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The object of this paper is Saint-Venant torsion of functionally graded anisotropic linearly
elastic circular cylinder. The class of anisotropy considered has at least one plane of elastic
symmetry normal to the axis of the circular cylinder. The elastic coefficients have radial de-
pendence only. Here, we give the solution of Saint-Venant torsion problem for circular cylinder
made of functionally graded anisotropic linearly elastic materials.
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1. Introduction

Saint-Venant torsion problem of cylindrical bars has been interest for many
years and has been treated from numerous aspects. Recently there is a grow-
ing interest in the context of non-homogeneous and/or anisotropic bars such
as Arghavan and Hematiyan [1], Batra [2], Horgan and Chan [4], Hor-
gan [5], Lekhintskii [6, 7], Rand and Rovenski [9], Rooney and Fer-
rari [10]. In this paper the torsional deformation of functionally graded aniso-
tropic linear elastic solid and hollow circular cylinders is studied. Functionally
graded materials (FGMs) are microscopically inhomogeneous composite materi-
als, in which the volume fraction of two or more materials is varied smoothly and
continuously as a function of position along certain dimension(s) of the structure
from one point to other [13]. This materials are mainly constructed to operate
in high temperature enviroments [11]. The class of anisotropy considered has
at least one plane of elastic symmetry normal to the axis of the circular cylin-
der. The elastic coefficients are smooth functions of the radial coordinate on the
whole cross-section for the FGMs. The case of layered circular cross-section is
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also discussed when the elastic coefficients are piecewise smooth functions of the
radial coordinate. This type of the cross-sections is called compound (composite)
cross-section.

2. Formulation of Saint-Venant torsional problem

Let B = A × (0, L) be a right circular cylinder of length L. Let A1 and A2

be the bases and A3 = ∂A× (0, L) the mantle of B. The cross-section A is given
in the Cartesian coordinate frame Oxyz

(2.1) A =
{

(x, y) | c21 ≤ x2 + y2 ≤ c22
}
.

The Cartesian coordinate frameOxyz is supposed to be chosen in a such way that
the Oz axis is parallel to the generators of the cylindrical boundary surface seg-
ments A′3 and A

′′
3 (Fig. 1). The plane Oxy contains the terminal cross-section A1.

The position of the end cross-section A2 is given by z = L. A point P in
B = B∪A1∪A2∪A

′
3∪A

′′
3 is indicated by the vector r = xex+yey+zez = R+zez,

where ex, ey and ez are the unit vectors of the coordinate system Oxyz (Fig. 1).
In the case of Saint-Venant torsion the displacement field of the twisted cylin-
drical bar has the form Lekhnitskii [6, 7]

(2.2) u = ϑzez ×R + ϑω(x, y)ez,

where ϑ is the rate of twist with respect to axial coordinate z and ω = ω(x, y) is
the torsion function furthermore the vectorial product of two vectors is denoted

Fig. 1. Hollow circular cylinder.
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by cross. For non-homogeneous, anisotropic, linearly elastic cylinder assuming
that one plane of elastic symmetry normal to Oz axis we have [6, 7, 9]

(2.3)
∂

∂x

[
A55

(
∂ω

∂x
− y
)

+A45

(
∂ω

∂y
+ x

)]

+
∂

∂y

[
A45

(
∂ω

∂x
− y
)

+A44

(
∂ω

∂y
+ x

)]
= 0, (x, y) ∈ A,

(2.4)
[
A55

(
∂ω

∂x
− y
)

+A45

(
∂ω

∂y
+ x

)]
nx

+

[
A45

(
∂ω

∂x
− y
)

+A44

(
∂ω

∂y
+ x

)]
ny = 0, (x, y) ∈ ∂A.

Here, ∂A = ∂A1∪∂A2 is the boundary curve of A, the equation of ∂Ai (i = 1, 2)
is (Fig. 1)

(2.5) x2 + y2 = c2i (i = 1, 2)

and nx, ny are the components of the unit normal vector n to the boundary
curve ∂Ai (i = 1, 2)

(2.6) nx = (−1)i
x

ci
, ny = (−1)i

y

ci
, on ∂Ai (i = 1, 2).

In our case the elastic coefficients (shear rigidities) A44, A45 = A54 and A55

depend only on the radial coordinate

(2.7) r =
√
x2 + y2, c1 ≤ r ≤ c2.

The dependence of elastic coefficients as a function of position is described by
the next inhomogeneity function f = f(r) such as

(2.8) Aij = f(r)aij (i, j = 4, 5).

