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The paper is devoted to an analytical model of I-beam, with consideration of the shear
effect. The model is based on the sandwich beam theory. The field displacements and strains are
formulated with consideration of a nonlinear hypothesis of flat cross-section deformation of the
beam. The governing differential equations for the I-beam are obtained based on the principle
of stationary total potential energy. The shear effect of the beam is illustrated for the three-
point bending case. The analytical solution is compared to FEM numerical calculation. The
results of the analysis are presented in Tables and Figures.
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1. Introduction

The original model of the beam with transverse shear deformation was for-
mulated by S.P. Timoshenko in 1921. Gere and Timoshenko [1] described in
details the shear effect on the stresses and deflection of typical beams. Wang
et al. [2] presented the shear effect in beams and plates using the nonlinear hy-
pothesis formulated with application of polynomials. Hutchinson [3] described
the shear coefficients for the Timoshenko beam theory. Song et al. [4] pre-
sented analytical solutions of static response of an anisotropic I-beam loaded
at its free ends. They used two main coupling mechanisms, i.e. the circumferen-
tially uniform stiffness and circumferentially asymmetric stiffness configurations.
The directional properties of the composite materials have been taken into ac-
count and the effect of transverse shear on the I-beam static behaviour has been
considered. Jung and Lee [5] analyzed thin-walled composite I-beams. The
force-displacement relationship was determined based on the Reissner’s semi-
complementary energy functional. The effects of warping restraint and trans-
verse shear deformation on the beam static response were investigated. The
effects of torsion shear forces in the beam were considered by Fatmi [6]. An
unchanged shape of the beam cross-section was assumed and the beam theory
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based on the displacement model was developed, using the principle of virtual
work. Romanoff and Varsta [7] considered bending of the sandwich plates.
They replaced a discrete core of the plate with a homogeneous continuum and
determined equivalent properties of the plate. Blaauwendraad [8] considered
accuracy and applicability of the Haringx and Engesser theories related to sta-
bility of structural members. Final conclusion of the paper recommends to avoid
the Haringx theory and to replace it by the Engesser theory for this purpose.
Dong et al. [9] formulated the shear correction factors for the Timoshenko beam
theory. They dealt only with homogeneous and isotropic beams and used semi-
analytical finite element method in order to find static and dynamic response
of the considered beam. Shi and Voyiadjis [10] presented a new beam theory
formulated with the sixth-order differential equilibrium equations describing the
shear deformable beams. The example solutions have shown that the considered
theory is able to depict some boundary layer behaviour in the vicinity of the
beam ends and loading points. Beck and Silva Jr. [11] compared the Euler-
Bernoulli and Timoshenko beam theories. In the paper some beam parameters
were modeled as parametrized stochastic processes. The problems were solved
with the Monte Carlo-Galerkin scheme. In conclusion it was found that both
theories give equivalent deterministic responses while the uncertainties with re-
spect to the beam height and elasticity modulus propagate quite differently.
Kim [12] theoretically studied the coupled flexural and torsional state of thin-
walled composite I-beams of doubly- and mono-symmetric cross-sections using
the first-order shear deformation beam theory. A shear deformable beam finite
element has been developed for this purpose. The equations describing the ob-
ject have been derived from the principle of minimum total potential energy. The
explicit formulae have been formulated with the use of power series expansions
of the displacement components. The results obtained with the help of such an
approach have been compared to the ones originated based on the ABAQUS
shell elements and the solutions of other researchers. Magnucka-Blandzi [13,
14] presented generalization of mathematical modeling and dynamic stability
of sandwich plates and beams with a metal foam core. Mechanical properties
of the isotropic metal foam varied in the direction normal to the middle sym-
metry plane. The systems of partial differential equations obtained this way
have been solved approximately, which allowed to formulate the strength and
stability conditions related to particular layers of the systems. Shi and Wang
[15] considered an improvement of the third-order shear deformation theories of
isotropic plates. Li et al. [16] presented the relationship between the solutions
of bending of the functionally graded material beams based on the Levinson
beam theory and similar homogenous beams based on the classical beam theory.
Transverse shearing in sandwich beams with sinusoidally corrugated cores was
researched by Magnucka-Blandzi et al. [17]. The effect of the shearing on
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deflections and critical loads of the sandwich beam were analytically determined
and verified numerically. Urbański [18] developed an approach to cross-section
analysis based on the finite element method. The 3D strain and stress state of the
system was taken into account, meeting the equilibrium and constitutive equa-
tions at any point and presented two practical cases of the method application
Deflection, rotational angle, bending moment, and shear force of the Levinson
beams were computed analytically and compared to the reference homogenous
Euler-Bernoulli beams. Magnucki et al. [19] presented three-point bending of
short beams with symmetrically varying mechanical properties. The problem
was solved analytically with the use of the Fourier series and numerically using
FEM. Schulz [20] developed an original beam element. The cross section of
arbitrary geometry is modeled by two-dimensional finite elements. The displace-
ment shapes of the cross sections are described by the axial functions of their
motion. The model effectiveness is estimated based on several examples using
linear-elastic materials.

