omega x_5}} x_7 \]
\[- \text{Pr Le} \Gamma \left(x_6 x_8 - x_7 \right) \left(\sigma x_6^2 + \frac{(k_s + 2k_f) + \varphi (k_f - k_s)}{(k_s + 2k_f) - 2\varphi (k_f - k_s)} \right) \left((1 - \varphi) (\rho c_p)_f + \varphi (\rho c_p)_s \right) Pr (x_1 x_6 - x_2 x_5) + \frac{Pr Ec}{(1 - \varphi)^{2.5}} x_3^2 \]
\[+ \text{Pr Ec} \alpha \left(\frac{3}{2} x_2 x_3^2 - \frac{1}{2} x x_3 x_4 \right) + 2\lambda e^{-\eta} \right] \right) ,\]

subject to the boundary conditions
\[x_2 = 1, \quad x_1 = s_1, \quad x_6 = -\text{Bi} (1 - d), \quad x_7 = 1,\]
\[x_2 = s_2, \quad x_3 = s_3, \quad x_5 = s_4, \quad x_7 = s_5.\]

The unknown boundary conditions \(s_1, s_2, s_3, s_4, s_5\) were approximated using the Shooting technique and the resulting initial value problem solved using the fourth order Runge Kutta integration scheme. Numerical computations were done using MAPLE 16 software package.

5. Results and Discussion

The embedded parameters controlling the flow dynamics are the thermal conductivity parameter (\(\sigma\)), internal heat generation parameter (\(\lambda\)), suction parameter (\(S\)), Biot number (\(\text{Bi}\)), fitted rate constant (\(n\)), Eckert number (\(\text{Ec}\)), Prandtl number (\(\text{Pr}\)), Lewis number (\(\text{Le}\)), permeability parameter (\(K^*\)), solid
volume fraction of Al$_2$O$_3$ (ϕ), viscoelastic parameter (α), thermophoresis parameter (Γ), activation energy parameter (E), reaction rate parameter (β), and temperature difference parameter (ω).

The effects of these parameters on the velocity profile, temperature profile, skin friction coefficient (C_f), Nusselt number (Nu) and Sherwood number (Sh) were studied. The solid volume fraction of Al$_2$O$_3$ was varied within the range $0 \leq \phi \leq 0.1$. The thermophysical properties of oil and Al$_2$O$_3$ are presented in Table 1.

Table 1. Thermophysical properties of oil-based fluid and nanoparticle.

<table>
<thead>
<tr>
<th>Physical property</th>
<th>C_p [J/(kg·K)]</th>
<th>ρ [kg/m3]</th>
<th>k [W/mK]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil</td>
<td>1670</td>
<td>920</td>
<td>0.138</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>765</td>
<td>3970</td>
<td>40</td>
</tr>
</tbody>
</table>

5.1. Numerical results

Results of the present work for the Nusselt number denoted by $(-\theta'(0))$ were compared with the work of BIDIN and NAZAR [20] for varying Prandtl number (Pr) and Eckert number (Ec) when $\lambda = K = n = \omega = E = \sigma = \Gamma = \beta = S = Bi = \varphi = Le = \alpha = K^* = 0$ with the boundary condition $\theta(0) = 1$ for non-convective flow. The excellent agreement of the results up to three decimal of places validated the present work (see Table 2).

Table 2. Computations showing comparison with BIDIN and NAZAR [20] for $\lambda = K = n = \omega = E = \sigma = \Gamma = Le = \beta = S = Bi = \varphi = \alpha = K^* = 0$.

<table>
<thead>
<tr>
<th>Pr</th>
<th>$-\theta'(0)$</th>
<th>$-\theta'(0)$</th>
<th>$-\theta'(0)$</th>
<th>$-\theta'(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9547</td>
<td>0.5385</td>
<td>0.9548</td>
<td>0.5386</td>
</tr>
<tr>
<td>2</td>
<td>1.4714</td>
<td>0.7248</td>
<td>1.4715</td>
<td>0.7248</td>
</tr>
<tr>
<td>3</td>
<td>1.8691</td>
<td>0.8301</td>
<td>1.8691</td>
<td>0.8301</td>
</tr>
</tbody>
</table>

The impact of the various thermo-physical parameters on the skin friction coefficient ($f''(\theta)$), Nusselt number ($\theta'(0)$) and Sherwood number ($\phi(0)$) are presented in Table 3.

It is observed in Table 3 that the intensity of the thermophoresis parameter did not influence both the skin friction coefficient and Nusselt number but increased the magnitude of the Sherwood number. This is because a rise in the thermophoresis parameter leads to a higher mass transfer of Al$_2$O$_3$ nanoparticles in the oil due to convective mass transport. A similar trend was observed with
Table 3. Computation showings of $-f''(0)$, $-\theta'(0)$ and $-\phi'(0)$ for varying parameter values.