Here, we note f = f(r) is unit free f = f(r) > 0, c1 ≤ r ≤ c2, and according to
the positive definitness of strain energy density [6, 7] we have

(2.9) a44 > 0 and a44a55 − a245 > 0.
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It is obvious if inequalities (2.9) are satisfied then we have a55 > 0. The shearing
stresses τxz and τyz can be obtained from the following equations [6, 7, 9]

(2.10) τxz = ϑ

[
A55

(
∂ω

∂x
− y
)

+A45

(
∂ω

∂y
+ x

)]
,

(2.11) τyz = ϑ

[
A45

(
∂ω

∂x
− y
)

+A44

(
∂ω

∂y
+ x

)]
,

and the next formula can be derived for the torque T

(2.12) T =

ˆ

A

(xτyz − yτxz) dA = ϑS,

where S is the torsional rigidity of the considered non-homogeneous anisotropic
cross-section according to Horgan and Chan [4], Horgan [5] and Lekhnitskii
[6, 7]

(2.13) S =

ˆ

A

{
x

[
A45

(
∂ω

∂x
− y
)

+A44

(
∂ω

∂y
+ x

)]

− y
[
A55

(
∂ω

∂x
− y
)

+A45

(
∂ω

∂y
+ x

)]}
dA.

Here, we note, assuming sufficient smoothness of inhomogeneity function f =
f(
√
x2 + y2), standard results from the linear theory of second order partial

differential equations show that the classical (strong) solutions to boundary value
problem formulated by Eqs. (2.3) and (2.4) are unique to within a constant.
Without loss of generality, we set this constant, which corresponds to a rigid
translation along axis z, equal to zero.

3. Solution of the torsional problem

Theorem 1. The solution of the torsional boundary value problem formulated
by Eqs. (2.3) and (2.4) under the condition (2.8) is

(3.1) ω(x, y) =
1

a44 + a55

[
(a55 − a44)xy + a45(y

2 − x2)
]

+ C,

where C is an arbitrary constant.
Proof. By a direct substitution using next equations

(3.2)
∂Aij
∂x

= f ′(r)
x

r
aij ,

∂Aij
∂y

= f ′(r)
y

r
aij , f ′(r) =

df
dr
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we get, the function ω = ω(x, y) given by Eq. (3.1) with arbitrary constant
C satisfies Eqs. (2.3) and (2.4). Next we put for C = 0 according to the last
sentence of previous section of this paper. The application of formulae (2.10)
and (2.11) yields

τxz = −2ϑ
a44a55 − a245
a44 + a55

f(r)y,(3.3)

τyz = 2ϑ
a44a55 − a245
a44 + a55

f(r)x.(3.4)

From Eq. (2.13) we obtain for S

(3.5) S =
4(a44a55 − a245)π

a44 + a55

c2ˆ

c1

r3f(r) dr.

For solid circular cross-section c1 = 0. The expression of shear stresses in the
polar coordinate system Orϕz (r =

√
x2 + y2, ϕ = arctan(y/x)) are as follows

(3.6) τrz = 0, τϕz = T
rf(r)

2π

c2ˆ

c1

ρ3f(ρ) dρ

.

The solution of Saint-Venant torsion problem presented by Eqs. (3.1), (3.6) has
two important properties:
(a) The torsion function ω = ω(x, y) does not depend on the inhomogeneity

of the cross-section, it depends only on the anisotropy feature of the cross-
section which is given by the stiffness coefficients a44, a55, a45 = a54.

(b) For given torque T the stress field is independent of anisotropy, it depends
only on the non-homogeneity of the considered circular cross-section. For-
mula (3.6) is the same as which was derived by Horgan and Chan [4] for
isotropic non-homogeneous circular cross-section.

Here, we note, the expressions of the torsion function and of torsional rigid-
ity for homogeneous and orthotropic solid circular cross-section was derived by
Dubigeon [3] in cylindrical polar coordinate system. Dubigeon [3] obtained
the next expression for the torsion function

(3.7) ω(r, ϕ) =
A44 −A55

2(A44 +A55)
r2 sin 2ϕ.
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The cited results of Dubigeon [3] are obtained from Eqs. (3.1) and (3.5) of this
paper by the next substitution

(3.8)
f(r) = 1, a45 = 0, c1 = 0,

x = r cosϕ, y = r sinϕ.

The contour lines and the graph of the torsion function ω = ω(r, ϕ) of solid
circular cross-section for a44 = 1900 MPa, a55 = 950 MPa, a45 = −730 MPa and
c = c2 = 10 mm are shown in Fig. 2.

a) b)

Fig. 2. Illustrations of the torsion function: a) contour lines, b) graph of the torsion function.