The main goal of the paper is focused on elaboration of an analytical model
of I-beam with application of the sandwich beam theory, analytical solution
of the problem and FEM numerical calculation in order to compare these both
approaches. Application of the analytical sandwich model to I-beam is an original
approach to the problem.

2. Analytical model of the I-beam

The Euler-Bernoulli beam theory disregards the deformation caused by the
transverse shear. The assumption that the plane cross-section before bending
remains plane after the bending eliminates the shear effect. Thus, for analytical
modeling of the I-beam the sandwich beam theory is adopted. The hypotheses
related to sandwich beams are presented, e.g. by Magnucka-Blandzi [13, 14].

The load scheme of the considered beam is shown in Fig. 1. The beam is
subject to pure bending complying with the scheme of the three-point flexural
test.

Fig. 1. Three-point bending of the considered I-beam.
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The dimensions of the considered I-beam cross-section and the hypothesis of
its deformation pattern are depicted in Fig. 2. The displacements resulting from
the hypothesis are as follows:
• the upper flange

{
−
(
1
2a+ tf

)
≤ z ≤ −1

2a
}
:

(2.1) u (x, z) = −
[
z
dw
dx

+ aψ0 (x)

]
,

• the bottom flange
{
1
2a ≤ z ≤

1
2a+ tf

}
:

(2.2) u (x, z) = −
[
z
dw
dx
− aψ0 (x)

]
,

a) b)

Fig. 2. Cross-section of the I-beam (a) and its deformation (b) – nonlinear hypothesis.
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• the web
{
−1

2a ≤ z ≤
1
2a
}

(2.3) u (x, z) = −
{
z

[
dw
dx
− 2ψ0 (x)

]
− aψ1 (x) sin

(
2π
z

a

)}
,

where w(x) – deflection, ψ0(x) =
uf (x)
a and ψ1(x) – dimensionless functions.

Then, the strains are as follows:
• the upper/bottom flanges

(2.4)

ε(f−upp)x =
∂u

∂x
= −

(
z
d2w

dx2
+ a

dψ0

dx

)
,

ε(f−low)
x =

∂u

∂x
= −

(
z
d2w

dx2
− a dψ0

dx

)
,

(2.5) γ(f)xz =
∂u

∂z
+

dw
dx

= 0,

• the web

ε(w)x =
∂u

∂x
= −

{
z

[
d2w

dx2
− 2

dψ0

dx

]
− a dψ1

dx
sin
(

2π
z

a

)}
,(2.6)

γ(w)xz =
∂u

∂z
+

dw
dx

= 2
[
ψ0 (x) + πψ1 (x) cos

(
2π
z

a

)]
.(2.7)

The elastic strain energy

(2.8) Uε = U (f)
ε + U (w)

ε ,

where
• the elastic strain energy of the flanges

(2.9) U (f)
ε =

E

2

L̂

0


ˆ

Af

[
ε(f−upp)x

]2
dAf +

ˆ

Af

[
ε(f−low)
x

]2
dAf

 dx,

where E – Young’s modulus, L – length of the beam.