<table>
<thead>
<tr>
<th>Γ</th>
<th>n</th>
<th>ω</th>
<th>Le</th>
<th>β</th>
<th>E</th>
<th>Bi</th>
<th>Pr</th>
<th>σ</th>
<th>λ</th>
<th>φ</th>
<th>α</th>
<th>K^*</th>
<th>S</th>
<th>$-f''(0)$</th>
<th>$-\theta'(0)$</th>
<th>$-\phi'(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>100</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.584502</td>
<td>0.072685</td>
<td>4.534894</td>
</tr>
<tr>
<td>0.02</td>
<td></td>
<td>0.584502</td>
<td>0.072685</td>
<td>4.557179</td>
</tr>
<tr>
<td>0.03</td>
<td></td>
<td>0.584502</td>
<td>0.072685</td>
<td>4.579559</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>0.584502</td>
<td>0.072685</td>
<td>4.538667</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.584502</td>
<td>0.072685</td>
<td>4.542562</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.584502</td>
<td>0.072685</td>
<td>4.546581</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td>0.584502</td>
<td>0.072685</td>
<td>4.550886</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td>0.584502</td>
<td>0.072685</td>
<td>4.570771</td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td>0.584502</td>
<td>0.072685</td>
<td>4.610182</td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td>0.584502</td>
<td>0.072685</td>
<td>10.566823</td>
</tr>
<tr>
<td>0.7</td>
<td></td>
<td>0.584502</td>
<td>0.072685</td>
<td>15.208225</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td>0.584502</td>
<td>0.072685</td>
<td>19.370494</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.584502</td>
<td>0.072685</td>
<td>5.472635</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.584502</td>
<td>0.072685</td>
<td>6.339914</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.584502</td>
<td>0.072685</td>
<td>7.093421</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.584502</td>
<td>0.072685</td>
<td>4.466656</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.584502</td>
<td>0.072685</td>
<td>4.435842</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.584502</td>
<td>0.072685</td>
<td>4.424079</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td>0.584502</td>
<td>0.072685</td>
<td>4.588860</td>
</tr>
<tr>
<td>5.0</td>
<td></td>
<td>0.584502</td>
<td>2.863014</td>
<td>4.777570</td>
</tr>
<tr>
<td>9.0</td>
<td></td>
<td>0.584502</td>
<td>4.382933</td>
<td>4.909630</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>0.584502</td>
<td>0.074354</td>
<td>4.797737</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>0.584502</td>
<td>0.075727</td>
<td>5.051673</td>
</tr>
<tr>
<td>130</td>
<td></td>
<td>0.584502</td>
<td>0.076875</td>
<td>5.297829</td>
</tr>
</tbody>
</table>
Table 3. [Cont.]

Γ	n	ω	Le	β	E	Bi	Pr	σ	Ec	λ	φ	α	K^*	S	$-f''(0)$	$-\theta'(0)$	$-\phi'(0)$		
1																0.584502	0.072040	4.533537	
2																0.584502	0.071400	4.532286	
3																0.584502	0.070825	4.531232	
0.2																	0.584502	0.061936	4.536067
0.3																	0.584502	0.051187	4.537230
0.4																	0.584502	0.040437	4.538384
2																0.584502	0.056540	4.551115	
3																0.584502	0.040303	4.567287	
4																0.584502	0.023974	4.583410	
0.02																0.568010	0.073061	4.537427	
0.03																0.548383	0.073514	4.540624	
0.04																0.525659	0.074033	4.544466	
1.10																0.657689	0.070114	4.521059	
1.20																0.708917	0.067873	4.511415	
1.25																0.728090	0.066883	4.507863	
0.11																0.603587	0.071988	4.530397	
0.12																0.622438	0.071289	4.525939	
0.13																0.641060	0.070586	4.521520	
0.101																0.586858	0.072581	4.540653	
0.105																1.005739	0.057124	4.468222	
0.110																1.724238	0.023283	4.321520	
changes in fitted rate constant, temperature difference parameter, Lewis number and chemical reaction rate parameter. However, the activation energy parameter depletes the Sherwood number as a result of the enhancement of the diffusive mass transport of Al₂O₃ nanoparticles.