4. Prandtl’s stress function

The determination of the Prandtl’s stress function is based on the next equa-
tions

τrz = τxz cosϕ+ τyz sinϕ = 0,(4.1)

τϕz = −τxz sinϕ+ τyz cosϕ = 2ϑ
a44a55 − a245
a44 + a55

rf(r)(4.2)

according to Eqs. (3.3) and (3.4). The shearing stresses τrz and τϕz in terms of
Prandtl stress function U(r, ϕ) can be expressed as [6–9, 12]

τrz =
ϑ

r

∂U

∂ϕ
,(4.3)

τϕz = −ϑ∂U
∂r

.(4.4)
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From Eqs. (4.1) and (4.3) it follows that the Prandtl stress function does not
depend on the polar angle ϕ. The combination of Eq. (4.2) with Eq. (4.4) gives
the next equation for the Prandtl’s stress function

(4.5)
dU
dr

= −2
a44a55 − a245
a44 + a55

rf(r).

On the outer circular boundary curve the Prandtl’s stress function vanishes
[6, 7, 9] that is

(4.6) U(c2) = 0.

Integration of Eq. (4.5) under the condition (4.6) gives

(4.7) U(r) = 2
a44a55 − a245
a44 + a55

c2ˆ

r

ρf(ρ) dρ.

For exponential FGM circular cylinder we have

(4.8) f(r) = exp(αr).

In Eq. (4.8) α is a material constant. Substitution Eq. (4.8) into Eq. (4.7) leads
to the expression of the Prandtl’s stress function

(4.9) U(r) = 2
a44a55 − a245
(a44 + a55)α2

[(1− αr) exp(αr)− (1− αc2) exp(αc2)] .

Knowing U = U(r) the torsional rigidity of the exponential FGM anisotropic
hollow circular cross-section can be obtained from the next formula [8, 9, 12]

(4.10) S = 2π

c2ˆ

c1

rU(r) dr + 2πU(c1)c
2
1.

Application of formula (4.10) for the present case we obtain

(4.11) S = 4π
a44a55 − a245
a44 + a55

(H(c1)−H(c2)),

where

(4.12) H(t) =
6− 6αt+ 3(αt)2 − (αt)3

α4
.
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It has to be noted, that the formula (4.11) can be obtained from Eq. (3.5). For
homogeneous anisotropic cross-section α = 0. From Eq. (4.9) and Eq. (4.12)
for α→ 0 the following results can be derived

U(r) =
a44a55 − a245
a44 + a55

(c22 − r2),(4.13)

S = π
a44a55 − a45
a44 + a55

(c42 − c41).(4.14)

For solid circular cross-section c1 = 0, c2 = c = 10 mm with the ‘shear rigidities’
a44 = 1900 MPa, a55 = 950 MPa and a45 = −730 MPa for the three different
values of α (α1 = −0.1 mm−1, α2 = 0, α3 = 0.1 mm−1) the graphs of the
Prandtl’s stress functions are shown in Fig. 3.

Fig. 3. The graphs of the Prandtl’s stress functions.

The torsional rigidity S as a function of the material parameter α is illustrated
in Fig. 4. Application of formulas (4.11) and (4.14) gives the following numerical
results

S(α1) = 6 390 286.33 N ·mm2, S(α2) = 14 022 526.37 N ·mm2,

S(α3) = 31 603 209.2 N ·mm2.
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Fig. 4. Torsional rigidity as a function of α.

5. Layered non-homogeneous cross-section

Figure 5 shows a hollow circular cross-section which is layered in radial di-
rection. In this case the inhomogeneity function is piecewise continuous on the
cross-sectional domain and it is given by the next formula

(5.1) f(r) = fi(r) ri−1 ≤ r ≤ ri (i = 1− n), r0 = c1 rn = c2,

where fi = fi(r) is a positive value smooth function defined on the interval
ri−1 ≤ r ≤ ri (r = 1, ..., n).

Fig. 5. Layered hollow circular cross-section.
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It is evident, for layered non-homogeneous, anisotropic, hollow circular cross-
section the torsional function is given by Eq. (3.1) and all formulae obtained
before are valid and we have

(5.2)
c2ˆ

c1

ρ3f(ρ) dρ =

n∑
i=1

riˆ

ri−1

ρ3fi(ρ) dρ.

6. Orthotropic circular cylinder

For orthotropic elastic material elasticity matrix A has the form the consid-
ered type of FGMs

(6.1) A = f(r)



a11 a12 a13 0 0 0

a21 a22 a23 0 0 0

a31 a32 a33 0 0 0

0 0 0 a44 0 0

0 0 0 0 a55 0

0 0 0 0 0 a66


.

In the general case we have three different shear moduli

(6.2) Aii = f(r)aii (i = 4, 5, 6).