362 K. MAGNUCKI, J. LEWINSKI

Substitution of the expressions for strains (2.4) into (2.9) gives

(2.10) U (f)
ε =

Eb

2

L̂

0


−a/2ˆ

−(a/2+tf)

(
z
d2w

dx2
+ a

dψ0

dx

)2

dz

+

a/2+tfˆ

a/2

(
z
d2w

dx2
− a dψ0

dx

)2

dz

 dx,

and, after integration

(2.11) U (f)
ε = Ea3b

L̂

0

[
1

12
x1
(
3 + 6x1 + 4x21

)( d2w

dx2

)2

−x1 (1 + x1)
d2w

dx2
dψ0

dx
+ x1

(
dψ0

dx

)2
]
dx,

where x1 =
tf
a – dimensionless parameter, a – depth of the web, b – width of the

I-beam, tf – thicknesses of the flanges, tw – thickness of the web.
• the elastic strain energy of the web

(2.12) U (w)
ε =

1

2

L̂

0


ˆ

Aw

[(
E
(
ε(w)x

)2
+G

(
γ(w)xz

)2)]
dAw

 dx,

where G = E
2(1+ν) – shear modulus of elasticity, ν – Poisson’s ratio.

Substitution of the expressions for strains (2.6) and (2.7) into (2.12) gives,
after integration

(2.13) U (w)
ε =

1

2
a3tw

L̂

0

[E · Φ1 (w,ψ0, ψ1) +G · Φ2 (ψ0, ψ1)] dx,

where

Φ1 (w,ψ0, ψ1) =
1

12

(
d2w

dx2
−2

dψ0

dx

)2

− 1

π

d2w

dx2
dψ1

dx
+

2

π

dψ0

dx
dψ1

dx
+

1

2

(
dψ1

dx

)2

,

Φ2 (ψ0, ψ1) =
4

a2

[
ψ2
0 (x) +

π2

2
ψ2
1 (x)

]
.
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The work of the load

(2.14) W =

L̂

0

qw(x) dx,

where q– the intensity of the transverse load.
Based on the theorem of stationary total potential energy

(2.15) δ (Uε −W ) = 0,

one obtains three differential equations of equilibrium in the following form:

δw) Cww
d4w

dx4
− Cwψ0

d3ψ0

dx3
− x2

2π

d3ψ1

dx3
=

q

Ea3b
,(2.16)

δψ0) Cwψ0

d3w

dx3
− Cψ0ψ0

d2ψ0

dx2
− x2

π

d2ψ1

dx2
+

2

1 + ν
x2
ψ0 (x)

a2
= 0,(2.17)

δψ1)
d3w

dx3
− 2

d2ψ0

dx2
− π d2ψ1

dx2
+ 2

π3

1 + ν

ψ1 (x)

a2
= 0,(2.18)

where

Cww =
1

12

[
2x1

(
3 + 6x1 + 4x21

)
+ x2

]
, Cwψ0 = x1 (1 + x1) +

1

6
x2,

Cψ0ψ0 = 2

(
x1 +

1

6
x2

)
,

and x2 = tw
b – dimensionless parameter.

The bending moment of the beam is as follows

(2.19)

Mb (x) = E

b
−a/2ˆ

−(a/2+tf)

zε(f−upp)x dz + tw

a/2ˆ

−a/2

zε(w)x dz + b

a/2+tfˆ

a/2

zε(f−low)
x dz

.
Substituting the expressions for strains (2.4) and (2.6) and integrating one ob-
tains

(2.20) Cww
d2w

dx2
− Cwψ0

dψ0

dx
− x2

2π

dψ1

dx
= −Mb (x)

Ea3b
.

The equations (2.16) and (2.20) are equivalent, therefore the three equations
(2.17), (2.18) and (2.20) are governing equations of the I-beam with consideration
of the shear effect.
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3. Solution of the analytical model for the three-point bending

The I-beam for the three-point bending is shown in Fig. 2. The bending
moment described by the Fourier series takes the following form

(3.1) Mb (x) =
2

π2

[
sin (πξ)− 1

32
sin (3πξ) +

1

52
sin (5πξ)− ...