Furthermore, it is noted that the combined impact of the Biot and Prandtl numbers enhanced both the Nusselt and Sherwood numbers due to convective heat and mass transfer of Al₂O₃ oil-based nanofluid at the surface of the plate. By contrast, the thermal conductivity parameter decreases both the Nusselt and the Sherwood numbers. An increase in the thermal conductivity parameter corresponds to a rise in the temperature of the Al₂O₃ oil-based nanofluid. Since temperature is inversely proportional to viscosity, the Al₂O₃ oil-based nanofluid becomes more viscous thereby retarding the rates of heat and mass transfer at the surface of the plate. Furthermore, a simultaneous rise in both the Eckert number and internal heat generation parameters deteriorates the Nusselt number but tends to enhance the Sherwood number due to the decaying of the heat and improvement in the rate of mass transfer near the surface of the plate.

Additionally, the high solid volume fraction of Al₂O₃ depreciates the skin friction coefficient but tends to enhance the magnitude of both the Nusselt and Sherwood numbers due to the ballistic collision of the nanoparticles. Increasing the viscoelastic, permeability and suction parameters leads to the decreased skin friction coefficient, Nusselt number and Sherwood number.

5.2. Graphical results

5.2.1. Velocity profiles. The influence of various thermophysical parameters on the velocity profiles is illustrated in Figs 2–5. The effect of the viscoelastic parameter σ on the velocity profile is shown in Fig. 2. The velocity profile for varying values of viscoelastic parameter for $Pr = 100$, $S = 0.1$, $Bi = 0.1$, $K^* = 0.1$, $\lambda = 1$, $Le = 0.1$, $\sigma = 0.1$, $E = 0.1$, $\beta = 0.1$, $n = 1$, $\omega = 0.1$, $\Gamma = 0.1$, $Ec = 0.1$, and $\varphi = 0.01$.
Fig. 3. Velocity profile for varying values of permeability parameter for $Pr = 100$, $\alpha = 1$, $S = 0.2$, $Bi = 0.1$, $\lambda = 1$, $Le = 0.1$, $\sigma = 0.1$, $E = 0.1$, $\beta = 0.1$, $n = 1$, $\omega = 0.1$, $\Gamma = 0.1$, $Ec = 0.1$, and $\varphi = 0.01$.

Fig. 4. Velocity profile for varying values of suction parameter for $Pr = 100$, $\alpha = 1$, $K^* = 0.1$, $Bi = 0.1$, $\lambda = 1$, $Le = 0.1$, $\sigma = 0.1$, $E = 0.1$, $\beta = 0.1$, $n = 1$, $\omega = 0.1$, $\Gamma = 0.1$, $Ec = 0.01$, and $\varphi = 0.01$.

The parameter on the velocity of the Al$_2$O$_3$ oil-based nanofluid within the boundary layer is depicted in Fig. 2. It is observed that the viscoelastic parameter increases the flow of the oil-based nanofluid as a result of the reduction in its viscosity. Higher values of the viscoelastic parameter make the Al$_2$O$_3$ oil-based nanofluid more elastic and viscous, but the internal heating of the nanofluid decreases its viscosity resulting in an increased velocity within the boundary layer which makes the momentum boundary layer thicker.
Fig. 5. Velocity profile for varying values of solid volume fraction of Al$_2$O$_3$ nanoparticles for Pr = 100, $\alpha = 1$, $K^* = 0.1$, Bi = 0.1, $\lambda = 1$, Le = 0.1, $\sigma = 0.1$, $E = 0.1$, $\beta = 0.1$, $n = 1$, $\omega = 0.1$.

Figures 3 and 4 illustrate the velocity profiles for increasing values of the permeability and suction parameters respectively. The velocity profiles of these figures follow a similar trend as that of Fig. 2 due to viscous dissipation. However, Fig. 5 shows that higher values of the solid volume fraction of Al$_2$O$_3$ nanoparticles retard the velocity of the Al$_2$O$_3$ oil-based nanofluid within the boundary layer as a result of the clustering of the Al$_2$O$_3$ nanoparticles. This causes a deterioration of the momentum boundary layer thickness.

5.2.2. Temperature profiles. The effects of thermophysical parameters on the temperature profiles are presented in Figs 6–14. The impact of the solid vol-

Fig. 6. Temperature profile for varying values of solid volume fraction of Al$_2$O$_3$ nanoparticles for Pr = 100, $\alpha = 1$, $K^* = 0.1$, Bi = 0.1, $\lambda = 1$, Le = 0.1, $\sigma = 0.1$, $E = 0.1$, $\beta = 0.1$, $n = 1$, $\omega = 0.1$, $\Gamma = 0.1$, Ec = 0.1, and $S = 0.1$.

impact of thermophoretic transport...