If the principal directions of orthotropy, which is perpendicular to the cross-
section, is axis (x, y, z) then the corresponding torsion function and torsional
rigidity are denoted by (ωx, ωy, ωz) and (Sx, Sy, Sz) respectively. From Eqs. (3.1)
and (3.2) we obtain

ωx = ωx(y, z) =
a66 − a55
a55 + a66

yz, Sx =
4πF

1
a55

+ 1
a66

, r =
√
y2 + z2,(6.3)

ωy = ωy(x, z) =
a44 − a66
a44 + a66

xz, Sy =
4πF

1
a44

+ 1
a66

, r =
√
x2 + z2,(6.4)

ωz = ωz(x, y) =
a55 − a44
a44 + a55

xy, Sz =
4πF

1
a44

+ 1
a55

, r =
√
x2 + y2,(6.5)

where

(6.6) F =

c2ˆ

c1

ρ3f(ρ) dρ.
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In all the three cases the shear stresses can be computed by application of
Eq. (3.6), where r = OP , O is the centre of the hollow circular cross-section
and P is an arbitrary point of the considered cross-section. The shear stress
vector is the perpendicular to the line segment OP and its magnitude τ can be
obtained as

(6.7) τ = T
rf(r)

2πF
.

From the formulae (6.3)–(6.6) it follows that for homogeneous, solid circular
cross-section (f(r) = 1) we have

(6.8) a44 =
2

−sx + sy + sz
, a55 =

2

sx − sy + sz
, a66 =

2

sx + sy − sz
.

Here

(6.9) si =
c4π

Si
(i = x, y, z).

Equations (6.8), (6.9) show that the shear moduli of an orthotropic, homoge-
neous elastic material can be obtained from three torsional tests, assuming that
the principal directions of the orthotropy are known [3].

7. Relationships between the torsional problems
of solid circular and elliptical cross-sections

In this section, we consider homogeneous (f(r) = 1) orthotropic (a45 = 0)
solid circular cross-section which is shown in Fig. 6a (c1 = 0, c2 = c). The
torsional function and the torsional rigidity of this cross-section are

(7.1) ω(x, y) =
a55 − a44
a44 + a44

xy, S =
a44a55
a44 + a44

c4π.

a) b)

Fig. 6. Orthotropic circular (a) and isotropic elliptical (b) solid cross-sections.
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We assume that a44 ≥ a55. We define a solid elliptical cross-section whose bound-
ary contour is given by the next equation (Fig. 6b)

(7.2)
x2

a2
+
y2

b2
− 1 = 0, a2 = ka44, b2 = ka55.

In Eq. (7.2) k is an arbitrary positive constant with units (length)4/(force).
The material of the solid elliptical cross-section is linearly elastic, homogeneous,
isotropic with shear modulus G. By a simple computation and by the use of
formulae of torsional function and torsional rigidity of a solid homogeneous,
isotropic elliptical cross-section [8, 12] which are

(7.3) ωE =
b2 − a2

a2 + b2
xy, SE = G

a3b3

a2 + b2
π

we can prove the next theorem.

Theorem 2. If Eq. (7.2) and

(7.4) k2 =
c4

G
√
a44a55

meet then the torsion function and the torsional rigidity of orthotropic solid
circular cross-section and the isotropic solid elliptical cross-section are the same,
they are given by Eq. (7.1). For

(7.5) G =
√
a44a55

we have

(7.6) k =
c2

√
a44a55

, a2 = c2
√
a44
a55

, b2 = c2
√
a55
a44

and in this case the cross-sectional area AC of the orthotropic circular cross-sec-
tion is the same as the cross-sectional area AE of the isotropic elliptical cross-
section, that is, we have

(7.7) AC = c2π = AE = abπ.
�

Denote the maximum shearing stresses τC and τE for orthotropic circular and
isotropic elliptical cross-sections, respectively (Fig. 6). Assuming that Eqs. (7.2),
(7.4) and (7.6) are satisfied then we have [8, 12]

(7.8) τE =
2T

ab2π
= τC

√
a44
a55
≥ τC =

2T

c3π
.
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8. Conclusion

The purpose of this paper is to investigate the effects of material inhomogene-
ity and anisotropy on the torsional response of a linearly elastic non-homogeneous
anisotropic circular cylinder. The class of anisotropy considered has at least one
plane of elastic symmetry normal to the axis of the circular cylinder. The elastic
coefficients have radial dependence only. It is shown that Saint-Venant torsion
problem analysed has two important properties:
• The torsional function does not depend on the cross-sectional inhomo-

geneity it depends only on the anisotropic features of the elastic circular
cylinder.
• For given torque the stress field is independent of the material anisotropy,

it depends only on the cross-sectional inhomogeneity.
A brief analysis deals with the torsional problems of layered anisotropic cross-

sections. Some useful formulae for the torsional problem of orthotropic non-
homogeneous circular cylinders are given. The connection between the torsional
problems of solid orthotropic circular cross-section and of isotropic elliptical
cross-section is also analysed. The presented exact analytical solutions can be
used as benchmark solutions to verify the efficacy of the usual approximate
methods such as finite element and boundary element methods.
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