]
FL,

where ξ = x
L – dimensionless coordinate.

The unknown three functions of the system of equations (2.17), (2.18) and
(2.20) are assumed in the following form:

w (x) = w1 sin (πξ)− w3 sin (3πξ) + w5 sin (5πξ)− ...,(3.2)

ψ0 (x) = ψ01 cos (πξ)− ψ03 cos (3πξ) + ψ05 cos (5πξ)− ...,(3.3)

ψ1 (x) = ψ11 cos (πξ)− ψ13 cos (3πξ) + ψ15 cos (5πξ)− ...,(3.4)

where wk, ψ0k, ψ1k – unknown coefficients of the function for k = 1, 3, 5, ...
Substitution of these functions into the differential equations of equilibrium

(2.17), (2.18) and (2.20) allows to calculate the coefficients:

(3.5) wk = w̃k
Fλ3

Eb
, ψ0k = ψ̃0k

Fλ2

Eab
, ψ1k = ψ̃1k

Fλ2

Eab
,

where

w̃k =
2

(kπ)4Cwk
, ψ̃0k =

2

(kπ)3Cψ0k
, ψ̃1k =

2

(kπ)3Cψ1k
,

Cwk = Cww −
αw
α0
, αw = Cwψ0

(
Cwψ0C1 −

2

π
x2

)
+
x2
2π
C0,

α0 = C0C1 −
2

π
x2, Cψ0k =

α0

αψ0

Cwk, αψ0 = Cwψ0C1 −
x2
π
,

Cψ1k =
α0

αψ1

Cwk, αψ1 = C0 − 2Cwψ0 , C0 = Cψ0ψ0 +
2

π2
x2

1 + ν

(
λ

k

)2

,

C1 = π

[
1 +

2

1 + ν

(
λ

k

)2
]
,

λ = L
a – relative length.
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The maximum deflection of the I-beam based on the expression (3.2)

(3.6) w(A−S)
max = w

(
L

2

)
=
Fλ3

Eb

n∑
k=1

w̃k sin2
(π

2
k
)
.

Taking into account the expression (2.4) and (2.6) the normal stress of the
I-beam takes a form:
• the upper/bottom flanges

(3.7) σ(f)x = −E
(
z
d2w

dx2
± a dψ0

dx

)
,

• the web

(3.8) σ(w)x = −E
{
z

[
d2w

dx2
− 2

dψ0

dx

]
− a dψ1

dx
sin
(

2π
z

a

)}
.

Thus, the maximum of normal stress occurs for x = L
2 and z = ∓

(
a
2 + tf

)
:

(3.9) σ(A−S)max =
Fλ

ab

n∑
k=1

σ̃k sin2
(π

2
k
)
,

where σ̃k = 1
(kπ)2

(
1+2x1
Cwk

− 2
Cψ0k

)
.

Taking into account the expression (2.7), the shear stress of the I-beam takes
a form

(3.10) τ (w)xz = 2G
[
ψ0 (x) + πψ1 (x) cos

(
2π
z

a

)]
,

from which

(3.11) τ (w)xz (z)=
1

1 + ν

[
n∑
k=1

ψ̃0k sin
(π

2
k
)

+π cos
(

2π
z

a

) n∑
k=1

ψ̃1k sin
(π

2
k
)] Fλ2

ab
.

Thus, maximum of the shear stress occurs for z = 0

(3.12) τ (A−S)max = τ (w)max =
1

1 + ν

[
n∑
k=1

ψ̃0k sin
(π

2
k
)

+ π
n∑
k=1

ψ̃1k sin
(π

2
k
)] Fλ2

ab
,

and minimum of the shear stress occurs for z = ∓a/2

(3.13) τ
(A−S)
min = τ

(w)
min =

1

1 + ν

[
n∑
k=1

ψ̃0k sin
(π

2
k
)
− π

n∑
k=1

ψ̃1k sin
(π

2
k
)] Fλ2

ab
.
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The deflection and normal stress of the I-beam for the three-point bending
under the Euler-Bernoulli beam theory are as follows:

(3.14) w(E−B)
max =

1

48Cww

Fλ3

Eb
, σ(E−B)

max =
1 + 2x1
8Cww

Fλ

ab
.