Fig. 7. Temperature profile for varying values of Eckert number for \(Pr = 100, \alpha = 1, K^* = 0.1, Bi = 0.1, \lambda = 1, Le = 0.1, \beta = 0.1, n = 1, \omega = 0.1, \Gamma = 0.1, \varphi = 0.01, \) and \(S = 0.1. \)

Fig. 8. Temperature profile for varying values of internal heat generation parameter for \(Pr = 100, \alpha = 1, K^* = 0.1, Ec = 0.5, Bi = 0.1, Le = 0.1, \sigma = 0.1, E = 0.1, \beta = 0.1, n = 1, \omega = 0.1, \Gamma = 0.1, \varphi = 0.01, \) and \(S = 0.2. \)

The volume fraction of \(\text{Al}_2\text{O}_3 \) nanoparticles on the temperature is depicted in Fig. 6. The solid volume fraction increases the temperature within the boundary layer leading to a thicker thermal boundary layer. A similar trend is observed in Figs 7–9 with increasing the values of the Eckert number, internal heat generation parameter and thermal conductivity.
In practice, an increase in the viscoelastic parameter corresponds to a rise in temperature, but the temperature within the boundary layer region decreases due to the retarding rate of heat transfer. This is as a result of the sucking away of the nanofluid through the porous media. Figures 9–11 illustrate the influence of the Prandtl number and suction parameter on the thermal boundary layer thickness. Higher values of these parameters make the thermal boundary layer thinner due to the deterioration of the thermal diffusivity.
5.2.3. The concentration profiles. Figures 12–18 depict the influence of various thermophysical parameters on the concentration boundary layer. Figures 12 and 13 show that thermal conductivity and the viscoelastic parameter enhance the solutal boundary layer thickness. This means that an increase in thermal conductivity of the nanofluid enhances particle mobility resulting in an increased chemical reaction within the boundary layer.
Fig. 13. Concentration profile for varying values of viscoelastic parameter for $Pr = 100$, $S = 0.1$, $K^* = 0.1$, $Bi = 0.1$, $\lambda = 1$, $Le = 0.1$, $\sigma = 0.1$, $E = 0.1$, $\beta = 0.1$, $n = 1$, $\omega = 0.1$, $\Gamma' = 0.1$, $Ec = 0.1$, and $\varphi = 0.01$.

Fig. 14. Concentration profile for varying values of thermophoresis parameter for $Pr = 100$, $\alpha = 1$, $K^* = 0.1$, $Ec = 0.1$, $Bi = 0.1$, $Le = 0.1$, $\lambda = 1$, $E = 0.1$, $\beta = 0.1$, $n = 1$, $\omega = 0.1$, $\Gamma' = 0.1$, $Ec = 0.1$, and $S = 0.1$.

It can be observed in Figs 14–18 that the solutal boundary layer thickness diminishes with increasing values of the thermophoresis parameter, Lewis number, reaction rate parameter, reaction constant and Biot number. The Lewis number degrades the molecular diffusion rate while the chemical reaction rate parameter dilutes the concentration of the Al_2O_3 oil-based nanofluid. Similarly, the chemical reaction rate parameter accelerates the rate of mass transfer to increase the concentration gradient which deteriorates the solutal boundary layer thickness.
Fig. 15. Concentration profile for varying values of the Lewis number for $\alpha = 1$, $S = 0.1$, $K^* = 0.5$, $Bi = 0.1$, $\lambda = 1$, $n = 1$, $\sigma = 0.1$, $E = 0.1$, $\beta = 0.1$, $Pr = 100$, $\omega = 0.1$, $\Gamma = 0.1$, $Ec = 0.01$, and $\varphi = 0.01$.

Fig. 16. Concentration profile for varying values of chemical reaction rate parameter for $Pr = 100$, $\alpha = 1$, $K^* = 0.1$, $Ec = 0.01$, $\lambda = 1$, $Le = 0.1$, $\sigma = 0.1$, $E = 0.1$, $Bi = 0.1$, $n = 1$, $\omega = 0.1$, $\Gamma = 0.1$, $\varphi = 0.01$, and $S = 0.1$.

6. Conclusions

The influence of thermophoretic transport of Al_2O_3 nanoparticles on heat and mass transfer of viscoelastic flow of oil-based nanofluid past a porous exponentially stretching surface with activation energy has been discussed. The study revealed that:
1) The viscoelasticity and permeability of the flow can be used to control the nanofluid kinematics.
2) The internal heat generation and the thermal conductivity are important parameters to control the thermal dynamics of the flow.
3) The thermophoresis parameter and the reaction rate parameter are important when it is desired to reduce the chemical reaction during the flow of the Al₂O₃ nanoparticles in the oil-based nanofluid.
References

Received August 15, 2018; accepted version February 27, 2019.

Published on Creative Common licence CC BY-SA 4.0