Taking into account the work of Gere and Timoshenko [1], the shear stress
of the I-beam is

(3.15) τ (G−T )max =
4x1 (1 + x1) + x2

16Cwwx2

F

ab
, τ

(G−T )
min =

x1 (1 + x1)

4Cwwx2

F

ab
.

The detailed analysis is carried out for the example steel I-beam: a = 170 mm,
b = 200 mm, tf = 15 mm, tw = 9 mm, ν = 0.3, E = 2 · 105 MPa, and load force
F = 100 kN. Therefore, values of the parameters determining the cross section
proportions are constant. i.e. x1 = 0.0882 and x2 = 0.045, while the relative
length λ varies in the range (10 ≤ λ ≤ 40).

The results of the calculation are presented in the Table 1.

Table 1. The values of deflection and stresses for the I-beam – the analytical
– sandwich theory.

λ 10 15 20 25 30 40

w
(A−S)
max [mm] 1.23 3.59 8.04 15.27 25.98 60.62

σ
(A−S)
max [MPa] 118.0 156.5 195.0 233.5 271.9 348.9

τ
(A−S)
max [MPa] 31.5 31.5 31.5 31.5 31.6 31.6

τ
(A−S)
min [MPa] 28.8 28.8 28.9 28.9 28.9 29.0

Table 2. The values of deflection and stresses for the I-beam – the classical
beam theory.

λ 10 15 20 25 30 40

w
(E−B)
max [mm] 0.928 3.133 7.426 14.503 25.061 59.406

σ
(E−B)
max [MPa] 77.1 115.6 154.2 192.7 231.3 308.3

τ
(G−T )
max [MPa] 31.2 31.2 31.2 31.2 31.2 31.2

τ
(G−T )
min [MPa] 28.0 28.0 28.0 28.0 28.0 28.0

The ratio of the deflection calculated in accordance with the analytical –
sandwich theory to the one obtained with the classical beam theory is equal to

(3.16)
w

(A−S)
max

w
(E−B)
max

= 48Cww
∑
k

w̃k sin2
(π

2
k
)
.
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In case of shorter beams, i.e. for small λ values, the ratio exceeds unity. It
means that the deflection of a short beam is higher as compared to the value
provided by the classical theory. The difference between the deflection values
calculated according to both these theories drops with growing λ value. The
effect is shown in Fig. 3.

Fig. 3. Comparison of the deflections calculated in accordance with (A-S) and (E-B) theories
versus λ.

Similar ratio of the normal stresses calculated with the use of both above
mentioned theories is equal to

(3.17)
σ
(Sandwich)
max

σ
(E−B)
max

=
8Cww

1 + 2x1

∑
k

σ̃k sin2
(π

2
k
)
.

The deviation between the normal stress values so obtained is still higher
than for the deflections, however, it also drops with growing λ. It is depicted in
Fig. 4.
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Fig. 4. Comparison of normal stresses calculated in accordance with (A-S) and (E-B) theories
versus λ.

4. FEM model and numerical calculations

In order to confirm the theoretical results the beams have been modeled with
a view to calculate the deflections and stresses with the FEM method, using the
SolidWorks software. Because of symmetry of the problem only a half of the beam
has been considered with proper boundary conditions imposed on the symmetry
planes.

5. SolidWorks analysis

The analysis was carried out with the use of the SolidWorks software. The
meshes have been built of solid tetrahedral elements (with four Jacobian points).
Basic dimensions and parameters of the beam are identical to those of Table 3,
except that the values of the beam length varied according to the ones specified
in Tables 1 and 2, for λ = 10, 15, 20, 25, 30, 40, with a view to provide more
comprehensive comparison of the results.
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Table 3. Dimensions of the beam for λ = 10.

Dimension Value
Length L (λ = 10) 1700
Depth H [mm] 200
Depth of the web a [mm] 170
Width of the web b [mm] 200
Thickness of the web tw [mm] 9
Thickness of the flanges tf [mm] 15
Young’s modulus of the core E [MPa] 200
Poisson ratio of the core υ 0.3

The pattern of normal stress occurring in the middle cross-section of the I-
beam for λ = 10 is shown in Fig. 5. Maximum stress value amounts to 118.4 MPa.

a) b)

Fig. 5. Illustration of normal stress σz arising in the middle cross-section of the I-beam for
λ = 10: a) only a half of the beam is shown, with its middle cross-section in the front part of

the picture, b) the plot of the σz stress along the y-axis.

The plot of the σz stress arising along the web middle line, i.e. the y-axis
(Fig. 5b), shows a disturbance of the stress at the boundary between the flanges
and the web.

On the other hand, the pattern of shear stress acting in the web cross-section
located at certain distance from the middle of the I-beam for λ = 10 is shown in
Fig. 6. Maximum stress value amounts to 31.22 MPa.

Deflection of the I-beam for λ = 10 is depicted in Fig. 7.
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a) b)

Fig. 6. Illustration of shear stress τyz arising in the web cross-section of the I-beam located
beyond its middle for λ = 10: a) only a half of the beam, partially transparent, is shown, with
its middle cross-section in the front part of the picture, b) the plot of the τyz stress along the

line parallel to y-axis and located at the longitudinal plane of beam symmetry.

Fig. 7. Illustration of the I-beam deflection for λ = 10.

The values of stresses and deflections obtained with the help of SolidWorks
for higher for λ = values are not shown in figures, nevertheless, all the results
for all the considered variants are presented in Table 4.
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Table 4. The values of deflection and stresses for the I-beam – the SolidWorks FEM solutions.

λ 10 15 20 25 30 40

w
(SW )
max [mm] 1.21 3.47 7.73 14.63 24.85 57.88

σ
(SW )
max [MPa] 118.4 157.4 195.1 233.7 272.7 348.4

τ
(SW )
max [MPa] 31.22 31.23 31.22 31.26 31.23 31.25

τ
(SW )
min [MPa] 22.5 21.3 21.2 20.6 21.86 22.1

6. Comparison of the analytical and FEM-numerical results

The analytical and FEM-numerical results may be compared based on the
Tables 1 and 4. The FEM analysis satisfactorily confirms the analytical results,
giving evidence that in case of shorter beams the values of deflection and stresses
clearly deviate from the ones provided by the classical beam theory.

The calculation carried out with the help of SolidWorks shows that the per
cent deviation between the deflection values varies from 1.6 for λ = 10 to 4.5
for λ = 40. On the other hand, compliance between maximum normal stress
is much better, as it varies from 0.34 per cent for λ = 10 to 0.15 per cent
for λ = 40. Maximum shear stresses also very well comply in all the variants.
This is not the case for the minimum shear stress, but it should be noticed
that it is only a local effect. The minimum stresses specified in Table 5 are cal-
culated in the web points adjacent to the flange. In very small distance from
the flange the stress grows to the value approximating its analytical estima-
tion.

7. Conclusions

The hypothesis that initially plane cross-section of a beam remains plane
after bending leads to omission of the shear effect. In case of long beams (i.e. for
higher λ values) the shear effect becomes small and may be omitted. Otherwise,
in order to calculate properly the deflection and stresses in a bent beam this
hypothesis must be revised. The assumption of the analytical – sandwich theory,
in which the cross section deforms as is presented in Fig. 2b and according to
subsequent formulae, enables to formulate a new approach to the problem that
is much more effective in case of shorter beams.

It should be noticed that real beams used in most of mechanical structures
should be rather considered as short ones, with the λ values usually below 20.

Figures 3 and 4 illustrate the difference between these two approaches, which
is additionally confirmed by the FEM computation carried out with the Solid-
Works software. It was found that the difference between analytical and numeri-
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cal FEM results is below 4.5 percent in case of deflections and below 0.34 percent
for the stresses.

The proposed sandwich model of the I-beam accurately describes the shear
effect arising in the beam. This effect has been displayed based on the Timo-
shenko beam theory (Hutchinson [3] and Beck and Silva Jr. [11]).
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